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Modeling the Dynamics of Cascading Failures in

Power Systems
Xi Zhang, Choujun Zhan, and Chi K. Tse, Fellow, IEEE

Abstract—In this paper, we use a circuit-based power flow
model to study the cascading failure propagation process, and
combine it with a stochastic model to describe the uncertain
failure time instants, producing a model that gives a complete
dynamic profile of the cascading failure propagation beginning
from a dysfunctioned component and developing eventually to
a large-scale blackout. The sequence of failures is determined
by voltage and current stresses of individual elements which
are governed by deterministic circuit equations, while the time
durations between failures are described by stochastic processes.
The use of stochastic processes here addresses the uncertainties in
individual components’ physical failure mechanisms which may

depend on manufacturing quality and environmental factors. The
element failure rate is related to the extent of overloading. A
network-based stochastic model is developed to study the failure
propagation dynamics of the entire power network. Simulation
results show that our model generates dynamic profiles of
cascading failures that contain all salient features displayed
in historical blackout data. The proposed model thus offers
predictive information about occurrences of large-scale blackouts.
We further plot cumulative distribution of the blackout size to
assess the overall system’s robustness. We show that heavier loads
increase the likelihood of large blackouts and that small-world
network structure would make cascading failure propagate more
widely and rapidly compared with a regular network structure.

Index Terms—Complex network, power system, dynamics of
cascading failure, power flow study, stochastic process.

I. Introduction

ELECTRICITY supply network is an essential part of the

infrastructure of modern society. Large power blackouts

cause inconvenience to residents in the affected areas as well

as considerable economic loss to the community at-large.

Power system’s security has always been an issue of serious

concern among utility providers, infrastructure developers,

and policy makers, and is also a topic attracting significant

attention of electrical engineers and researchers. The power

distribution network is a complex and highly interconnected

network, consisting of power apparatus, protection equipment

and control systems [1]. Protection equipment is responsible

for maintaining reliability through applying switching actions

of relays and circuit breakers. Relays are essential auxiliary
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components in transmission lines, generators, transformers,

and other kinds of power apparatus. When a relay detects an

abnormal operating condition such as over-current and voltage

dip, it will switch off the affected component to remove the

fault from the network, thereby preventing further damages

and hence ensuring the normal operation of the rest of the

system. The on/off states of relays determine the structure of

the power network, thus influencing the overall operational

state of a power system. Normally the power grid is designed

to maintain its power distribution function even when a few

elements are removed [2]. However, when the power grid is

under stressed conditions, for instance, due to heavy loads

and outages of equipment, the removal of some elements may

lead to huge disturbances and subsequent tripping of other

elements, causing a possible severe blackout [1].

The dynamic cascading failure process in a power grid can

be viewed as a sequence of tripping events, leading eventually

to power outage affecting a very large area. It has been

observed that the 1996 Western North America blackouts [3],

the 2003 Northeastern America and Canadian blackouts [4]

and other historical blackout data all display a typical profile

characterized by a relatively slow initial phase followed by a

sharp escalation of cascading failures. Such a universal form

of dynamic profiles strongly suggests that a common model

can be used to describe the dynamic cascading failure process.

The study of the dynamic propagation of cascading failures

provides useful hints for system vulnerability detection, ro-

bustness assessment and network control. Recently, Chen et

al. [5] used a generalized Poisson model, negative binomial

model and exponentially accelerated model to generate the

probabilities of the propagation of transmission outages which

fit the observed historical data. Dobson et al. [6], [7] used

branching processes to analyze the propagation of cascading

failures in power grids. Much of the previous work primar-

ily applied data fitting methods to investigate the statistical

characteristics of power systems’ blackouts, but fell short of

considering the essential electrical circuit operations or the

impact of the network structure. Moreover, cascading failures

in power grids have also been studied in terms of the sequential

trippings of electrical elements in real networks. Among the

many switching mechanisms of relays, overloading is the most

prominent one and has been widely studied [8]–[13]. In a

cascading failure process, the failure of one element leads to

power flow redistribution in the grid, which can cause some

other elements to be overloaded. These overloaded electrical

elements can then be tripped by their relays, causing another

round of failures until the remaining elements are all within

their respective operating limits.
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Various of tripping sequence settings of the overloaded

elements have been explored [9], [10], [14]. Typically, in

each round of the cascading simulations, the power flow

distribution in the network is computed, and overloaded elec-

trical elements are removed at the same time. The actual

time delays and dynamical profiles of the process are not

considered in this kind of models, making them unable to

simulate the dynamic propagation of a cascading failure. In

order to show the dynamic profile, some previous studies made

the simple deterministic assumption that the duration for an

overloaded element to be tripped is equal to ∆t which is given

by
∫ t+∆t

t
( f j(τ) − f̄ j)dτ = ∆o j, where f j is the power flow of

overloaded element j, f̄ j is the flow limit and ∆o j is a specific

threshold of that element [15], [16].

Considering the complexities and uncertainties in real power

grids [17], a few researchers turned to use probabilistic models

to characterize the tripping events of the elements in power

grids [11], [12], [18]. For instance, Wang et al. [11] used a

Markov model to study cascading failures, where the trippings

of the elements are regarded as state transitions, which are

memoryless and probabilistic. In Wang et al.’s work, the over-

loaded elements share one same tripping rate, which is much

larger than the natural failure rate of the electrical equipment.

