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Abstract

Traffic congestion is a major concern in many cities around the world. Previous

work mainly focuses on the prediction of congestion and analysis of traffic flows,

while the congestion correlation between road segments has not been studied

yet. In this paper, we propose a three-phase framework to study the conges-

tion correlation between road segments from multiple real world data. In the

first phase, we extract congestion information on each road segment from GPS

trajectories of over 10,000 taxis, define congestion correlation and propose a

corresponding mining algorithm to find out all the existing correlations. In the

second phase, we extract various features on each pair of road segments from

road network and POI data. In the last phase, the results of the first two phases

are input into several classifiers to predict congestion correlation. We further

analyze the important features and evaluate the results of the trained classifiers.

We found some important patterns that lead to a high/low congestion correla-

tion, and they can facilitate building various transportation applications. The

proposed techniques in our framework are general, and can be applied to other

pairwise correlation analysis.
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1. Introduction

With the rapid process of urbanization, traffic congestion becomes an in-

creasingly serious problem in more and more cities around the world. Under-

standing, alleviating, and further tackling traffic congestion have received urgent

attentions from governments and their citizens. Much research work has been

conducted to study congestion from different aspects, including traffic conges-

tion prediction [1], traffic condition estimation[2], impact [3] and correlation[4]

of traffic congestion, traffic flow propagation[5], etc. They provide many use-

ful insights on traffic congestions, which may facilitate the building of many

practical applications.

However, the existing work typically assumes or ignores correlations [6],

leaving the impact of correlated patterns to traffic congestion largely unknown.

Analyzing and uncovering the correlated patterns in traffic congestion can reveal

the insights of congestion such as what factors are correlated in congestion, how

congestions propagate from one road to another, etc. Furthermore, it can also

facilitate building various applications including road planning, traffic condition

prediction, impact analysis of congestion, etc. As such, both governments and

individuals can be beneficial. For example, when a person is stuck in traffic

congestion, the information about nearby congestion correlated road segments

(i.e., these roads are likely to be congested as well) will be very useful since s/he

can better estimate the travelling time, or possibly choose to bypass those roads

to avoid congestion. Besides, with the information of congestion correlation

between road segments acquired, governments are able to make better decisions

on traffic light management and road planning, etc.

To fill the gap of existing work on congestion correlation analysis, we uti-

lize multiple real world data to predict whether a road segment is correlated

with another one in terms of congestion, where we can uncover some correlated

congestion patterns from features on road segments. Thanks to the wide de-

ployment of GPS devices and the widely available road and Point Of Interest

(POI) information, we are able to obtain congestion information and features
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on road segments easily. To analyze the correlation between road segments, we

apply a mining algorithm to find out all the existing correlations, and extract

features on each road segment pair. We then build learning models based on

classifiers to infer the correlated road segments from data. The models also help

to identify some important features and correlated patterns.

To the best of our knowledge, we are the first to study traffic congestion

correlation from a classification perspective using real world datasets. Our con-

tributions are three folds:

• We propose a novel framework to study traffic congestion correlation be-

tween road segments. The framework utilizes multiple sources of data

to mine and analyze congestion correlation. In addition, the framework is

general, and can be applied to other pairwise correlation analysis problems

as well.

• We focus on congestion analysis of two peak periods during a day, train

two corresponding models on several well-known classifiers to predict con-

gestion correlation, and compare the results of different models.

• We predict congestion correlation and found some important patterns,

such as congestions are very likely to propagate between trunk roads dur-

ing the evening peak hours, which can facilitate the decision making for

both individuals and governments.

The rest of this paper is organized as follows. In Section 2, we summarize

related work. Section 3 gives an overview of the proposed framework. Section

4 details each phase of the framework. Section 5 shows the experimental and

analysis results. We conclude the paper in Section 6.

