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Abstract. Gene expression is the process by which genetic 
information is used for the synthesis of a functional gene 
product, and ultimately regulates cell function. The increase 
of biological complexity from genome to proteome is vast, 
and the post‑translational modification (PTM) of proteins 
contribute to this complexity. The study of protein expression 
and PTMs has attracted attention in the post-genomic era. 
Due to the limited capability of conventional biochemical 
techniques in the past, large-scale PTM studies were tech-
nically challenging. The introduction of effective protein 
separation methods, specific PTM purification strategies 
and advanced mass spectrometers has enabled the global 
profiling of PTMs and the identification of a targeted PTM 
within the proteome. The present review provides an over-
view of current proteomic technologies being applied in 
eye research, with a particular focus on studies of PTMs in 
ocular tissues and ocular diseases.
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1. Introduction

Over the last two decades, genomics has been regarded as 
the most popular and productive research field in biological 
science. However, the intermediate mRNA transcript may 
rapidly degrade (1) or undergo alternative splicing (2), which 
leads to a number of variable outcomes that renders the study 
of biological systems more challenging. Unlike ribosomal 
proteins or enzymes, which are relatively stable, the majority 
of proteins involved in the cell cycle demonstrate a rapid turn-
over rate and may function alongside a degradation process (3). 
As functional products of the biological system, proteins are 
direct and crucial participants in all downstream biochemical 
pathways.

Post‑translational modification (PTM) is a key step in 
protein biosynthesis, whereby the addition, folding or removal 
of functional groups leads to drastic alterations in protein 
function (4). For instance, an Alzheimer's disease associated 
protein, Tau, is phosphorylated at 40 different sites, which 
produces site-specific phosphorylation that are responsible 
for different stages of the disease (5,6). Large‑scale studies of 
proteins and PTMs are often included in proteomic research at 
present. Robust peptide separation methods that employ strong 
cation exchange, high performance liquid chromatography 
(HPLC), novel mass spectrometry (MS) designs with high 
resolution and sensitivity, such as Orbitrap and TripleTOF, as 
well as PTM‑specific bioinformatics tools and databases, have 
rendered the profiling of unique or multiple PTMs in biological 
proteomes possible. Proteomic analysis of PTMs has facilitated 
the identification of novel biomarkers for a number of diseases, 
including prostate cancer (7), pancreatic cancer (8) and rheu-
matoid arthritis (9). However, few proteomic‑based studies have 
been performed to explore PTMs associated with eye diseases. 
It is thought that gaining an increased understanding of the 
characteristics of PTMs through the use of emerging MS tech-
niques, is important for the development of effective diagnostic 
and therapeutic strategies for various disorders, including eye 
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diseases (10). The present review will discuss the technological 
challenges in protein research, provide an overview of the types 
and mechanisms of PTMs, as well as their application in the 
research of eyes and associated diseases.

2. Proteomics analysis technology

Protein separation methods. Large-scale proteomic analysis 
typically involves gel-based and liquid chromatography-based 
separation strategies prior to MS analysis. It is possible to 
categorize these into electrophoretic and chromatographic 
approaches. For electrophoretic separation strategies, 
two‑dimensional gel electrophoresis (2DE) has been widely 
used for separating soluble proteins based on their isoelec-
tric points and molecular weights (11). However, membrane 
proteins, which serve vital functions in signal transduction 
pathways, are frequently difficult to separate using 2DE 
due to their high hydrophobicity (11). In addition, these 
approaches are technically insufficient due to a low dynamic 
range and throughput, which are important for analyzing 
complex biological samples. Therefore, the use of chro-
matography, including ion‑exchange chromatography (12), 
hydrophobic interaction chromatography (13), size‑exclusion 
chromatography (14), affinity chromatography (15), and 
the most popular, reverse-phase high-performance liquid 
chromatography (16,17), have become the more common 
separation strategies used in high-throughput liquid chroma-
tography-based proteomic research.

Protein identification strategies. MS has advanced qualitative 
and quantitative analysis of unknown organic and inorganic 
compounds in numerous fields, including environmental 
contaminant monitoring (18), forensic toxicology, doping anal-
ysis (19) and analysis of clinical samples (20), and is currently 
an indispensable tool in proteomics research. A typical mass 
spectrometer consists of an ionization source, a mass analyzer 
and a detector. Analytes are ionized to a gas phase and are 
subsequently processed by the mass analyzer and detector. 
The resultant mass spectra, expressed as mass/charge ratios, 
are compared with protein databases for identification (21).