Alternatively, an overall state transition probability can be

determined by considering the maximum capacity of the failed

elements and a random tripping process [12]. It is also shown

[19] that a component will experience more failures under

heavy load conditions. The varying tripping rates for elements

under different extents of overloading stress have not been

thoroughly considered in the aforementioned stochastic mod-

els. Study of essential collective behavior of a power network

must be pursued according to the governing physical laws

which in the case of power systems should involve circuit-

based power flow equations [10] (see Appendix). By suitably

combining the power flow study with probabilistic methods

for describing inevitable uncertainties, the dynamic profile of

cascading failure processes can be realistically revealed, hence

offering important predictive information about the occurrence

of large-scale blackouts.

In this paper, we study the dynamics of cascading failure

propagations in power systems. The key contributions are as

follows. First, we apply circuit-based power flow equations to

determine the sequence of failures in accordance to the extent

of overloadings of individual components. In order to describe

the complete dynamic profile, we need to determine the time

durations between failures in the propagation sequence. Due

to the complexities and uncertainties of the involving physical

failure mechanisms of the components (e.g., manufacturing

quality, environmental factors, etc.), stochastic processes are

used to model the dynamic changes. Then, to study the

collective behavior of the entire system in terms of failure

propagation in the whole network, an extended chemical

master equation (CME) model is used [20], [21]. Based on

the CME model, we show that the failure propagation rate of

the network is dependent on the sum of individual extents

of overloading of all elements in the network. Simulation

results show that the cumulative number of failed elements

"0" connected "1" removed
(normal) (tripped)

λi(t)

µi(t)

Fig. 1. Dynamic description of failure in terms of state transitions. State “0”
is the normal connected state; state “1” is the removed or tripped state.

triggered by some initial failures shows a universal growing

pattern which is consistent with historical blackout data. Thus,

our model can offer insights into the mechanism of cascading

propagation in a power system as well as provide predictive

information for the failure spreading in the network. Our study

also includes the effects of loading conditions and network

structure on the extent and rapidity of blackouts in power

systems. The UIUC 150 bus system with different consumer

load distributions and several types of network structure are

studied for comparison purposes. It is shown that heavy load

conditions increase the risk of large blackouts in the same

power system, and that small-world network structure is more

prone to rapid propagation of cascading failures than the

regular structure.

II. FailureMechanisms of Components

A power system is composed by various electrical stations

connected by transmission lines, and each station or transmis-

sion line is protected by protective equipment. In this paper,

we model electrical stations as nodes and transmission lines as

links, with nodes being connected by links forming a power

network [10]. Deterministic power flow equations are used to

generate the sequence of failures and their locations. A node

or link is a basic element of a power network. We refer to an

element’s tripping event as an element state transition (EST).

The cascading failure propagation in a power network can be

viewed as a sequence of ESTs in the network. In this section,

we investigate the state transition behavior of a basic element,

and in the next section, we apply probabilistic theory to study

the collective transition behavior of the network.

A. Time to Failure of a Basic Element

Let si(t) be the state of element i of a given network, and

si(t) ∈ [0, 1], with si(t) = 0 corresponding to a connected

element i at time t, and si(t) = 1 corresponding to a removed

(tripped or open-circuited) element i at time t, as shown in

Fig. 1. Here, λi(t) is the rate of transition of node i going from

state “0” to “1”, and µi(t) is the transition rate from “1” to “0”.

Then, the future state of an element is solely determined by its

present state and the transition rule. Suppose the present time

is t, and dt is an infinitesimal time interval. As si(t) ∈ {0, 1},

P{si(t+dt) = 1} and P{si(t+dt) = 0} can be written separately

as

P[si(t + dt) = 1] = P[si(t + dt) = 1 |si(t) = 0]P[si(t) = 0]

+ P[si(t + dt) = 1 |si(t) = 1 ]P[si(t) = 1]
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P[si(t + dt) = 0] = P[si(t + dt) = 0 |si(t1) = 0]P[si(t) = 0]

+ P[si(t + dt) = 0 |si(t) = 1]P[si(t) = 1]

(1)

where P[si(t) = 1] and P[si(t) = 0] denote the probability

that node i is in state “1” and “0” at time t, respectively;

P[si(t + dt) = 1 |si(t) = 0) ] is the conditional probability that

given si(t) = 0 element i transits to state “1” in the time

interval (t, t + dt); and P[si(t + dt) = 0 |si(t) = 1) ] is defined in

a likewise manner. Using the state transition rates shown in

Fig. 1, P[si(t + dt) = 1 |si(t) = 0) ] can be written as

P[si(t + dt) = 1 |si(t) = 0 ] = λi(t)dt. (2)

Also, P[si(t + dt) = 0 |si(t) = 0) ] is the probability that given

si(t) = 0, element i remains in state “0” in time interval (t, t +

dt) (i.e., no state transition occurs). Thus, we have

P[si(t + dt) = 0 |si(t) = 0] = 1 − λi(t)dt. (3)

Likewise, we have

P[si(t + dt) = 0 |si(t) = 1 ] = µi(t)dt, (4)

P[si(t + dt) = 1 |si(t) = 0 ] = 1 − µi(t)dt. (5)

B. State Transition Rates of Basic Elements

In this section, we discuss the physical meanings of element

state transition rates λi(t) and µi(t) in a fast cascading failure

process. In statistical terms, an event rate refers to the number

of events per unit time. Specifically, λi(t) is the rate of element

i becoming disconnected in the network which is caused

by either a natural equipment malfunction or tripping by its

protective equipment, i.e.,

λi(t) = λ
0
i (t) + λ1

i (i) (6)

where λ0
i
(t) is the equipment malfunctioning rate in the ab-

sence of loading stress and its value is constant and derivable

from past statistics [16]; and λ1
i
(t) is the removal or tripping

rate by protective relays and is determined by the (over)-

loading condition and the capacity of element i.

