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Fluorescent molecular tomographic image reconstruction usually involves repeatedly solving large-scale matrix
equations, which are computationally expensive. In this paper, a method is proposed to reduce the scale of the
matrix system. The Jacobian matrix is simplified by deleting the columns or the rows whose values are smaller
than a threshold. Furthermore, the measurement data are divided into two groups and are used for iteration of
image reconstruction in turn. The simplified system is then solved in the wavelet domain to further accelerate the
process of solving the inverse problem. Simulation results demonstrate that the proposedmethod can significantly
speed up the reconstruction process. © 2013 Optical Society of America
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and biological imaging; (170.6960) Tomography; (260.2510) Fluorescence.
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1. INTRODUCTION
Optical molecular imaging has been receiving much attention
due to its nonionizing, low cost, and high sensitivity. It is
widely utilized for drug discovery and tumor detection, as well
as intraoperative navigation [1]. Among the optical molecular
imaging modalities, fluorescence molecular tomography
(FMT) plays an extremely important role because of its abil-
ities to reconstruct the spatial distribution of optical parame-
ters, the fluorescent yield, the fluorescent lifetime, etc. In this
imaging modality, a fluorescent biochemical marker used as
contrast agent is injected into the biological system and con-
sequently accumulates in diseased tissue as a result of leaky
vasculature, hypermetabolism, and angiogenesis [2,3]. During
the imaging process, light at the fluorophore’s excitation
wavelength is used to irradiate the tissue, and then it is ab-
sorbed by fluorophore that presents in the tissue. The fluoro-
phore is elevated to an excited state and then decays to the
ground state while releasing the energy. This creates fluores-
cence, which can be separated from the excitation light via
interference filters [4]. The fluorescent photon has a longer
wavelength than that of the excitation photon, resulting in a
color shift. Images of the fluorescent yield and lifetime param-
eters are reconstructed from several optical measurements on
the surface of the tissue [5,6]. At present, FMT has been suc-
cessfully applied to in vivo monitoring inflammation [7],
evaluating treatment [8], and investigating breast cancer [9].

Reconstruction of tomographic data involves the generation
of a forward model that predicts the observable states as well
as an inverse problem to calculate the internal optical and fluo-
rescent properties with the given measured data and sources.

One of the major challenges in the reconstruction of FMT is its
high computational complexity resulted from extremely large-
scale matrix manipulations. In [10], a model-order reduction
technique is adopted to reduce the system complexity, where
the unknowns are expressed in the subspace with a reduced
dimension. However, in this method, a transformation matrix
needed to be constructedwith theWilson–Yuan–Dickens basis
vectors or the Lanczos basis vectors in the Krylov subspace.
Actually, during the process of reconstruction, besides the
number of unknowns, the scale of Jacobian matrix and the
number of measurement data are two main factors determin-
ing the scale of matrix equation and thus determining the
speed of the whole process of reconstruction. The manipula-
tion of Jacobian matrix is usually computationally intensive
especially for the FMT reconstruction problem, where there
are two coupled diffusion equations describing the forward
problem. It is well known that the Green’s function method
is an effective tool for accelerating the Jacobian matrix com-
puting process [11]. However, due to the increasing scale of
the matrix, the Green’s function method will not work very
well. The problem mainly lies in the fact that the Green func-
tion method cannot reduce the scale of the Jacobian matrix
itself. Therefore, a new method is proposed in this paper to
tackle such a problem and accelerate the reconstruction proc-
ess of FMT. In this method, the Jacobian matrix is simplified
by deleting those columns or the rows with values smaller
than a predefined threshold. Although the increment of the
number of measurement data can improve the quality of
reconstruction results, the scale of the matrices involved in
the reconstruction of FMT will also become larger, which
may slow down the process of tomographic image
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reconstruction. To solve that problem, the measurement data
are divided into two groups, which are used for iteration of
image reconstruction in turn. With this strategy, both the scale
of Jacobian matrix and the number of measurement data are
reduced during the iteration process of reconstruction. The
most important feature of the wavelet transforms lies in the
fact that most information of the signal is contained in a small
number of entries with other entries being very small and
therefore can be neglected [12]. Based on the above simplifi-
cation in spatial domain, the inverse problem is solved inwave-
let domain to improve the efficiency of image reconstruction.
Simulation results demonstrate that our proposed algorithm
can significantly speed up the reconstruction process at the
expense of a small reduction in reconstruction accuracy.