Currently, there are two major ionization strategies 
employed for MS. The first is a matrix‑assisted laser desorp-
tion/ionization (MALDI) approach, by which analyte 
desorption is induced by a laser beam and then absorbed by 
the matrix material (22). The molecules are then ionized to 
gases (23). The remaining approach is electrospray ionization 
(ESI), which was invented by Dole et al in 1968 (24). This tech-
nique was developed further by John Fenn, who was awarded 
a Nobel Prize in 2002 for this invention (25). Acidic liquid 
analytes acquire a positive electro-charge as they are sprayed 
into small droplets. They subsequently produce ions and 
enter the mass spectrometer. ESI allows a continuous flow of 
analytes with a variable flow rate, and generates multi‑charged 
positive ions depending on the acidity of the solvent. This 
technique permits the identification of large molecular weight 
proteins by MS (26).

Collision‑induced dissociation (CID) is the most widely 
used fragmentation method. It allows ions to collide with neutral 
gas molecules, which leads to internal energy conversion and 
fragmentation of the precursor ion (27). CID is effective in 

detecting small, low-charged peptides and single-charged 
ions (28); however, is not as effective at detecting long peptides. 
Due to the presence of PTMs, the digestion of long peptides 
by CID fragmentation becomes less effective. Therefore, liable 
PTMs, such as phosphorylation and S-nitrosylation, may be 
lost during CID collision (29). Furthermore, the presence of 
several basic amino acid residues in PTM proteins has been 
demonstrated to inhibit random protonation along peptide 
backbones by CID (28). These factors hinder the generation 
of efficient fragment ions by CID. To date, electron‑transfer 
dissociation (ETD) is considered to be more favorable for PTM 
studies (30). This method transfers electrons to multi‑proton-
ated proteins or peptides, which leads to N-Cα backbone bond 
cleavage. ETD is useful for the identification of liable PTMs. 
It provides the protein sequence information and modification 
sites, and it is frequently used for PTM analysis (31). Previous 
studies have reported that ETD is particularly suitable for 
detecting peptides with >2 charges (32,33). However, it has 
been suggested that ETD yields a reduced number of identified 
proteins due to its lower scanning rate when compared with 
CID (29,31). Several studies have compared the efficiency of 
CID and ETD in identifying PTMs (34-36). In general, CID 
and ETD are able to detect stable PTMs successfully, including 
acetylation and methylation, while ETD is the optimal strategy 
for identifying liable PTMs, including phosphorylation, ubiq-
uitination and glycosylation. Multiple studies have suggested 
combining CID and ETD in order to gain higher competency 
and accuracy in PTM studies (34-40).

Protein quantification strategies. Advantages of applying 
large-scale proteomics strategies for biological research 
include profiling of the proteome for protein identification and 
quantification of protein expression. It is possible to achieve 
such quantification using chemical labeling strategies, in 
which the ion intensity between labeled and unlabeled peptides 
or differentially labeled peptides is compared. Isobaric 
tagging for relative and absolute quantification uses isobaric 
amine-specific tandem mass tags to label the N-terminus 
and lysine residues of digested peptides. It is then possible 
to compare or analyze up to eight different sets of samples 
in a single experiment (41). Additional popular labeling 
strategies include isotope protein coded labeling (42), which 
uses isotope-coded tags instead of isobaric tags to label the 
N-terminus and lysine residues. Dimethyl multiplexed labeling 
is an economical option, whereby the N-terminus of peptides 
and α-amino groups of lysine residues are labeled with 
water‑soluble formaldehyde via reductive methylation (28). 
Stable isotope labeling by amino acids in cell culture (SILAC) 
is an in vivo strategy, which involves feeding cell cultures 
with amino acids containing stable isotopes. During SILAC, 
lysates of labeled and normal cell cultures are mixed, digested 
and analyzed by MS, and the relative peak intensities in the 
MS spectrum are subsequently compared and analyzed (43). 
Despite the effectiveness of using labeling strategies in the 
quantification of the proteome, these are time-consuming, 
expensive and complicated in terms of sample preparation 
procedures and data analysis. Novel and accurate label-free 
quantification methods are gradually emerging.

Label‑free quantification is a fast and low‑cost strategy 
for measuring large-scale differential proteomic expression. 
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These approaches are divided into two major strategies; the 
first requires cross‑checking of the numbers of MS/MS spectra 
acquired for peptides of proteins between different standard 
samples (44), and the second strategy is based on the measure-
ment and comparison of chromatographic peak areas of 
peptide precursor ions between different samples (45). There 
are currently multiple open source and commercial software 
packages available for the processing of label‑free quantifica-
tion data, including MZmine, MsInspect, MapQuant, SIEVE, 
Elucidator and OpenSWATH for SWATH analysis (46-49). 
These software programs facilitate peak detection and 
matching, data alignment, normalization and statistical 
analysis. However, limitations, such as the variation between 
different samples, remain a major concern.

3. Introduction of PTMs

To date, >400 types of PTMs have been reported, and >90,000 
individual PTMs have been identified (50). Glycosylation, 
ubiquitination, phosphorylation, methylation and acetylation 
are commonly reported (4), while additional PTMs, such as 
adenosine monophosphate adenylation, are less frequently 
reported (51). As PTMs influence almost every aspect of cell 
biology, they are an important molecular factor for under-
standing biological and pathological mechanisms, and are 
summarized in Table I.