2. Related Work

This section surveys the related work on traffic congestion prediction, traffic

condition estimation, impact and correlation of congestion and traffic propa-

gation. In [7], Yang formulated congestion prediction as a binary classification
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problem and applied feature selection techniques to reduce the dimensionality of

data, yet still maintained the comparable accuracy. In [8], Min et al. proposed

an approach based on the multivariate spatial-temporal autoregressive model to

incorporate spatial and temporal characteristics for real-time traffic prediction,

and found that congestion can change the traffic flow patterns. Gajewski et

al. proposed a Bayesian-based approach in [9] to estimate link travelling time

correlation, and found that the heavier the congestion, the lower the correlation

of travelling time between links. In [6], Rachtan et al. argued that correla-

tion patterns among the traffic variables are largely unknown, while most of

the work ignores congestion correlation or assumes correlation exits. Jenelius

et al. estimated travelling time based on low frequency GPS data in [2], and

demonstrated that there is significant correlation between segments and showed

the feasibility of using low frequency GPS data for monitoring the performance

of transport system. In [10][5], the authors studied the traffic flow propagation

by simulation. In [11] [12], the authors reviewed several approaches on traf-

fic density estimation, detection and avoidance. In [4][13][3][14], the authors

studied the impact and correlation on weather, accident, employment, safety,

respectively.

Different from the above work, we focus on congestion correlation between

road segments on GPS trajectories, which can benefit various applications in-

cluding traffic prediction, traffic light management, road planning, etc.

3. Overview

Figure 1 presents the framework of our work. In this framework, we utilize

GPS trajectory of taxis, road network and POI data to study the congestion

correlation between road segments. We divide the framework into three phases.

1. Extract congestion information on each road segment from GPS and road

network data, define and mine congestion correlation between each road

segment pair.
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2. Extract various topological features and POI features from road network

and POI data, respectively, and generate training samples on road segment

pairs.

3. Input the results of the first two phases into several classifiers to predic-

t congestion correlation, and analyze the evaluation results for pattern

discovery.

We design the framework in a way that it is general enough to be used

for other pairwise correlation analysis problems by changing the specific da-

ta sources and implementing techniques such as feature extraction, correlation

definition, and etc.

POI Features

GPS Trajectory
of Taxis 

Road Network Point of Interest

Congestion Info

Correlation between 
Road Segments 

Topological Features

Features between 
Road Segments

Classfier

Correlation patternsCongestion and 
correlation  extraction 

Classification 
and analysis

2

1

3

Feature and 
sample generation

Figure 1: Framework of congestion correlation mining

4. Methodology

In this section, we describe the proposed framework in details. Specifically,

we first present the three data sources we use, and then show how each phase

of the framework works.
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4.1. Data sources

Traffic congestion usually results from multiple factors. Intuitively, the un-

derlying transportation infrastructure, the traffic information and human mo-

bility are the three major ones. Therefore, in this work, we exploit three data

sources, i.e., road network, GPS trajectories of taxis and POIs to cover these

three factors. Concretely, road network describes the spatial topology of the

transportation infrastructure; GPS trajectory of taxis contain the traffic infor-

mation; and POIs implicitly convey some information about mobility of people

whose daily activities are relevant to them. We formalize these information as

follows.

Definition 1 (Road network). A road network is modelled as a graph G =

(V,E), where vi ∈ V represents an intersection of road segments, ei,j ∈ E

represents the direct road segment from vi to vj.

Definition 2 (GPS point). A GPS point, gp is denoted by a quadruple, i.e.,

gp = (TaxiID, t, s, l), where TaxiID is the identifier of the taxi, t is the time

at which this GPS point is sampled, s is the speed of the taxi, and l is the spatial

location consisting of longitude and latitude.

Definition 3 (GPS trajectory). A GPS trajectory, tr, is consisted of a se-

quence of GPS points, i.e., tr = (gp1, gp2, . . . , gpn), where n is the length of tr

and gpi.t ≤ gpj .t if i ≤ j.

Definition 4 (Point of Interest, POI). A POI, oi, is denoted by oi = (ID,Cate, Lng, Lat),

where ID is the identifier of oi, Cate is the category of oi, and Lng and Lat is

the longitude and latitude, respectively, of the spatial location of oi.