2. FORWARD MODEL
A. Light Transport and Fluorescence Model
Basically, the forward model of FMT can be depicted by two
coupled diffusion equations as [13]

−∇ · �De∇Φe� � keΦe � Qe; (1)

−∇ · �Dm∇Φm� � kmΦm � ϕμaef
1 − iωτ

Φe; (2)

where quantities with subscript e and m represent those
correspond to the excitation and emission wavelength and
ke;m and De;m can be expressed as

ke;m � μae;mi � μae;mf �
iω
c
; (3)

De;m � 1
3�μae;mi � μae;mf � μ0se;m�

�4�

with μae;mf and μae;mi being, respectively, the absorption coef-
ficient due to fluorophore and nonfluorescing chromophore,
μ0se;m being the isotropic scattering coefficient, and c repre-
senting the speed of light in the medium; Φe;m is the photon
density, Qe is the excitation light source, ϕ and τ represent the
fluorescence quantum efficiency and fluorescence lifetime.

In our case, the Robin type boundary condition is applied to
solve the forward equations.

B. Finite Element Discretization
The forward equations can be solved using the finite element
method (FEM). In the framework of FEM, the domain Ω is
discretized into P elements connected by N vertex nodes.
Upon the discretization procedure [14], Eqs. (1) and (2)
can be expressed under the FEM framework as follows:

AeΦe � Qe; (5)

AmΦm � Qm: (6)

3. RECONSTRUCTION OF FMT
A. Inverse Problem
The task of the inverse problem is to derive the distribution of
tissue parameters x with the known distribution of the light
sources and the measurements y, i.e.,

x � F−1�y�; (7)

where F is the forward operator.
To linearize the inverse problem, F can be expanded

in the vicinity of x0 in a Taylor series [15]. The Tikhonov
regularization term is introduced to improve the ill-
posedness of the inverse problem [16]. Therefore, the
solution to the inverse problem in a matrix form can be
formulated as

Δx � �JTJ� λI�−1JTΔy; (8)

where Δx is the perturbation in optical or fluorescent prop-
erties, Δy is residual data between the measurements and
the predicted data, J is the Jacobian matrix, I is the identity
matrix, and λ is a regularization parameter.

B. Simplification of the Jacobian Matrix
An M × N Jacobian matrix can be defined as

J �

2
666664

∂y1
∂x1

� � � ∂y1
∂xN

..

. . .
. ..

.

∂yM
∂x1

� � � ∂yM
∂xN

3
777775
: (9)

In fact, each element in the Jacobian matrix is just a
measure of the rate of change in measurement with respect
to the optical parameter [17]. During the iterative process of
Eq. (8) for FMT reconstruction, the Jacobian matrix J
needs to be repeatedly updated from iteration to iteration.
Therefore, the Jacobian matrix is also a key factor determin-
ing the implementation speed of the reconstruction
algorithm.

Conventionally, the direct derivation method and the
perturbation method are two straightforward methods to
obtain the Jacobian matrix. However, the above two meth-
ods are computing intensive and are not suitable for
obtaining Jacobian matrices with large-scale. Therefore, it
is of critical importance to develop an effective Jacobian
matrix calculation method for a fast implementation of
the reconstruction of FMT. Methods based on the Green’s
function are typical ones for such a purpose. Although
the theory of using the Green’s function in the derivation
of the Jacobian matrix has been well-established [11], the
efficiency of the Green’s function method decreases rapidly
with the increment of the dimension of the matrix.
Therefore, if the scale of the Jacobian matrix can be re-
duced, the computation efficiency of iterative process will
be improved and hence the reconstruction of FMT can also
be accelerated.