Phosphorylation. Phosphorylation is a chemical reaction that 
involves the transfer of a phosphate group from the γ-locus 
of adenosine 5'‑triphosphate (ATP) or guanosine 5'‑triphos-
phate to the side chain of an amino acid residue of a substrate 
protein molecule. This reaction is mediated by protein kinase 
catalysis, whereas its counterpart enzyme, phosphatase, cata-
lyzes the de‑phosphorylation reaction (52). Phosphorylation 
is the most widely studied PTM, due to its involvement in 
a wide range of cellular functions. For instance, it activates 
or inhibits various enzymes or receptors, thus regulating 
different signaling pathways that govern cell metabolism, 
growth and differentiation, the immune response, oncogenesis 

and apoptosis (53-55). Phosphorylation of eukaryotic proteins 
has been demonstrated to occur most commonly on serine, 
threonine and tyrosine residues, which mediates the activity of 
numerous signaling networks involved in cell differentiation 
and proliferation (56). A higher frequency of phosphoryla-
tion on serine and threonine residues occurs when compared 
with tyrosine residues at a ratio of ~1,800:200:1 (pSer: pThr: 
pTyr) (57). By contrast, phosphorylation of histidine, cysteine 
and aspartate residues has been reported in bacteria, fungi and 
plants, as part of bi- and multi-component phospho-signaling 
transduction pathways (58,59). Furthermore, phosphorylation 
of histidine has been demonstrated to be involved in regulating 
metabolic signaling pathways in eukaryotic cells (60,61). In the 
last decade, various human genome projects have confirmed 
that genes coding for kinases and phosphatases comprise >2% 
of the human genome (62). In total, ~30% of the whole human 
proteome has been postulated to undergo phosphorylation 
during its life cycle (63).

Glycosylation. Glycation (non‑enzymatic glycosylation) is the 
covalent bonding of a carbohydrate molecule to another mole-
cule, which may occur under in vivo or in vitro conditions (64). 
In biological systems, the process of attaching glycans to 
lipids, proteins or additional organic molecules by catalysis is 
termed glycosylation (65). It is possible to divide glycosylation 
into four main subcategories, including N-linked and O-linked 
glycosylation, C-mannosylation and the glycosylphosphati-
dylinositol (GPI) anchor. N‑linked glycosylation involves the 
attachment of an oligosaccharide to aspartic acid residues of 
secreted or membrane-bound proteins, and occurs primarily in 
the endoplasmic reticulum of eukaryotic cells (66). A similar 
binding strategy occurs between various sugars and serine and 
threonine residues primarily in the Golgi, nucleus and cyto-
plasm (67), termed O‑linked glycosylation. C‑mannosylation 
refers to the addition of a mannose oligosaccharide to the 
first tryptophan residue in the amino acid sequence via a 
carbon‑carbon bond (68). Formation of the GPI anchor involves 
the covalent linkage of the C-terminus of a protein with the 
glycolipid portion of the membrane phospholipid located 

Table I. List of typical and important PTMs and their biological significance.

PTMs Modification subtypes Biological functions

Phosphorylation pSer, pThr, pTyr (most common),  Reversible; regulating signaling pathways by
 pHis, pCys and pAsp (least common) activating and inhibiting enzymes
Glycosylation N-linked, O-linked, C-mannosylation Molecular interaction; signal
 and GPI anchor. transduction; cell recognition
Acetylation N‑terminal (most common),  Reversible; protein localization, stability and
 C‑terminal and histone (less common) synthesis; cell‑to‑cell interaction; apoptosis
Ubiquitination - Protein degradation
Sumoylation - Reversible; protein-protein interaction, 
  protein stability and localization
Methylation N-/O-terminal Gene transcription and signal transduction
Lipidation GPI anchors, N-myristoylation,  Protein activities and targeting
 S-palmitoylation and S-prenylation

PTM, post‑translational modification; GPI anchor, glycosylphosphatidylinositol anchor.
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on the extracellular side of the plasma membrane (69). This 
occurs in >50% of proteins (70) and affects multiple molecular 
activities, including the regulation of cellular interactions, 
signal transduction and molecular interactions. In addition, 
GPI anchors affect processes including the pathogenesis of 
several diseases, such as paroxysmal nocturnal hemoglobin-
uria (71), immunological protection, intercellular adhesion, 
cellular proliferation, inflammation, oncogenesis and viral 
replication (72,73).