Among the many tripping mechanisms of relays [22], [23],

power overloading is a dominant one. In this study, we focus

on switching actions caused by overloading. When the load of

element i is within its capacity, it is assumed to work in the

normal condition and will not be removed or tripped by the

protective relay, namely λ1
i
(t) = 0. However, when the element

exceeds its capacity, there will be a short delay before it is

finally removed. The tripping rate is relevant to the extent of

overloading. In other words, if there is a large overloading of

element i, it will be tripped more rapidly compared to the case

of a light overloading [19]. Based on this assumption, we can

write λ1
i
(t) as

λ1
i (t) =



















ai

(

Li(t) −Ci

Ci

)

, if Li(t) > Ci

0, if Li(t) ≤ Ci

(7)

where Li(t) is the power loading of element i that can be found

from the power flow calculation, Ci is the capacity of that

element, and ai is the basic unit rate (trippings per second).

For normal operating condition, λ1
i
= 0. In a cascading failure

process, λ1
i
≫ λ0

i
[24]. Without loss of generality, we assume

that λi(t) ≈ λ
1
i
(t) in our analysis of cascading failures in power

systems.

For the sake of completeness, we also allow a tripped or

removed element to be repaired, and hence be restored to its

normal connected state. Thus, we define µi(t) as the transition

rate of element i going from state “1” to “0” as a result

of repair actions or self-healing ability of the power system.

In practice, an element’s state cannot be switched arbitrarily.

Also, the time delay for recovering a tripped element should be

considered and can be included in the actual representation of

µ(t). This recovery process can be used to study the power

restoration process after the power blackout. In this paper,

we focus on analyzing the cascading failure process. Thus,

considering that not all elements could be repaired in a short

time and an element cannot keep changing its status frequently,

we take µi(t) as 0 for a fast cascading process.

C. Power Flow Calculation

In addition to equation (7), power flow calculation is still

needed for the analysis of cascading failures. Several algo-

rithms and tools are available for computing power flows

[25], [26]. The actual power system is a high-order complex

nonlinear network, and any abrupt change of network structure

can change the power flow distribution, and at the same

time cause large transients, oscillations, and bifurcations [27].

Using our definition of state transition of elements, the tripping

probability of each element is an integration of the tripping rate

(extent of overloading) with time. In this study, we assume

that the system can always reach a steady state when tripping

occurs and that the transient before the system reaches the

next steady state is sufficiently short, making accumulative

effects negligible. As far as the propagation of cascading

failures is concerned, it suffices to consider blackouts caused

by overloading, ignoring the nonlinear characteristics of the

circuit elements and possible oscillatory behavior. In our

previous work, a model that can accurately track the load

change in a power network during a cascading failure has been

developed [10]. This model is adopted in our study here. Given

information of power consumption, power generation and grid

topology, the voltage of each node can be found using

A ∗ V = B (8)

where A is a matrix describing the power network; B =
[

· · · Ii 0 vk 0 · · ·
]T

with Ii and vk representing the

sink current and voltage of nodes i and k, respectively. A brief

description is given in the Appendix and more details can be

found in [10]. The current flowing through the transmission

line (i, j) can be calculated as

Ii j = (vi − v j) ∗ Yi j (9)

where vi and v j are voltages of nodes i and j, and Yi j is

the admittance of line (i, j). Equation (8) is derived from

consideration of circuit laws and thus rigorously describes the

behavior of the power network.
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III. Failure Propagation in the Network

A power network is represented as an undirected graph G

consisting of m elements. The state of G is defined as S =

{s1, s2, ..., sm}, which is a vector containing the states of all m

elements. Network G can have 2m possible network states, and

any state transition of an element will lead to a network state

transition of G.

The dynamic propagation of cascading failures in G is

equivalent to the dynamic evolution of S (t). Given the current

state of the network, the network state transition can be

described by (i) the time of the next state transition; and (ii)

identification of the next element that will transit (be tripped).

A. Basics

First, we consider the network state transitions in an in-

finitesimal time interval dt. Suppose S (t) = NS , which is a

specific network state among the 2m possible states. Thus,

S (t + dt) is the network state after a duration of dt. Only

those elements in state “0” may transit, leading to a network

state transition. Let Ω0 be the set of elements in state “0”, and

Ω1 be the set of removed (tripped) elements. From elementary

probability theory, we have the following basic results:

1) Omitting O(dt), the probability that no element undergoes

a state transition after dt can be written as

P[S (t + dt) = NS |S (t) = NS ] =
∏

i∈Ω0

[1 − λi(t)dt)]

= 1 −
∑

i∈Ω0

λi(t)dt +
∑

x1,x2∈Ω0

λx1
(t)λx2

(t)(dt)2

−
∑

x1,x2,x3∈Ω0

λx1
(t)λx2

(t)λx3
(t)(dt)3 + · · ·

= 1 −
∑

i∈Ω0

λi(t)dt + O(dt) ≈ 1 −
∑

i∈Ω0

λi(t)dt

(10)

where x1, x2, · · · are the elements in Ω0.

2) The probability that only one element state transition (say

element k) occurs after dt, i.e., only element k transits, can be

written as

P[S (t + dt) = MS |S (t) = NS ] = λk(t)dt
∏

i∈Ω0/{k}

[1 − λi(t)dt]

= λk(t)dt −
∑

x1∈Ω0/{k}

λk(t)λx1
(t)(dt)2

+
∑

x1,x2∈Ω0/{k}

λk(t)λx1
(t)λx2

(t)(dt)3 + · · ·

= λk(t)dt + O(dt) ≈ λk(t)dt
(11)

where x1, x2, · · · are the elements in Ω0/{k} and MS denotes

the network state that only one of the “0”-state elements in

NS becomes “1”.