Each column in the Jacobian matrix corresponds to one
node and each element in this column represents the sen-
sitivity of one measurement with respect to that node. When
the sum of the absolute values of all the elements in one
column is very small (e.g., being smaller than a threshold),
it means that the sensitivity for the corresponding node is
low. It can be proved [in Appendix A(1)] that the column Ji

in the Jacobian matrix can be deleted during the process of
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solving Eq. (8) when Ji approaches 0. In such a case, the
scale of the Jacobian matrix can be reduced at an expense
of little accuracy loss in reconstruction upon deleting those
columns. Therefore, the computing efficiency of the iterative
process can be improved due to the simplification of
the Jacobian matrix. Based on the above idea, an M × N
Jacobian matrix can be simplified by deleting the jth
column if the following condition of the parameter SUM
is satisfied:

SUM �
XM
i�1

jJijj < a; (10)

where a is a threshold and Jij denotes the element of
the Jacobian matrix. In this way, the scale of the Jacobian
matrix is reduced and hence the process of image
reconstruction can be accelerated.

Similarly, it can also be proved [in Appendix A(2)] that
the row Ri of the Jacobian matrix can be deleted as Ri

approaches 0. Therefore, in order to further improve the
reconstruction efficiency, the row of the Jacobian matrix
can also be deleted in a similar manner. Suppose that the
sum of the absolute values of the ith row of anM × N Jacobian
matrix is smaller than a threshold, i.e.,

XN
j�1

jJijj < a: (11)

This inequality implies that sensitivity for the correspond-
ing measurement node is low and hence that row can be
deleted. Additionally, since the ith row of the Jacobian
matrix relates to the ith component of Δy, the deletion
of the ith row of the Jacobian matrix implies that the
ith element of Δy should also be deleted so that the prod-
uct of JTΔy can be obtained. Therefore, the dimension re-
duction in the row direction of the Jacobian matrix can
lead to the dimension reduction of the residual data Δy.
In this way, the computational requirement can be signifi-
cantly reduced.

However, it is possible that there are some prominent el-
ements in the column, where the sum of the absolute values
of all the elements in this column is very small. Thus, some
useful information will be deleted, which will lead to the
poor reconstruction results. To tackle such a problem, an-
other parameter, namely PROPORTION, is introduced in
addition to the above mentioned condition in Eq. (10) for
determining whether a column in the Jacobian matrix
should be deleted. That is, if both of the inequality in
Eq. (10) and that in Eq. (12) are satisfied, the column
can be deleted:

PROPORTION � maxMi�1 jJijjPM
i�1 jJijj

< k: (12)

In such a way, some useful information may be preserved,
especially when the predefined threshold for SUM is large.
In our simulations, comparisons will be performed among
the results from the algorithm with and without considering
the condition in Eq. (12).

In summary, the process for Jacobian matrix simplification
can be described in Algorithm 1:

(1) Given x, compute Δy and J at x;
(2) for (j � 1;…; N) do

if ��PM
i�1 jJijj < a� & &��maxMi�1 jJij j∕

P
M
i�1 jJij j� < k�� then

delete the jth column of Jacobian matrix;
delete the jth element of Δx;
end

end
(3) for (i � 1;…M do

if �PN
j�1 jJijj < a� then

delete the ith row of Jacobian matrix;
delete the ith element of Δy;
end

end

C. Iterative Method Based on the Grouped Measurement
Data
Although the increment of the number of measurement data
can obviously improve the quality of reconstructed results, the
scale of the matrices involved in the reconstruction of FMT
will also become larger and larger, which may slow down
the process of tomographic image reconstruction. In order
to tackle the above problem, we propose to partition the
measurement data into two groups that are then used in turn
during the iteration process of the reconstruction. That is, one
group is used in the first iteration of reconstruction and the
other in the next iteration, etc. In this manner, the number
of rows in the Jacobian matrix is reduced to one half of that
in the Jacobian matrix with all the measurement data in-
volved. Hence both the computational complexity and the
computational requirements for the Jacobian matrix are re-
duced, which will be helpful for reducing the computational
burden of our reconstruction problem. One additional superi-
ority of this strategy is that the iterative results from one group
of measurement data can provide a good initial guess for the
next iteration for the other group of data. Figure 1 gives a
schematic illustration of our reconstruction strategy based

Fig. 1. Scheme of the iteration method based on grouped measure-
ment data: (a) measurement data without grouping, (b) measurement
data of red group, and (c) measurement data of black group.
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on two groups of measurement data used in turn in the iter-
ations of the reconstruction. Figure 1(a) illustrates the meas-
urement data without being grouped. In Figs. 1(b) and 1(c),
the two groups of measurement data are illustrated with black
circles and red circles, respectively.