Acetylation. Acetylation is the process of adding an acetyl 
group to a molecule. Its counterpart reaction, de-acetylation, 
is the removal of the acetyl group from a chemical compound. 
Acetylation of various proteins, including histone (74), p53 (75) 
and tubulin (76) have been reported. According to previous 
studies, three main categories of acetylation have been iden-
tified thus far; N-terminal acetylation, histone acetylation 
and acetylation of C‑terminal residues (75,77). N‑terminal 
acetylation is one of the most common PTMs and is catalyzed 
by N-α-acetyltransferases, which have been demonstrated to 
be expressed in >50% of cytosolic yeast proteins (78) and 
~80‑90% of mammalian proteins (78). N‑acetylation is known 
to affect protein stability and prevent or generate specific 
degradation signals (79-81). It is involved in regulating and 
determining protein localization (82,83), as well as regulating 
the cellular life cycle and apoptosis (84,85). Previous studies 
have demonstrated its importance in protein synthesis (86) 
and protein‑protein interactions (85,86). The α-amino group 
of histone lysine residues was revealed to be consistently 
acetylated or de‑acetylated by enzymes (87,88), which was 
subsequently demonstrated to be pivotal in regulating gene 
expression (79,89). Further studies have confirmed a close 
association between histone acetylation and the regulation of 
gene transcription in inflammation and cancers of the immune 
system (90-92). In addition, acetylation of C‑terminal serine 
and threonine residues has been observed (93). Acetylation 
has been suggested to compete with phosphorylation of these 
C‑terminal amino acid residues (94), and thus may be involved 
in regulating phosphorylation-associated signaling pathways. 
However, a more complete understanding of the involvement 
of C-terminal acetylation on PTMs remains to be elucidated.

Ubiquitination and sumoylation. Ubiquitin is a highly 
conserved protein (76 amino acids in length) that is abundant 
in eukaryotic cells. The process by which the last amino acid 
residue of ubiquitin is attached to a lysine residue of a protein 
by enzymatic catalysis is known as ubiquitination (95). The 
ubiquitin-bound protein then undergoes sequential reactions 
catalyzed by three different enzymes, namely ubiquitin-acti-
vating enzyme (E1), ubiquitin‑conjugating enzyme (E2) and 
ubiquitin ligase (E3). Ubiquitination is commonly involved 
in the intercellular degradation of proteins, such as short-life 
and abnormal‑life proteins (95). Abnormalities in the ubiquitin 
system have been associated with a number of pathogeneses, 
including neurodegenerative disorders (96,97), malignan-
cies (98,99) and immunological disorders (100,101).

In a previous study, a reversible PTM modifier known 
as the small ubiquitin‑like protein modifier (SUMO), was 
identified (76). The SUMO protein is covalently bound to 
a variety of proteins at their lysine residues. This process 

is known as sumoylation, which is mediated by the 
SUMO-specific E1-activating enzyme heterodimer termed 
activator of Sentrin/SUMO‑ubiquitin‑like modifier activating 
enzyme 2, the E2 conjugating enzyme UBC9 and SUMO E3 
ligase (102-105). SUMO proteins are ubiquitously expressed 
in numerous biological systems, and previous studies have 
demonstrated that a high frequency of sumoylation occurs 
in cell nuclei (106,107). Additional studies have revealed that 
sumoylation occurs in additional cellular structures, including 
the plasma membrane (108), endoplasmic reticulum (109) 
and mitochondria (110). Four SUMO protein isoforms, 
SUMO1, SUMO2, SUMO3 and SUMO4, have been identi-
fied in humans thus far (111). Although SUMO is functionally 
similar to ubiquitin, it has not been demonstrated to promote 
protein degradation, and is instead involved in a number 
of additional molecular reactions. For instance, it affects 
protein‑protein interactions (108,112,113), promotes intracel-
lular protein trafficking and localization (114-116) and prevents 
protein degradation (117).

Additional types of PTMs. In addition to the aforementioned 
PTMs, previous studies have demonstrated that a number of 
relatively simple, yet significant additional PTMs have been 
identified. For instance, oxidation of specific amino acids as a 
result of exposure to oxidative stress, activates in vivo protease 
activities, which leads to apoptosis induction (118,119). The 
transfer of a carbo-methyl group by methyltransferases to 
the N- or O-terminal of histidine, proline, arginine, lysine or 
carboxyl groups (known as methylation), is associated with a 
number of vital biological functions, such as gene transcription 
and signal transduction (120,121). By contrast, the lipida-
tion PTM describes the covalent binding of various lipids to 
peptide chains. This PTM is subdivided into GPI anchors, 
N‑myristoylation, S‑palmitoylation and S‑prenylation (122). In 
addition, lipidation has been demonstrated to affect the func-
tion of proteins and membrane proteins by further increasing 
their hydrophobicity (123).