3) The probability that two or more element state transitions

occur after dt is given by

P[S (t + dt) = RS |S (t) = NS ] = 0 (12)

where RS denotes the network state that two or more of the

“0”-state elements in NS become “1”. From equation (12),

there is at most one element state transition at a time.

( )Q τ

1t 1t + τ

1( ) NSS t =

1t τ dt+ +

Fig. 2. Time line of network state transitions.

B. Extended Gillespie Method

In this section, we derive S (t) using an extended Gillespie

method [28], which was used for analyzing coupled chemical

reactions [20], [21].

As shown in Fig. 2, the state of the power system at t1 is

NS , i.e., S (t1) = NS . Let Q(τ) denote the probability that given

S (t1) = NS , no transition occurs in (t1, t1 + τ), i.e.,

Q(τ) = P[S (t1 + τ) = NS |S (t1) = NS ] (13)

Similarly, Q(τ + dt) can be written as

Q(τ + dt) = P[S (t1 + τ + dt) = NS |S (t1) = NS ]

= P[S (t1 + τ + dt) = NS |S (t1 + τ) = NS ]Q(τ)
(14)

Given S (t1) = NS , power flow calculation can be performed,

as described in Section II-C, and λi(t1) can be derived based on

the settings in Section II-B. If no state transition occurs during

time interval (t1, t1+τ), we have S (t) = S (t1) and λi(t) = λi(t1)

for t ∈ (t1, t1 + τ). From (10), we get

P[S (t1 + τ+ dt) = NS |S (t1 + τ) = NS ] = 1−
∑

i∈Ω0

λi(t1)dt (15)

Thus, by putting (15) in (14), we get

Q(τ + dt) = Q(τ)(1 − λ∗(t1)dt) (16)

where λ∗(t1) =
∑

i∈Ω0
λi(t1). Furthermore, re-arranging (16) and

taking the limit dt→ 0, we get

dQ(τ)

dτ
= lim

dt→0

Q(τ + dt) − Q(τ)

dt
= −λ∗(t1)Q(τ),

⇒ Q′(τ) = −λ∗(t1)Q(τ).

(17)

The probability that nothing happens in zero time is one, i.e.,

Q(0) = P{S (t1) = NS |S (t1) = NS } = 1. Then, the analytical

solution of (17) is

Q(τ) = e−λ
∗(t1)τ. (18)

Let hi(τ, dt) denote the probability of the event that given

S (t1) = NS , the next transition occurs in the interval (t1+τ, t1+

τ + dt) in element i. There are two conditions for this event

to occur. The first condition is that there is no state transition

during (t1, t1+τ). The second condition is that a state transition

occurs in element i during (t1 + τ, t1 + τ + dt). Thus, hi(τ, dt)

can be written as

hi(τ, dt) = P[S (t1 + τ + dt) = MS |S (t1 + τ) = NS ]Q(τ) (19)

Putting (11) and (18) in (19), we get

hi(τ, dt) = e−λ
∗(t1)τλi(t1)dt (20)
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Fig. 3. Relative probability for elements in Ω0 to be first tripped given S (t1) =
NS .

Let H(τ, dt) denote the probability that the next transition

occurs in the time interval (t1+τ, t1+τ+dt), given S (t1) = NS .

It is readily shown that

H(τ, dt) =
∑

i∈Ω0

hi(τ, dt) = λ∗(t1)e−λ
∗(t1)τdτ (21)

Further, let τ denote the time interval between two adjacent

network state transitions, and f (τ) denote the state transition

probability density function (PDF):

f (τ) = lim
dt→0

H(τ, dt) − H(τ, 0)

dt
= λ∗(t1)e−λ

∗(t1)τ (22)

i.e.,

f (τ) = λ∗(t1)e−λ
∗(t1)τ (23)

The accumulative probability density function that the next

transition occurs before time t1 + τ, given S (t1) = NS , can be

written as

F(τ) = λ∗(t1)

∫ τ

0

e−λ
∗(t1)tdt = 1 − e−λ

∗(t1)τ (24)

Note that one can also get F(τ) from F(τ) = 1 − Q(τ).

Equations (23) and (24) show that τ follows an exponential

distribution and that the network transition rate is λ∗(t1). Here,

λ∗(t1) is the sum of the element state transition rates of all

the working elements in the network, and is determined by

the sum of the extents of overloading of all the overloaded

elements. The time interval τ is expected to be short when

λ∗(t1) is large, i.e., the network state transition (cascading

process) occurs very rapidly. Thus, the physical meaning of

λ∗(t1) can be interpreted as the overloading stress of the entire

power system.

In order to include this characteristic in our model, we take

the following steps to determine the time of the next network

state transition, given S (t1) = NS :

1) A random number z1 is generated uniformly in (0,1).

2) Let F(τ) = z1, and τ is derived as

τ =
ln(1 − z1)

−λ∗(t1)
. (25)

C. Order of State Transition

A number of working elements (elements in Ω0) can

possibly undergo state transition. In our analysis presented

in Section III-A, we allow only one element to be removed

(tripped) at a time. Pfitzner et al. [29] pointed out that the order

in which overloaded lines are tripped influences the cascade

propagation significantly. In this section, we study the order

in which element state transitions take place.

(t
)
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i
λ
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Fig. 4. Flow chart for simulating cascading failure.

In our stochastic model, any overloaded element in Ω0 may

be tripped first. From a probabilistic viewpoint, the element

with a higher hi(τ, dt) will more likely be tripped first. Thus,

we define the relative probability for element i (i ∈ Ω0) to be

tripped first as:

r fi =
hi(τ, dt)

H(τ, dt)
=
λi(t1)

λ∗(t1)
. (26)

where λ∗(t1) =
∑

i∈Ω0
λi(t1). Our model can incorporate this

tripping order using the following steps:

1) A random number z2 is generated uniformly in (0,1).