D. Image Reconstruction Based on the Wavelet
Transform
It is well known that the most important feature of the wavelet
transforms lies in the fact that most information of the signal is
contained in a small number of entries with other entries
being very small and therefore can be neglected [12]. Some
related research on wavelet-based image reconstruction has
been conducted. In [18], a time-resolved forward model and
its projection onto wavelet basis functions have been imple-
mented. Ducros et al. apply compression techniques to the
measurements acquired with structured illuminations [19].
That method is based on the exploitation of the wavelet
transform of the measurements acquired after wavelet-
patterned illuminations. In [20], a multiresolution technique
that uses wavelet decomposition is chosen to reduce compu-
tation complexity in the modeling stage. All the matrices are
projected onto an orthonormal wavelet basis and reduced
according to the wavelet’s properties.

To exploit the multiresolution property of the wavelet and
further reduce the time of reconstruction process, the simpli-
fied system is solved in the wavelet domain upon performing
wavelet transform in this paper. For such a purpose, Eq. (8)
can be rewritten as

KΔx � b (13)

with K � �JTJ� λI� and b � JTΔy.
In Eq. (13), upon connecting all the rows in a head to tail

manner, the perturbations of the two-dimensional optical
parameters is represented with a one-dimensional vector
Δx. To solve the simplified system in the wavelet domain,
we perform the wavelet transform in both sides of Eq. (13)
and have

K̂Δx̂ � b̂; (14)

where K̂ � WbKWT
x , Δx̂ � WxΔx, b̂ � Wbb, Wx, and Wb are,

respectively, the wavelet transform matrix of Δx and b; Wx is
an orthonormal matrix.

From Eq. (14), it can be seen that the wavelet transform
conducted in Eq. (13) leads to the multiresolution represen-
tation of the original signals, such as one-dimensional dis-
crete signal Δx and b as well as two-dimensional signal K.
Basically, the signal Δx and b with N components can be
described as

Δx̂N×1 �
�
A−1ΔxN∕2×1
D−1ΔxN∕2×1

�
; b̂N×1 �

�
A−1bN∕2×1
D−1bN∕2×1

�
: (15)

It can be seen from this equation that the original signal can
be decomposed into two parts of the approximation compo-
nent as A−1ΔxN∕2×1 or A−1bN∕2×1 and the detail component as
D−1ΔxN∕2×1 or D−1bN∕2×1.

Similarly, the two-level wavelet-based multiresolution
representation of K sized N × N can be expressed with the
following formula:

K̂N×N �
�
A−1KN∕2×N∕2 D1

−1KN∕2×N∕2
D2

−1KN∕2×N∕2 D3
−1KN∕2×N∕2

�
: (16)

Four elements in the matrix of the right-hand side of
Eq. (16) are, respectively, the approximation image
A−1KN∕2×N∕2 and three detail images D1

−1KN∕2×N∕2,

D2
−1KN∕2×N∕2 and D3

−1KN∕2×N∕2.
The wavelet transform can be successively performed level

by level with respect to the approximation components in
both sides of Eq. (14) to obtain a multiresolution representa-
tion of the reconstruction problem.

E. Algorithm Description
Actually, the solution to the reconstruction problem can be
obtained by minimizing the residue between the measured
and predicted data as follows:

ψ�x� � 1
2
�y − F�x��T �y − F�x��; (17)

where ψ�x� is the objective function measuring the discrep-
ancy between the measured and predicted data. y is a vector
of the measured data on the boundary, and F�x� is a vector of
the predicted data on the boundary according to a forward
model. Therefore, the reconstruction problem can be
regarded as an optimization problem minimizing ψ�x� with re-
spect to x. In terms of this, the whole reconstruction algorithm
can be summarized in Algorithm 2:

(1) Set x0 to an initial guess, x � x0; Set i � 2;
(2) if (i%2⩵0) then

ComputeΔy and J at xwith Algorithm 1 based on the first group
of measurement data;

else
Compute Δy and J at x with Algorithm 1 based on the
second group of measurement data;

end
i � i� 1;