Sample purification and enrichment methods prior to MS 
analysis. Despite advancements in improving the sensitivity 
of HPLC/MS systems, together with progress in the generation 
of powerful algorithms for database searching, the efficiency 
of PTM identification by proteomic approaches remains unsat-
isfactory. The identification of low‑abundant PTM proteins 
remains a major challenge, as their MS signals are easily 
disguised by more abundant non-PTM proteins in a complex 
mixture. Therefore, extensive purification and enrichment 
of PTM proteins is necessary prior to the performance of 
mass analysis. Antibody‑based affinity purification has been 
widely used to purify target proteins with specific PTMs. This 
approach has been adopted successfully for the analysis of 
tyrosine phosphorylation (124), arginine methylation (125) and 
lysine acetylation (126), in order to enhance the sensitivity and 
accuracy of PTM identification. However, the running costs of 
this enrichment procedure are relatively high. Alternatively, 
chemical tagging is a common approach for labeling PTMs 
for in vivo and in vitro studies. Chemical tags are sequentially 
conjugated to affinity linkers, such as biotin (127) or lectin (128). 
Biotin-containing tags have been successfully used to isolate 
proteins with PTMs including S‑nitrosylation (129), O‑linked 
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β‑D‑N‑acetylglucosamine (130) and palmitoylation (131). In 
addition, multiple glycoproteomics studies have adopted the 
lectin‑based affinity enrichment method (132-134). However, 
there are a number of limitations associated with these 
methods, which are summarized in Table II.

Ionic interaction-based enrichment of phosphoproteins or 
phosphopeptides is currently the most successful and widely 
used strategy to achieve phosphoproteomic enrichment. 
Immobilized metal affinity chromatography (IMAC) utilizes 
metal cations to target the negatively-charged phosphate group 
and the positively-charged metal ions, which are bound to resins 
via acidic linkers (Table III). These are subsequently eluted 
using a buffer with increasing pH (135,136). Previous reports 
have demonstrated that IMAC enriches the total phosphoprotein 

content of a complex sample by up to 90% (137). An alternative 
method of enrichment is metal oxide affinity chromatography 
(MOAC) (138). In this strategy, the phosphopeptides are 
trapped by metal oxide ligands in an acidic solvent, and are 
consequently desorbed and eluted under alkaline conditions. 
MOAC exhibits higher selectivity and sensitivity for phospho-
peptide enrichment compared with traditional phosphoprotein 
enrichment methods, such as 32P labeling (139). In addition, 
a stronger affinity for phosphopeptides has been observed in 
MOAC when compared with IMAC (138). The advantages 
and limitations of these phospho-enrichment strategies are 
summarized in Table III. In general, IMAC appears to be 
effective for the enrichment of multi-phosphopeptides, while 
MOAC favors mono-phosphopeptide enrichment. In 2008, 

Table II. Overview of purification strategies for PTMs.

Purification/
enrichment     Drawbacks/
strategies Ligands PTMs Advantages limitations

Antibody‑based  Antibody Tyrosine phosphorylation, High specificity Small PTM alterations
affinity purification  arginine methylation, lysine   are difficult to identify;
  acetylation  generation of antibodies 
    against poorly antigenic 
    PTMs is difficult
Chemical derivative In vivo metabolic Farnesylation (in vitro), Wider enrichment Sample loss; unwanted
tagging and in vitro  O‑GlcNAc modification range of PTMs side products; 
 chemical  (in vivo and in vitro),  non‑specific binding
 tagging palmitoylation (in vitro), 
  myristoylation (in vitro), 
  glycosylation (in vitro), 
  oxidation (in vitro)

PTM, post‑translational modification; O‑GlcNAc, O‑linked β-D-N-acetylglucosamine.

Table III. Overview of chromatography phospho-enrichment strategies.

Strategy Ligands Advantages Drawbacks/limitations

IMAC Metal ions (Al3+, Fe3+  High purification capacity Poor affinity of mono‑phosphopeptides;
 Ga3+) immobilized on  of phosphopeptides from non‑specific binding of
 a matrix via acidic complex samples. non-phosphorylated peptides with
 compounds (IDA,   multi‑acidic amino acid residues 
 NTA, TED)  or nucleic acid; susceptible to be 
   influenced by experimental conditions.
MOAC Metal oxide (TiO2,  High selectivity and Poor affinity of multi‑phosphopeptides;
 ZrO2, Al(OH)3) sensitivity for complex  non‑specific binding of acidic
  sample; high tolerance of  non-phosphorylated peptides.
  solvent pH.
SIMAC IMAC+MOAC Increase the number of  Complex operation steps.
  discovered phosphoproteins; 
  increase the phosphopeptide 
  spectrum.

IMAC, immobilized metal affinity chromatography; MOAC, metal oxide affinity chromatography; SIMAC, sequential elution from IMAC; 
IDA, iminodiacetic acid; NTA, nitrilotriacetic acid; TED, ethylenediamine.
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Thingholm et al (140) introduced an enrichment strategy 
known as sequential elution from IMAC (SIMAC), which 
combines the two phosphopeptide enrichment strategies with 
the aim of overcoming the limitations of either technique in 
isolation. In this combined protocol, IMAC was initially used 
to enrich multi-phosphopeptides, whilst mono-phosphorylated 
peptides were eluted by an acidic solvent. The solution was 
then further enriched by TiO2. Using this approach, SIMAC 
was able to identify a >2-fold higher number of phosphory-
lated sites when compared with the total number identified 
by TiO2 enrichment alone (140). This combined strategy has 
successfully increased the phosphopeptide spectrum, and a 
more comprehensive understanding of protein phosphoryla-
tion patterns may be gained (140).