2) Suppose there are l overloaded elements in Ω0. With

no loss of generality and for ease of referral, let these

overloaded elements be elements L1, L2, . . . , L j, . . . , Ll.

Fig. 3 shows the relative probability of an overloaded

element in Ω0 to be first tripped, given that S (t1) = NS .

3) The jth element in Ω0 is selected to be tripped according

to
j−1
∑

k=0

λLk

λ∗
6 z2 <

j
∑

k=0

λLk

λ∗
(27)

where λL0 = 0.

IV. Cascading Failure Simulations and Parameters

In this section we describe the simulation algorithm and

some important characterizing parameters of our model that

are relevant to predicting the occurrence of power blackouts.

A. Simulation Algorithm

Fig. 4 shows the flow chart for simulating the cascading

failure process which can be summarized as follows:
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1) Initial Settings: At the start of the simulation, all volt-

ages at the power generation stations, currents flowing

into the consumer nodes, admittances of the transmission

lines, and capacities of elements are set.

2) Initial Failure: An initial failure is planted by remov-

ing one element from the network, which triggers the

cascading failure process.

3) Iterative Process: Based on S (t), we remove the tripped

elements from the network, and keep all elements whose

states is “0”. The remaining network may be discon-

nected, forming so-called islands, due to the removal of

the tripped elements. For a disconnected sub-network

(island) containing no generator node, all elements

within it would have no access to power and all power

flows become zero. All nodes in this sub-network are

unserved. Note that these elements are not tripped, and

their states are still “0”. Moreover, for a sub-network

containing at least one generator node, equation (8) can

be used to compute the power flow distribution in this

sub-network. Power flows of all the “0”-state elements in

G can be computed, and the tripping rate of each element

λi can be obtained using (7). If all tripping rates are pos-

itive, we determine the next network state. Specifically,

we first determine the time of the next network state

transition using (25), and determine the element in Ω0

that will be tripped next. The network state transition is

determined using (27). Then, we update S (t) = S (t+ τ),

and iterate the process until all the transition rates are

found to be zero (i.e., no overloaded elements). With

no more overloaded elements in the network, no state

transition will occur and S (t) is a stable state. We can

then end the simulation and get the final network.

B. Parameter Settings and Metrics

The time of the initial failure is set as zero, and the time

of the final network state transition (after which there are no

overloaded elements in the network, and the network state

enters a stable point) is tfinal. Using the above algorithm, we

can simulate the dynamic profile of S (t) for power network G,

from t = 0 to t = tfinal. For t > tfinal, S (t) remains unchanged.

The dynamic profile of S (t) is thus the dynamic propagation of

cascading failures in the network. In order to better represent

and visualize the characteristics of the dynamics of a cascading

failure, we use the following metrics, which are extracted from

S (t).

We propose several metrics to investigate the cascading

failure in a power system.

First, to characterize the propagation profile of a cascading

failure in a power system, the cumulative number of tripped

elements at time t (NoTE(t)) is used. Here, we take NoTE(t)

as the number of “1”-state elements in S (t). Also, the number

of elements not served is another important metric used to

measure the blackout size. As the power grid’s operation de-

pends on the connection of the elements, the tripping of some

elements in the network can disconnect the grid and island

the consumer nodes from the power sources. These nodes are

being deprived of power, and are labelled as unserved nodes

tm

gradient = gm

t

NoTE

tonset

Fig. 5. Typical propagation profile and onset time tonset . Maximum propaga-
tion rate gm occurs at t = tm .

in our analysis. We use NoUN(t) to denote the number of

cumulative unserved nodes at t. To find NoUN(t), we remove

the tripped elements in G, and identify all sub-networks in

the remaining part of G. The consumer nodes that are isolated

from generators are all unserved nodes.

Furthermore, during a cascading failure process, it is par-

ticularly important to track the growing rate of the number

of failed or tripped elements, i.e., the frequency of removal

or tripping of overloaded elements. Specifically, any rapid

increase in the frequency of removal of overloaded elements is

a precursor to an onset of a large blackout. Thus, a metric that

effectively gives the critical time from which tripping begins

to take place more rapidly is extremely relevant to prevention

of power blackouts. This metric, called onset time (tonset) here,

can simply be defined as the time after which the propagation

rate of the cascading failure increases rapidly, as depicted in

Fig. 5. In other words, tonset is a critical time point before which

remedial control and protection actions should be applied to

the power grid. After tonset, the power grid undergoes a short

phase of very rapid tripping of overloaded elements leading

to large power blackout within a very short time. To compute

the onset time, we identify the maximum rate of the growing

profile by solving d2NoTE(t)/dt2 = 0, which gives t = tm as

the time point where the growing rate is highest. Assuming

that the value of dNoTE(t)/dt at t = tm is gm and the initial

phase has a very slow growing rate, the onset time is simply

given by

tonset = tm −
NoTE(tm)

gm

(28)

In practice, we can use any handy algorithm to find tonset, for

instance, by locating the time instant where dNoTE(t)/dt starts

to increase rapidly. Section V-B offers one simple algorithm.

Finally, to characterize the general severity in the event of

a possible blackout, we use the following statistical metric.

Suppose a large number of cascading failure cases, initialized

by failures of different elements in the network, are simulated.

The probability that the blackout size of a randomly picked

case is larger than a chosen threshold BS (Blackout Size) is

given by

P[x(t) ≥ BS] =
n[x(t) ≥ BS]

n
(29)

where x(t) can be NoTE(t) or NoUN(t), n is number of the total

blackout cases simulated, and n[x(t) ≥ BS] is the number of

cases whose blackout size at t is larger than BS. Based on (29),
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we can evaluate the cumulative blackout size distribution of a

network to reveal the probability (risk) of having a blackout

of a specific level of severity in a given network.