(3) for (l � −1;…;−L) do
Perform wavelet transform for K and b to obtain K̂l and b̂l,
which are the wavelet transform at the lth level for K and b,
respectively;

end
Set l � −L and Δx̂�0�

−L � 0;
(4) while (l < 0) do

Obtain a solution from K̂lΔx̂l � b̂l using the CGD method with
an initial value Δx̂�0�l ;
Prolongate Δx̂l through padding zeros to obtain an initial guess
for Δx̂l�1 at the next higher resolution, i.e., Δx̂�0�l�1 � �Δx̂Tl ; 0T �T ;
l � l� 1;

end
Solve KΔx � b with Δx�0� � WT

xΔx̂
�0�
0 as an initial guess;

Update x using Eq. (13) and compute the corresponding
objective function ψ�x� according to Eq. (17);

(5) if (ψ�x� < δ) then
Stop and output x;

else
Go to step (2);

end

Based on the proposed algorithms, the matrix system of
reconstruction is simplified in both of the spatial domain
and wavelet domain, which can improve the efficiency of
reconstruction.
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4. SIMULATION RESULTS AND
DISCUSSION
To evaluate the performance of our proposed algorithm, sim-
ulation experiments are implemented. The simulated forward
data are obtained from the diffusion equations as illustrated in
Eqs. (1) and (2), where Gaussian noise with a signal-to-noise
ratio of 10 dB is added for evaluating the noise robustness of
the algorithms. Figure 2 illustrates the simulated phantoms
with one anomaly in Fig. 2(a) and two anomalies of different
shapes in Fig. 2(b). Four sources and 30 detectors are equally
distributed around the circumference of the simulated
phantom.

The accuracy of FEM solutions to the partial differential
equations depends on the mesh size. To reduce the

computation requirements without significantly reducing the
image resolution, the image reconstruction is implemented
based on an adaptively refined mesh. During the process of

Fig. 2. Simulated phantoms for reconstruction of FMT (a) with one
anomaly and (b) with two anomalies.

Fig. 3. Prior images used for (a) one-anomaly phantom and
(b) two-anomaly phantom.

Fig. 4. Adaptively refined meshes for reconstruction of FMT for
(a) one-anomaly phantom and (b) two-anomaly phantom.

Table 2. Optical and Fluorescent Properties
of Two-Anomaly Phantom

Excitation Light μaef �mm−1� μaei �mm−1� μ0se �mm−1� ϕ τ �ns�
Anomalies 0.2, 0.3 0.03 4.0 0.2 0.6
Background 0.05 0.03 4.0 0.2 0.6

Fluorescent light μamf �mm−1� μami �mm−1� μ0sm �mm−1� ϕ τ �ns�
Anomalies 0.02, 0.03 0.02 3.0 0.2 0.6
Background 0.003 0.02 3.0 0.2 0.6

Table 1. Optical and Fluorescent Properties
of One-Anomaly Phantom

Excitation Light μaef �mm−1� μaei �mm−1� μ0se �mm−1� ϕ τ �ns�
Anomaly 0.3 0.03 4.0 0.2 0.6
Background 0.05 0.03 4.0 0.2 0.6

Fluorescent light μamf �mm−1� μami �mm−1� μ0sm �mm−1� ϕ τ �ns�
Anomaly 0.2 0.02 3.0 0.2 0.6
Background 0.005 0.02 3.0 0.2 0.6

Fig. 5. Distributions of SUMs and PROPORTIONs.

Fig. 6. Reconstructed results of absorption coefficient μaef (a) with-
out the condition for PROPORTION and (b) with the condition for
PROPORTION.
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mesh generation, some a priori information derived from
other imaging modalities, such as the structural imaging
can be incorporated. The reconstructed domain is first uni-
formly discretized according to the Delaunay triangulation
scheme, after which the uniform mesh is then adaptively re-
fined in combination with the a priori information. The areas
with fine details should be reconstructed with high resolution,
whereas other areas composed mainly of the low-frequency
component with little variation can be reconstructed with
low resolution to reduce the computational requirements
and also to improve the ill-posedness. Based on this idea,
the a priori images with a resolution of 100 × 100 pixels, as
shown in Figs. 3(a) and 3(b) corresponding to Figs. 2(a)
and 2(b), respectively, are used to generate the adaptively re-
fined meshes. In Fig. 4, (a) shows the adaptively refined mesh
with 122 nodes and 212 triangular elements, while (b) gives
the one with 148 nodes and 264 triangular elements, both
of which are generated with the prior information, as shown
in Figs. 3(a) and 3(b) incorporated, respectively.