4. PTMs in eye research

Proteomic studies of multiple PTMs in ocular tissues have 
improved our understanding of the physiology or pathology 
of various ocular conditions. The discovery of co-existing 
modifications of specific proteins, suggests that mecha-
nisms of disease pathogenesis may involve interplay among 
these PTMs. The discovery of novel PTM sites on proteins 
and the study of differential PTM expression patterns have 
revealed a number of candidates that may be involved in  
different pathogenic signaling pathways. Using cutting-edge 
proteomic technology, novel biomarkers for the early diag-
nosis of ocular diseases are emerging, which may promote 
the development of novel therapeutic strategies to treat ocular 
diseases.

Tears. The surface of the eyes is overlaid by the tear film, which 
consists of lipid, aqueous and mucous layers (141). Alterations 
in any component of the tears may reflect underlying func-
tional disorders of ocular structures, such as the secretary 
glands or the cornea, and may be an indicator of abnormal 
systemic conditions. The accessibility of the tear film is a 
desirable factor when searching for biomarkers in various 
ocular conditions, including dry eye syndrome, autoimmune 
thyroid eye disease (142) and diseases of the cornea (143). The 
proteome of human tears has been well‑profiled and thou-
sands of proteins have been identified (144,145). Proteins have 
been demonstrated to be differentially expressed in the tears 
of patients with dry eye syndrome (146), keratoconus (147), 
diabetic retinopathy (148) and in those treated with chronic 
glaucoma medication (149). Studies investigating the PTM 
alterations in tears have been performed using proteomic 
technology. For instance, O‑acetylation of sialic acid deriva-
tives on membrane‑associated mucins was identified in human 
tears by the use of LC-MS/MS, and the results suggested 
that this PTM may be involved in protecting the cellular 
surface from infection (150). An additional study adopted the 
hydrazide-resin capture method to enrich N-Linked glyco-
proteins in the tears of patients undergoing climatic droplet 
keratopathy, in which 19 unique N-glycosylated proteins were 
reported for the first time (151). In a study of human tears, 
three sequential dyes were used to stain phospho-, glycol- and 
total proteins following 2D-PAGE separation, and a number of 
novel proteins including dermcidin, glycosylated lipocalin 1, 
cystatin S, phosphorylated nucleobindin 2 were identified 

and their potential ocular functions were discussed (152). 
In addition, the protein profile of tears from patients 
with ocular rosacea was revealed using glycan-released, 
glycan-enriched and solid-phase extraction methods with 
MS analysis. In total, ~50 N-glycans and 70 O-glycans were 
profiled, and fucosylated N-glycans were revealed to be 
significantly underexpressed while sulfated O‑glycans was 
over-expressed. These factors made them potential markers 
to consider for this particular ocular status (153). Detailed 
profiling of proline‑rich protein 4, a potential biomarker of 
lacrimal gland acinar cell function (154), in normal human 
tears was conducted by applying one- and two-dimensional 
MS analysis. Four co‑existing PTMs including methylation, 
acetylation, oxidation, and the addition of pyroglutamate were 
identified in human tear samples; however, their functions in 
physiological and pathological processes have yet to be eluci-
dated (155).

Cornea. The cornea is the outermost and key refractive 
structure of the eye. For this unique structure, >3,000 proteins 
have been identified by comprehensive proteomic profiling 
thus far (156). In 2011, phosphorylated sites on mammary 
serine protease inhibitor (maspin) from human extracellular 
corneal cells were mapped by nano-HPLC-ESI-MS following 
immunoprecipitation (157). A total of 8 serine and threonine 
phosphorylation sites were revealed, while no phosphorylated 
tyrosine residues were observed (157). These results may 
enable clarification of the role of selective phosphorylation of 
maspin in the corneal epithelium during wound healing and 
anti-angiogenesis. In response to mechanical injury, epidermal 
growth factor receptor in the corneal epithelium was demon-
strated to undergo multiple phosphorylations as revealed by a 
study using a proteomic workflow (158). In addition, N‑glycans 
and glycosaminoglycans were profiled in a comparative 
manner in Statens Seruminstitut rabbit corneal (SIRC) cells 
and rabbit corneal epithelial cells using HPLC-MS. The high 
mannose-type and a hybrid type of N-glycan were demon-
strated to be the most abundant types in SIRC cells, and this 
observation was considered to have an important pharmaceu-
tical value (159).