V. Application Case Study

In this section, we simulate cascading failures in the UIUC

150 Bus System using the model proposed above. The UIUC

150 Bus is a power test case offered by Illinois Center for a

Smarter Electric Grid at UIUC [30]. It contains 150 buses and

217 links that operate in 3 different voltage base values. We

merge the parallel lines that connect the same two buses into

one link, resulting in 203 links in our simulation. We assume

that the current sinks of the consumer buses given in the UIUC

150 Bus are the normal load demands of these consumers. The

voltages of generators are all 1.04 p.u. based on the data in

the test case.

From the historical blackout reports [3], [4], one can find

that the tripped elements are mostly generators, transmission

lines and transformers. Thus, in our simulation, we set current

limits for the transmission lines, transformers and the genera-

tors according to Ci = (1+α) ∗ Ii(normal), where Ii(normal) is

the current flowing through a transformer or a transmission

line, or the total current flowing out of a generator under

normal load demand condition; α is the safety margin and

is set to 0.2. The current limits of other elements (consumer

buses and distribution buses) are set to values that are large

enough to avoid tripping during a cascading failure.

A. Dynamics of Cascading Failure Propagation

We first study the failure spreading during a blackout

process. Fig. 6(a) shows the profile of cumulative tripped

elements of the blackout in the Western North American

system in July 1996 [3]. The blackout started from the failure

of the 345 kV Jim Bridger-Kinport line (the time of that

initial failure is 0 in the figure). As shown in the Fig. 6(a),

NoTE grew very slowly, at the initial phase, until the failing

of the 230 kV Brownlee-Boise Bench line at 1600 seconds

after the initial failure. Then, the cascading failure speeded up

abruptly, and within 380 seconds, NoTE reached 33 from 6

at the end of the initial phase. Finally, the cascading failure

settled at a final state where 34 major elements were tripped,

depriving 10% consumers of the Western interconnection area

from access to electrical power. Fig. 6(b) shows the profile

of NoTE in another blackout of the same power system that

occurred in August 1996. The cascading failure was triggered

by the failure of the 500 kV Big Eddy-Ostrander line, and then

continued with a sequence of tripping of elements. In almost

the same fashion, the cascading failure propagated slowly at

the beginning, but 6000 seconds later, the propagation rate

accelerated sharply. The main propagation finished in 120

seconds. The 2003 American-Canada blackout [4] also showed

a similar growing pattern, with NoTE growing very slowly

for the initial 4 hours and then accelerating rapidly to its final

state. The rapid increase in NoTE occurred in a few minutes,

which was a small fraction of the whole cascading period (0,

tfinal).
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Fig. 6. Propagation profile of the Western North America power blackout in
(a) July 1996; (b) August 1996.

TABLE I
Simulation Results for the Cascading Failure Triggered by the Failure of

Line (2, 21)

Loading condition NoTE(tfinal) NoUN(tfinal) tfinal (s)

Normal loading 5 2 967

5% Load increase 25 36 3600

In the following, we use the proposed stochastic model

to simulate the dynamic propagation of cascading failures

triggered by the failure of one single line. First, we simulate

100 different propagation profiles of the cascading failure

process triggered by the initial failure of line (2, 21), under

a normal load demand condition and the condition with 5%

increase in load demands. Note that when the loading of the

power system is increased by 5% and S (t = 0) = 0, there

are no overloaded elements, i.e., the 5% increase in load

demands will not cause any outage in the power grid. From

the data of historical blackouts, the time duration of the failure

propagation is usually between 1 hour and 4 hours. In this
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Fig. 7. Simulation of the dynamics of a cascading failure event in the UIUC
150 Power System caused by an initial failure of line (2, 21). (a) NoTE and
NoUN; (b) λ∗.

simulation, we use a uniform ai for all the elements in the

UIUC 150 Bus system, and fit ai to make the averaged tfinal of

the 100 simulated results under the condition of 5% increase

in load demands to be 3600 s. Thus, ai is set as 0.035 s−1

in our simulation. Table I lists the averaged simulated values

of NoTE(tfinal), NoUN(tfinal) and tfinal. From Table I, we see

that under a normal load demand condition, the failure of line

(2, 21) will not cause severe disturbance to the power system.

When the network is stressed by heavier loads, the failure of

the same transmission line can lead to a large blackout in the

power system.

Table II lists the sequence of the element tripping events in

one simulated cascading failure process under the condition of

5% increase in load demand. We plot the profiles of NoTE and

NoUN in Fig. 7(a), which display the same typical growing

pattern as the historical blackout data. Using equation (23),

the growth rate of the cascading failure is determined by λ∗(t).

Fig. 7(b) shows the values of λ∗(t) throughout the simulated

cascading process. Initially, the value of λ∗(t) is relatively

small, until the breakdown of some critical elements, its value

TABLE II
Sequence of Element Tripping Events

Sequence Number Time Unit/Line

1 0.000s Line (2, 21) is tripped.

2 220.035s Line (2, 14) is tripped.

3 1995.531s Line (108, 101) is tripped.

4 2104.394s Line (96, 102) is tripped.

5 2137.931s Line (8, 23) is tripped.

6 2187.153s Line (142, 101) is tripped.

7 2191.648s Line (3, 19) is tripped.

8 2195.871s Line (10, 25) is tripped.

9 2199.473s Line (144, 116) is tripped.

10 2199.971s Line (15, 17) is tripped.

11 2200.115s Line (9, 39) is tripped.

12 2203.461s Line (144,117) is tripped.

13 2204.694s Generator 1 is tripped.

14 2209.551s Line (88, 147) is tripped.