Tables 1 and 2 outline the optical and fluorescent parame-
ters in different areas of the simulated phantoms correspond-
ing to Figs. 2(a) and 2(b), respectively. To quantitatively
assess the accuracy of the different algorithms, the mean
square error (MSE) is introduced as a measure:

MSE �
XN
i�1

�
1
N
�xcal − xact�2i

�
; (18)

where N is the total number of nodes in the domain. The
superscript cal denotes the values obtained using re-
construction algorithms and act denotes the actual distribu-
tion of the optical or fluorescent parameters, which are used
to generate the synthetic image data set.

In this work, assuming that the scattering coefficients are
known, we focus on the reconstruction of the absorption co-
efficient μaef . As Daubechies 1 (Haar wavelet) has advantages,
such as orthogonality and symmetry, the Daubechies 1 wave-
let is used in the simulations [21]. For a convenience of the

Fig. 7. Reconstructed results of absorption coefficient μaef for phan-
tom with one anomaly based on (a) method without simplified matrix
system and (b) proposed method.

Fig. 8. Reconstructed results of absorption coefficient μaef for phan-
tom with two anomalies based on (a) method without simplified ma-
trix system and (b) proposed method.

Table 4. Performance Comparison of Reconstruction
Methods for Phantom with Two Anomalies

Methods
Our

Algorithm
Method without Simplified

Matrix System

Computation time (s) 211 290
MSE 2.845 × 10−4 2.814 × 10−4

Table 3. Performance Comparison of Reconstruction
Methods for Phantom with One Anomaly

Methods
Our

Algorithm
Method without Simplified

Matrix System

Computation time (s) 152 218
MSE 4.803 × 10−4 4.792 × 10−4

Fig. 9. Reconstructed results of absorption coefficient μaef based on (a) simplification of the Jacobian matrix, (b) combined simplification of the
Jacobian matrix and grouped measurement data, and (c) proposed algorithm.

Table 5. Performance Comparison of Reconstruction
Methods for Three Techniques

Methods
Method in
Fig. 9(a)

Method in
Fig. 9(b)

Method in
Fig. 9(c)

Computation time (s) 241 235 211
MSE 2.986 × 10−4 2.981 × 10−4 2.845 × 10−4
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following discussion, the threshold a is selected so that the
following equation is satisfied:

a � c ×
XM
i�1

XN
j�1

jJijj; (19)

where Jij denotes the element of an M × N Jacobian matrix.
To determine a proper threshold for PROPORTION, we

analyze the distribution of the elements in the columns of
Jacobian matrix for one-anomaly phantom with one source.
Based on this distribution, the distributions of SUMs and
PROPORTIONs can be calculated whose results are shown

in Fig. 5. It can be seen from this figure that most of PROPOR-
TION are less than 50%, which can be set as the value of k in
step (2) of Algorithm 1. Figure 6 shows the reconstructed re-
sults of μaef with c � 0.2. It can be seen that the reconstruction
quality can be improved especially for the area of anomaly if
the condition of PROPORTION is considered. Therefore, all
the subsequent simulation results in this paper are from
our proposed algorithm with the condition of PROPORTION
considered.

The reconstructed images of μaef for the phantom with one
anomaly using different algorithms are shown in Fig. 7, where
Fig. 7(a) shows the reconstructed result from the method
without using the simplified matrix system, and Fig. 7(b) de-
picts the reconstructed result from the proposed method with
c being selected as 0.05. The reconstructed images of μaef for
phantom with two anomalies using different algorithms are
illustrated in Fig. 8. The reconstruction result from the method
without using the simplified matrix system and the
reconstruction result from our method with c � 0.05 are
shown in Figs. 8(a) and 8(b), respectively.