Crystalline lens. The crystalline lens is a transparent and 
biconvex structure that functions to refract light rays by altering 
its curvature. The lens proteome has been thoroughly char-
acterized, with particular interest focused on its association 
with cataracts. Cataracts, which is elicited by normal aging or 
various pathologies, is the leading cause of blindness world-
wide (160). The association between α-, β- and γ-members of 
the crystallin family has been the focus of cataract research for 
decades. The assemblage of PTMs, including phosphorylation 
and deamidation in crystallins, was demonstrated to contribute 
significantly to the formation of cataracts in different animal 
species (161-171). In addition, the function of phosphorylation 
in the crystallin family has gained attention, and profiling 
studies concerning phosphorylated sites in the lens proteome 
using phospho-enrichment strategies are summarized in 
Table IV. Using IMAC followed by LC-MS/MS analysis, 
novel phosphorylation sites have been identified on αA- and 
αB-crystallins, as well as on additional proteins, including 
β-enolase, heat shock protein 27 and glucose-6-phosphate 
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isomerase (172). Furthermore, differential expression patterns 
of phosphoproteins have been observed in human cataract 
lens extracts, in which 28 novel sites were identified as being 
differentially phosphorylated (173).

In a previous study investigating PTMs in the lens 
membrane, the most abundant lens membrane protein, 
aquaporin 0 (AQP0), was demonstrated to be phosphorylated 
on serine 235 and serine 229 (174). It was also revealed to 
be truncated at specific residues and racemized/isomerized 
on two aspartic acid residues, i.e. Asn 259 and Asn 246, 
in normal human lens cells. In addition, the spatial distri-
bution of PTMs in the bovine lens was investigated, and 
serine 235 of AQP0 was demonstrated to be significantly 
phosphorylated in the nuclear and equatorial cortex regions, 
while C-terminal truncation of AQP0 was detected in the 
nuclear region. Furthermore, truncations of connexin 50 and 
connexin 46 were observed primarily in the nuclear region, 
and the corresponding expression levels of these proteins was 
significantly lower in the anterior outer cortex region (175). 
Novel PTMs of AQP0, including fatty acid acylation of the 
bovine and human lens protein, and an oleic acid modifica-
tion to a lysine residue, have been detected by direct tissue 
proteomic profiling (176). These results suggest that various 
PTMs exist on AQP0, and that these PTMs may be associ-
ated with its biochemical functions, and particularly during 
the aging process of the crystalline lens.

Vitreous humor. Profiling of the human vitreous humor 
proteome has been completed, with at least 460 non-redun-
dant proteins being catalogued; however, the PTMs of these 
proteins remain to be elucidated (177). The proteome of 
the vitreous humor of rats with experimental autoimmune 
uveitis (EAU) has been previously analyzed using 2D‑PAGE, 

MALDI‑time of flight (TOF)/MS and micro-LC/LC-MS/MS 
approaches. Truncations of αA- and αB-crystallin and phos-
phorylation of αB‑crystallin were identified in the EAU group, 
indicating that these PTMs may be crucial in regulating the 
inflammatory reaction during uveitic conditions (178). In a 
rat model of ischemia‑reperfusion (I/R) injury, the vitreous 
proteome was studied using 2D‑PAGE and MALDI‑TOF‑MS 
technology (179). The results revealed an increase in the phos-
phorylation of three serine residues on αB-crystallin, and a 
decrease in extracellular signal related kinase 1/2 phsophory-
lation at 48 h following I/R injury. It has been suggested that 
phosphorylation of αB-crystallin may be involved in suppres-
sion of the inflammatory process in I/R.

Retina. A number of previous studies have investigated 
retinal proteomes, and the proteomic alterations that occur in 
response to various retinopathies (180-183). In terms of PTMs, 
a previous study profiling porcine rhodopsin documented 
an extensive phosphorylation pattern on the C-terminus and 
unusual glycosylation pattern, which is a significant discrep-
ancy when compared with that observed in bovine and rat 
rhodopsin proteins (184). Among the 13 differentially expressed 
mitochondrial proteins in normal mice and those with early 
experimental autoimmune uveitis, oxidation and carbamido-
methylation were revealed to be the most common PTMs (185). 
By contrast, pre-isolation by column chromatography coupled 
with ESI-triple-quadrupole MS, enabled the characterization of 
bovine cone transducin (Tγ), Tβ3α8, which is similar to Tβ1γ1 
following isoprenylation. This suggested a weak involvement 
of the interaction between Tβ3α8 and phosducin during cone 
specialization (186). A similar top‑down proteomic study 
of the isoprenylation of transducin examined the rod outer 
segment membrane of mice. In this study, similar modification 

Table IV. Summary of identified PTMs on crystallins using the mass spectrometry approach.

PTM subtypes Species (Refs.)