15 2211.713s Line (16, 26 ) is tripped.

16 2212.815s Generator 118 is tripped.

17 2213.497s Line (89, 26) is tripped.

18 2217.194s Line (114, 119) is tripped.

19 2214.603s Line (68, 85) is tripped.

20 2214.909s Line (137, 95) is tripped.

21 2215.02s Line (148, 95) is tripped.

22 2215.073s Line (65, 73) is tripped.

23 2215.649s Line (22, 29) is tripped.

24 2215.669s Line (6, 28) is tripped.

25 2217.261 Line (17, 21) is tripped.

26 2246.489s Line (69, 87) is tripped.

27 3817.977s Line (69, 70) is tripped.

increases very rapidly. This means that the power network

operates under a high overloading stress. When the stress

comes down again, the propagation slows down. The tripping

of elements ceases when λ∗(t) reduces to 0, and the network

reaches its final condition. The consistency of our simulated

cascading failure process with the historical data verifies the

validity of our model in describing realistic blackout processes.

The following two key issues should be noted.

(1) We use stochastic methods to investigate the cascading

failure propagation. Our model takes into consideration the

high complexities as well as uncertainties of the involving

mechanisms which can be investigated with probabilistic

methods. The tripping rates of the elements are related to

the overloading extents of the corresponding elements and the

more heavily overloaded ones will be more likely to be tripped

first. Equations (25) and (27) incorporate these considerations.

Thus, for the same system and same initial failure, different

simulations may yield different results due to the stochastic

nature of the model. Fig. 7 is one particular simulation run

of the UIUC 150 Bus with initial failure of line (2, 21).

Furthermore, Figs. 8 (a)-(f) show results derived from 6 other

simulation runs. From Fig. 8, we can see that these 6 sets of

results share the same characteristic profile, where the growing

rate of the blackout size is uneven and a relatively slow initial

phase is followed by a sharp escalation of cascading failures.

(2) From our simulations, we observe cascading failure
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Fig. 8. Simulation of failure propagations in UIUC 150 Bus power system with initial tripping of line (2, 21) using the proposed model. (a)-(f) Six separate
simulation runs.
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Fig. 9. Simulation of failure propagation initiated by (a) failure of line (2, 14) in UIUC 150 Bus; (b) failure of line (34, 35) in UIUC 150 Bus; (c) failure
of line (103, 105) in IEEE 118 Bus.

patterns as shown in Fig. 7. Figs. 9 (a) and (b) show the

simulated cascading failure propagation in the UIUC 150 Bus

initiated by the failure of line (2, 14) and the failure of line

(34, 35), respectively. Fig. 9 (c) shows the simulated cascading

failure propagation in the IEEE 118 Bus initiated by the failure

of line (103, 105). It should be noted that not all initial failures

will generate such cascading failure profiles. In fact, the initial

failure of some elements will not cause further cascading

failures at all. Another extreme case is that initial failure of

some crucially important element in the network will make all

other elements to be unserved instantly. For instance, the initial

failure arises from a generator which is the only generating

unit in its power network. Moreover, the failure propagation

profile shown in Fig. 7 is unique for power systems, which

is determined by the specific failure spreading mechanism.

Such profile is not normally observed in other failure spreading

mechanisms, such as disease propagations in human networks,

rumour spreading on the Internet, and so on.

B. Blackout Onset Time

To evaluate tonset, we adopt an intuitive algorithm that

locates the time point at which NoTE begins to escalate

rapidly. Suppose this time point is tk which corresponds to the

time when the kth element is tripped. The gradient of NoTE

before this time point is gi = (k − 1)/tk, and the gradient of

NoTE after this time point is gm = w/(tk+w − tk), where w is

an arbitrary additional number of elements tripped after the

kth time point for the purpose of computing the gradient. We

compare the two gradients, and if gm > γgi, where γ > 0, we

accept this kth time point as the onset time.

We perform 10,000 simulations of cascading failures trig-

gered by removal of line (2, 21). In our algorithm, we use



10 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2016

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6
x 10

−4

t
onset

 (s)

pr
ob

al
ili

ty
 d

en
si

ty

Fig. 10. Probability density function of tonset .

TABLE III
Confidence Intervals of tonset

Confidence Level Confidence Interval (sec)

90% (543, 3747)

95% (451, 4327)

99% (286, 5705)

w = 10 and γ = 50 to find tonset of these 10,000 simulation runs

and analyze the probability density function of tonset. From Fig.

10, we see that there is a peak in the interval (1200 s,1400

s), implying that tonset is more likely to be around 1300 s.

Also, Monte Carlo method is applied to derive the confidence

interval of tonset for three different confidence levels, as listed in

Table III. It should be noted that the tonset distribution shown in

Fig. 10 is only valid for the cascading failures in the UIUC 150

Bus power system with initial failure of line (2, 21). Different

systems should have different tonset distributions, which should

be derived from computation on the specific power systems.

C. Effects of Heavy Load Demands

Another common characteristic of the three historical black-

outs is that they all took place in the hot summer when the

power demand is high. In this section, we investigate the

overall influence of load demands on blackout risk of a power

network. The cumulative blackout size distribution is used

to indicate the risk of severe power blackouts of the power

system.

Under a normal load demand condition, we simulate 10

profiles of cascading failure triggered by the failure of each

line. Thus, we have altogether 2030 blackout cases for the

UIUC 150 Bus System. Then, we analyze the profile data

of these 2030 blackouts. The cumulative distributions of

NoTE(tfinal) and NoUN(tfinal) are plotted using equation (29).