To further evaluate the reconstruction quality, Tables 3
and 4 summarize the performance of reconstructions in
terms of the computation time and MSE as defined in
Eq. (18) for phantoms with one anomaly and two anomalies,
respectively. From these tables, it can be seen that our
proposed algorithm can significantly speed up the
reconstruction process at the expense of a small reduction
in reconstruction accuracy.

Fig. 10. Reconstructed results of absorption coefficient μaef for phantom of two anomalies with the value of c being (a) 0.05, (b) 0.1, and (c) 0.2,
respectively.

Table 6. Impact of the Threshold on the
Reconstruction for Phantom with Two Anomalies

c 0.05 0.1 0.2

Computation time (s) 211 185 160
MSE 2.845 × 10−4 3.982 × 10−4 6.015 × 10−3

Fig. 11. Simulated phantom for 3D reconstruction. The phantom of
radius 10 mm and height 40 mm with a uniform background of
μaef � 0.005 mm−1, which is positioned at x � 10 mm, y � 0 mm,
and z � 20 mm. The small cylindrical anomaly has a radius of
2 mm and height 6 mm with μaef � 0.01 mm−1.The anomaly is posi-
tioned at x � 5 mm, y � 0 mm, and z � 20 mm. The dashed curves
represent the measurement planes, at z � 15 mm, z � 20 mm,
z � 25 mm. Fig. 12. 3D mesh for image reconstruction.
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Actually, three techniques are included in the proposed
algorithm as described in Subsections 3.B, 3.C, and 3.D. To
illustrate the contribution to the performance from each of
these three techniques, Fig. 9 gives the reconstructed results
for phantom with two anomalies under different combination
of the above mentioned techniques. Quantitative comparisons
of the reconstructed results are listed in Table 5. From this
table, it can be seen that, in this simulated reconstruction,
the method of simplification of the Jacobian matrix contrib-
utes most to about 62% of the reconstruction acceleration.
The wavelet method and strategy of grouped measurement
data contribute to about 30% and 8% of the reconstruction ac-
celeration, respectively. Furthermore, the simplification of the
Jacobian matrix may increase MSE while the wavelet method
can improve the quality of reconstruction by decreasing about
5% of MSE.

To investigate the impact of the threshold on the MSE and
the computation time, the reconstructions are implemented
using our proposed algorithm with different settings of c.
The reconstructed results under different settings of c for
phantom with two anomalies are shown in Figs. 10(a)–10
(c) with c being set as 0.05, 0.1, and 0.2, respectively. Table 6
lists the corresponding performance of reconstruction under
different settings of the threshold (i.e., c). It can be seen that,
when the threshold becomes larger, the reconstruction
speed can be further improved, but it results in a relatively
larger MSE. A similar conclusion can also be drawn for
the case of one anomaly. This means that our algorithm
can significantly speed up the process of reconstruction
at the expense of a small reduction in reconstruction
accuracy.

To further validate the proposed algorithm for 3D
reconstruction, we extend the methods previously defined for
triangular elements to tetrahedral elements. The integration of
products of shape functions over the volume of the elements,
and surface integrals over a side of the element, as required
for the computation of element stiffness and mass matrices, is
performed by a numerical integration rules.

In the 3D case, a cylindrical phantom as illustrated sche-
matically in Fig. 11 is used for simulations. Within this phan-
tom, a small cylindrical object is suspended. The dashed
curves represent the planes of measurement. Four sources
and 16 measurements are used for each plane in the simula-
tions. The data are collected in all three measurement planes.
The mesh for reconstructing the 3D image as shown in Fig. 12
contains 858 nodes and 3208 tetrahedral elements. Figures 13
and 14 depict the 3D reconstructed images using the proposed
algorithm and the method without using the simplified matrix
system, respectively. These are 2D cross sections through the
reconstructed 3D images. Table 7 lists the performance of the
above two methods for a quantitative comparison. From this
table, we can conclude that our proposed algorithm can also

Fig. 13. Reconstructed images using the proposed algorithm, which are 2D cross sections through the reconstructed 3D volume. The right-hand
side corresponds to the top of the cylinder (z � 40 mm) and the left corresponds to the bottom of the cylinder (z � 0 mm), with each slice
representing a 10 mm increment.