4.2. Congestion and correlation extraction

In this phase, we first extract the congestion information from the GPS

trajectories of taxis on each road segment. After that, with a definition of

congestion correlation between road segments, we propose a mining algorithm

to find out all the existing congestion correlation from data.
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4.2.1. Traffic information acquisition

To extract the congestion information, we need to first obtain the traffic

information on each road segment. According to the definition of GPS trajecto-

ries, a GPS trajectory is a sequence of discrete spatial points. Thus, we need to

map-match each GPS trajectory to the underlying road segments. In this work,

we leverage the map-matching technique in [15]. Meanwhile, considering the

time-consuming characteristic of map-matching operation, a spatial index R*-

tree [16] is built on all road segments to accelerate the process of map-matching.

After map-matching, each road segment is associated with a set of GPS points

capturing the traffic information there.

4.2.2. Congestion extraction

To extract congestion information from traffic information, we divide a day

into time slots, and obtain the traffic information Trt on road segment r in a

specific time slot t, using the average speed of all GPS points on road segment r

in time slot t as the proxy. Then we have the definition of congestion as follows.

Definition 5 (Congestion). A congestion on road segment r in a specific time

slot t is denoted by Crt, and

Ct
r =

 1 if T t
r ≤ Tr ∗Ratio;

0 otherwise.

where Tr is the average speed of all GPS points in road segment r in all time,

and Ratio will be discussed in Section 5.

We store the congestion information of a day in a congestion matrix as illus-

trated in Figure 2, where each row represents a road segment and each column

represents a time slot.

4.2.3. Correlation extraction

To study how congestion occurs sequentially in terms of time, and consider

the propagation rate of congestion in terms of space, as shown in figure 3, we

define congestion correlation between road segments as follows.

7



   

1 0 ⋯ 1
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 1 ⋯ 1

  

 

 

 

 
Use a linked list CL to store the candidate roads 

For each time slot t, 

For each candidate road c in CL 

  if  congest(c,t) < c1 and dist(c, r) < c2 

  move c to the front of CL 

  return c  

For i = 1 to k   

Randomly select a road c not in CL and c != r 

  if  congest(c,t) < c1 and dist(c, r) < c2 

   if CL is not full 

    move c to the front of CL 

   else  

    remove the last item of CL 

    move c to the front of CL 

   return c  

return -1 

Road ID 

Time Slot 

Figure 2: Congestion matrix

Definition 6 (Congestion correlation between road segments). A con-

gestion correlation from road segment a to segment b, i.e. Cor(a, b), occurs if

the following requirements are satisfied:

(1) a congestion occurs on road a at time t0

(2) from time t0 to t0 + t, a congestion occurs on road b

(3) a and b are within a certain distance d

Road b

Congestion! Congestion!

Road a

Correlation

t0 t0+t

time 

d

Figure 3: Congestion correlation

We propose Algorithm 1 to mine all congestion correlations in a designated time

period, i.e., from tstart to tend. The correlations are stored in a square matrix

R, where Rik stores the occurrence count of congestion correlation between road

segment i and k from tstart to tend.

In Algorithm 1, at each time slot j, for each congested road segment i, we

retrieve all the congested road segments in next t time slots, and increase the

occurrence count of correlation stored in Ri·. We use a vector cv to store the
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Algorithm 1 Congestion Correlation Mining

Input: the congestion matrix C, time threshold t, distance threshold d, start

time slot tstart and end time slot tend;

Output: the correlation matrix R;

1: R = 0; Create a vector cv of size C.rowNumber;

2: for j = tstart to tend do

3: cv = 0;

4: isFound = false;

5: for i = 1 to C.rowNumber do

6: if C[i][j] == 1 then

7: if isFound == false then

8: for k = 1 to C.rowNumber do

9: for t = j+1 to j+t do

10: if C[k][t] == 1 then

11: cv[k] = 1;