These simulations are repeated for the conditions that the load

demands are increased by various percentages. Figs. 11(a)

and (b) show the cumulative distributions for NoTE(tfinal)

and NoUN(tfinal) of the UIUC 150 Bus System under several

different load demand conditions. Specifically, all simulated

cascading failures will result in NoTE(t) > 0, as any cascading

failure simulation has a tripped element as initial failure. Thus,

for BS threshold = 0, P[x(t) ≥ 0] = 1 where x(t) is NoTE(t).

We see that under a normal load condition, the probability of

large blackouts of the UIUC 150 Bus System is relatively low.

However, when the load demands are increased, the probability

of large blackouts increase significantly. We also observe that

the probability of having severe blackouts does not grow in

linearly with the growth of load demands. From Figs. 11(a)

and (b), P[x(tfinal) ≥ BS] grows relatively slowly relatively

when the load demand increases by less than 5%, but more

rapidly when the load demand increases by 5% to 10%.

D. Effects of Network Structure

It has been shown that the network topology plays a

significant role in determining the dynamics of propagation

and spreading of disease or information in networks [31]. For

example, infectious disease spreads more readily in small-

world networks than in regular ones [31]. It is shown that the

topological characteristics of many real-world power systems

are not uniform [32]. Thus, it is meaningful to investigate

the relationship between network structure and functional

properties of power systems, and to identify better connectivity

styles. However, since the mechanism of infectious disease

or information spreading is totally different from that of

failure cascading in power systems, the conclusion derived in

prior studies cannot be applied directly to the power systems

directly.

Regular networks and small-world networks are used as test

power systems for comparison purposes. A regular network is

generated with 150 nodes, each node’s degree being 4. We

allocate 30 generators in the regular network, whose voltages

are set as 1.04 p.u. The remaining nodes are consumer nodes,

each sinking 0.3 p.u. of current, and the admittances of all

links in this network are set as 2×103 p.u. Then, we generate

3 small-world networks by rewiring the links in the regular

network with rewiring probabilities 0.1, 0.2 and 0.3 [31].

For each test network, we increase the consumers’ load

demands by 5%, and then simulate 10 profiles of the cascading

failure initiated by the failure (removal) of each line. We plot

the cumulative blackout size distributions for the 4 networks

based on equation (29). Fig. 12(d) shows the cumulative

distribution of NoTN(tfinal), and we see that the risk of large

final blackouts is higher for small-world networks than for

regular ones. In order to show the speed of the propagations

in these networks, we plot the accumulative distributions of

NoTE at different time points. Figs. 12(a), (b) and (c) show

the cumulative distributions of NoTE at 100 s, 500 s and

1000 s, respectively. For the same duration [0, t0], a higher

value of P{NoTE(t0) ≥ BS} for the same BS indicates a faster

speed of cascading. From Fig. 12, we can conclusion that the

cascading failure propagates faster in small-world networks

than in regular networks.

VI. Conclusions

In this paper, we develop a model to investigate the dynam-

ics of the cascading failure processes in power systems, com-
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Fig. 11. Cumulative blackout size distributions of UIUC 150 Power System. Blackout size measured in (a) NoTE; (b) NoUN.
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Fig. 12. Cumulative blackout size distributions. (a) t = 100 s; (b) t = 500 s; (c) t = 1000 s; (d) t = tfinal. “pbeta” is rewiring probability for generating
small-world networks.
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bining deterministic power flow equations and stochastic time

duration descriptions. An extended chemical master equation

method is adopted to analyze the network failure dynamics.

It has been verified that the model produces propagation

profiles that contain the key features displayed in historical

blackout data. We studied the UIUC 150 Bus system and

a few important representative network structures with the

model, and identified the effects of heavy load demands and

network structure on the rapidity of propagation of possible

blackouts. We also develop metrics to evaluate the risk of

large-scale blackouts in terms of cumulative blackout size

distributions. The model described in this paper thus provides

predictive information for possible power blackout events in

power systems.

Appendix

Power Flow Calculation

Four kinds of nodes are considered in a power network:

consumer nodes, distribution nodes, transformer nodes and

generation nodes. Voltage and currents in the network are

computed according to the kinds of nodes as described below.

(i) Consumer Nodes (Loads)

A consumer node i dissipates power, and at the circuit level,

it sinks current Ii and is unregulated. The current value is

negative as the node consumes power, i.e.,

[

−Yi1 · · · Yii · · · −Yin

]

∗ V = Ii (30)

where V =
[

· · · vi v j vk vh · · ·
]T

; vn and In are the

voltage and external injected current at node n, respectively;

Yi j is the admittance of the transmission line connecting nodes

i and j; and Yii =
∑

j,i Yi j. If there is no transmission line

between nodes i and j, Yi j = 0.

(ii) Distribution Nodes

A distribution node j is modelled as a transfer node without

any external injected current.

[

−Y j1 · · · Y j j · · · −Y jn

]

∗ V = 0 (31)

(iii) Generation Nodes

A generation node k is a fixed voltage source. The current

emerging from this node depends on its voltage, the power

consumption of other nodes and the network topology. The

nodal equation is

[

0 · · · yk · · · 0
]

∗ V = vk (32)

where yk = 1, and vk is the voltage of node k.

(iv) Transformer Nodes

Transformer nodes connect the high-voltage grids with mid-

voltage or low-voltage grids. Usually two equations are re-

quired to describe the relations of electrical parameters around

a transformer node h. In this study, we perform our analysis

in per unit (p.u.). Thus, one equation is sufficient:

[

−Yh1 · · · Yhh · · · −Yhn

]

∗ V = 0 (33)

Combining equations (30) to (33), we get the following power

system equation:

A ∗ V = B (34)

where A is the collection of all the row vectors in the equations

of all nodes, and B =
[

· · · Ii 0 vk 0 · · ·
]T

.
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