Fig. 14. Reconstructed images using the method without simplified matrix system, which are 2D cross sections through the reconstructed 3D
volume. The right-hand side corresponds to the top of the cylinder (z � 40 mm), and the left corresponds to the bottom of the cylinder (z � 0 mm),
with each slice representing a 10 mm increment.

Table 7. Performance Comparison of 3D
Reconstruction Methods

Methods
Our

Algorithm
Method without Simplified

Matrix System

Computation time (s) 2541 3748
MSE 3.992 × 10−3 3.869 × 10−3
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significantly speed up the reconstruction process for the
3D case.

5. CONCLUSION
In this paper, a new method based on a simplified matrix sys-
tem is proposed for image reconstruction of FMT. In this
method, the traditional computationally intensive Jacobian
matrix is simplified by deleting the rows or columns whose
values are smaller than the threshold. In order to further re-
duce the scale of Jacobian matrix as well as the number of
measurement data involved in each iteration, the measure-
ment data are divided into two groups that are used in turn
in the iterations of reconstruction. The simplified system is
solved in wavelet domain to further accelerate process of
solving the inverse problem. Simulation results show that
our algorithm can significantly accelerate the reconstruction
process.

APPENDIX A
(1) Proof. □

Let

Δx � �Δx1 Δx2 � � � Δxi � � � ΔxN �T �Δx ∈ RN �

and

J � � J1 J2 � � � Ji � � � JN � �J ∈ RM×N�

denote a vector of the perturbation in optical parameters and
the Jacobian matrix, respectively. Substituting them into
Eq. (8), we have
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Equation (A1) can be further written as
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From Eq. (A2), it can be seen that the above matrix equation is
composed of N equations, and the ith equation can be ex-
pressed as
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Then, we have
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The limit of Δxi as Ji approaches 0 can be achieved as

lim
Ji→0

Δxi

� lim
Ji→0

JT
i �Δy−Δx1J1−Δx2J2���−Δxi−1Ji−1−Δxi�1Ji�1���−ΔxNJN�

JT
i Ji�λ

�0: (A5)

For convenience of the following discussion, Eq. (A1) can be
rewritten as
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For the case when Ji approaches 0, we have
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lim
Ji→0
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Since limJi→0 JT
i JΔx � 0, limJi→0 Δxi � 0 and

limJi→0 JT
i Δy � 0, we have
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From Eq. (A8), we can obtain
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The above equation can be further written as
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Since limJi→0 JiΔxi � 0, we have
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Then, we can further obtain

lim
Ji→0

2
6666666666666664

0
BBBBBBBBBBBBBBB@

JT
1

JT
2

..

.

JT
i−1

JT
i�1

..

.

JT
N

1
CCCCCCCCCCCCCCCA

· � J1 J2 � � � Ji−1 Ji�1 � � � JN � � λI

3
7777777777777775

·

0
BBBBBBBBBBBBBBB@

Δx1
Δx2

..

.

Δxi−1
Δxi�1

..

.

ΔxN

1
CCCCCCCCCCCCCCCA

� lim
Ji→0

0
BBBBBBBBBBBBBBB@

JT
1

JT
2

..

.

JT
i−1

JT
i�1

..

.

JT
N

1
CCCCCCCCCCCCCCCA

· Δy: (A12)

From Eqs. (A1) and (A12), it can be seen that the ith column
Ji of the Jacobian matrix can be deleted as Ji approaches 0
during solving Eq. (8).
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(2) Proof. □
Let
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and
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denote the vector for residual data between the measure-
ments and the predicted data, and the Jacobian matrix,
respectively. Substituting them into Eq. (8), we have
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From the above equation, we have
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In the case when Ri approaches 0, we have

lim
Ri→0

��RT
1R1 � RT

2R2 � � � �RT
i Ri � � � �RT

MRM � � λI� · Δx

� lim
Ri→0

�Δy1RT
1 � Δy2RT

2 � � � � � ΔyiRT
i � � � �ΔyMRT

M�:

(A15)

Since limRi→0 RT
i Ri � 0 and limRi→0 ΔyiRT

i � 0, we have
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Equation (A16) can be further written as
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From Eqs. (A13) and (A17), it can be seen that the ith row
Ri of the Jacobian matrix can be deleted as Ri approaches 0
during solving Eq. (8).
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