α-crystallin
  Phosphorylation of soluble αA- and αB‑crystallins Mouse (170)
  Phosphorylation of αA‑crystallin on Ser122 and Ser148 Mouse (166)
  Oxidation of Met, deamidation of Asp and Glu, phosphorylation of  Rat (OXY cataract model) (164)
  Ser and Thr residues
  Phosphorylation of Tyr4, Ser20, Ser45, Ser59, Ser148, Ser155,  Mouse (168)
  Ser172/173, N-acetylation and C-truncation of αA-crystallin
  Isomerization of several Asp residues Human (165)
β-crystallin
  Phosphorylation and acetylation of βH-crystallin Bovine (167)
γ-crystallin
  Oxidation of W136 and additional Tyr residues Human (167)
  Acetylation of Lys2 and Gly1 of γD-crystallin Human (205)
Multiple subtypes of crystallins
  Deamidation, oxidation, ethylation, phosphorylation, methylation,  Human (168)
  acetylation, and carbamylation 
  19 phosphorylation proteins (28 phosphorylated sites) Human (173) 

PTM, post‑translational modification.
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sites were observed on murine Tγ when compared with those 
in bovine Tγ (187). Using the proteomic PTM approach, a high 
heterogeneic pattern of glycosylation on the 5-hydroxytrypta-
mine receptor 4 (5‑HT4R) in 5‑HT4R-containing rod cells was 
discovered in transgenic mice (188). The use of SDS‑PAGE, 
TiO2 phosphopeptide enrichment and LC-MS/MS has revealed 
seven N‑glycosylation sites and five phosphorylation sites on 
the ATP-binding cassette, subfamily A, member 4 protein in 
bovine rod outer segments, which has been suggested to be 
part of the disease mechanism in Stargardt disease (189). In 
addition, proteomic research has contributed to understanding 
the dynamic nature of histones in the I/R injured rat retina. 
With the application of linear ion trap-orbitrap hybrid MS/MS 
analysis, 34 histone PTMs were revealed to be differentially 
expressed in this ocular condition, of which three histone H4 
marks were further confirmed by western blotting (190). This 
indicated that these histone PTMs may predispose towards 
DNA damage following I/R injury (190).

 The increasing global prevalence of myopia in recent 
decades, especially in eastern Asian countries, such as 
China, Japan and Singapore, make it a non-negligible health 
issue (191,192). The morbidity of myopia can reach up to 
80‑90% in younger age groups in these areas (193,194). 
Previous studies have demonstrated that the retina is the major 
site that receives signals and determines the extent of eyeball 
elongation (195,196). Thus far, proteomic research has revealed 
a number of candidate proteins that may be associated with 
myopic eye growth (197-199). However, none of these studies 
have specifically focused on PTMs. The first global screening 
of the retinal phosphoproteome in a myopic chick model was 
conducted using TiO2 enrichment and nano‑LC‑TripleTOF 
MS/MS analysis (200). In this pilot study, 560 phosphopro-
teins were profiled, in which 45 were upregulated and 30 were 
downregulated during myopic eye growth. In addition, using 
the phosphoenrichment approach, acetylated retinal proteins 
including carbonic anhydrase, ubiquitin carboxyl-terminal 
hydrolase and fatty acid-binding protein were revealed to be 
upregulated while nucleophosmin, 40S ribosomal protein S12 
and histone H1x were significantly downregulated in myopic 
eyes. These results may provide an insight into the analysis 
of retinal phosphoproteome alterations during myopic eye 
growth.

Retinal pigment epithelium (RPE). The single layer of 
pigmented cells located on the outside of the neurosensory 
retina, is known as the RPE, which functions primarily to 
nourish and support the photoreceptors. Alterations in the 
PTMs of proteins have been studied in RPE cells following 
exposure to light. The results indicated that phosphorylation 
of cystallins may be important in protecting RPE against 
light‑induced oxidative damage (201). In addition, profiling 
of the secretome in bovine RPE demonstrated the pres-
ence of three tyrosine-sulfated proteins. This included 
tyrosine-sulfated complement factor H, which may be involved 
in age‑associated macular degeneration (202). Following 
H2O2 challenge, a novel 45 kDa truncated modification on 
the retinoid isomerohydrolase (RPE65) protein was identified 
by LC-MS/MS in murine RPE, suggesting that the RPE65 
cleavage process may be affected by oxidative stress (203). 
The results of a previous MS-based study put into question 

the conventional belief that the palmitoylation of cysteine 
residues on RPE65 is responsible for membrane affinity (204). 
However, neither palmitoylation nor additional PTMs were 
identified on RPE65 in this study.

5. Conclusion

Proteomic approaches have evolved tremendously in the 
past decade. Previous methods for protein separation and 
fractionation limited the study of PTMs; however, advances 
in enrichment methods have overcome these limitations 
and enabled the identification of different disease-specific 
PTM‑associated biomarkers in ocular diseases (151,172,173). 
This progress will improve our understanding of different 
ocular disease mechanisms, and will be useful for the devel-
opment of novel diagnostic strategies to improve treatment 
efficiency. Although research into proteomic PTMs in ocular 
diseases is at a preliminary stage, the continuous improvement 
of proteomics technologies will facilitate a more detailed 
study of PTMs and their applications in ocular therapy in the 
near future.
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