12: break;

13: isFound = true;

14: for k = 1 to C.rowNumber do

15: R[i][k] = R[i][k] + cv[k];

16: for i = 1 to C.rowNumber do

17: for k = 1 to C.colNumber do

18: if Dist(i, k) > d then

19: R[i][k] = 0;

20: return R;
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retrieved congested road segments, so that the retrieving process only executes

once in each time slot, thus improving the efficiency of the algorithm. Then, we

also check the distance in all pairs of road segments to make sure the distance

requirement in congestion correlation is also satisfied. The time complexity of

the proposed algorithm is O(n2m), where n is number of road segments and m

is the number of time slots from tstart to tend.

To further refine congestion correlation, we have the following definition.

Definition 7 (Correlation confidence). Correlation confidence from road seg-

ment a to segment b, i.e., CCab indicates the confidence level of the congestion

correlation and is computed as follows:

CCab =
occurrence count of Cor(a, b)

No. of congestions occur at a

With the correlation confidence, an analogy to confidence in Association Analy-

sis [17], we are able to identify some false positive and true positive correlations,

and use them to conduct more accurate analysis in later phases.

4.3. Feature and sample generation

In this phase, we first extract various features on each road segment from

road network and POI data, and then fuse the features for each road segment

pair to generate training samples.

4.3.1. Feature extraction

To extract features on each road segment from road network data, we con-

sider not only their traditional features, including length, type, and degree, but

also some advanced features, including betweenness and closeness. It is straight-

forward to extract those traditional features. Therefore, we will only detail how

to extract the advanced features as follows.

In graph theory, betweenness is used to measure the importance of nodes

in terms of the number of shortest paths passing them. The intuition is that a

node is more important if more shortest paths go through it. The betweenness
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of a node vi is computed with the following formula [18].

B(vi) =
1

(N − 1)(N − 2)

∑
vj ,vk∈V ∧i 6=j 6=k

njk(vi)

njk
(1)

where njk is the total number of shortest paths between nodes vj and vk, njk(vi)

is the number of shortest paths between nodes vj and vk that pass node vi.

Similarly, we compute the betweenness of a road segment, ei1,i2 as below (cf.

Definition 1).

B(ei1,i2) =
1

(N − 1)(N − 2)

∑
vj ,vk∈V

njk(ei1,i2)

njk
(2)

where njk is the total number of shortest paths between nodes vj and vk,

njk(ei1,i2) is the number of shortest paths between nodes vj and vk that pass

edge ei1,i2 .

According to [18], closeness centrality is used to measure the centrality of a

node, vi, in the network and is computed as below.

C(vi) =
N − 1∑

j∈V ∧j 6=i netDis(vi, vj)
(3)

where netDis(vi, vj) is the network distance between nodes vi and vj .

To compute the closeness of a road segment, ei1,i2 , we change the formula

above to the following form.

C(ei1,i2) =
N − 1∑

e∈E∧e 6=ei1,i2
netDis(e, ei1,i2)

(4)

where netDis(e, ei1,i2) is the network distance between edges e and ei1,i2 (cf.

Eq.(6)).

To extract features from POI data on each road segment, we consider the

total number of POIs, the number of POIs in each category, the Term Frequency-

Inverse Document Frequency(TF-IDF) value of each POI category. Specifically,

we treat road segments as documents and POI categories as terms, and TF-IDF

value indicates the importance of POI categories on road segments. Similar to

[19], to compute TF-IDF value of the i-th POI category of a given road segment,

we have the following formula:

TF-IDFi =
ni

N
× log

R

||{r|the i-th POI category ∈ r}||
(5)
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where ni is the number of POIs in i-th category and N is the total number of

POIs in the given road segment. The first term calculates POI frequency in

the given road segments, and the second term calculates the inverse segment

frequency by taking the logarithm of a quotient, resulting from the number of

road segments R divided by the number of segments which have POIs in i-th

category.

The extracted features are summarized in Table 1.

Table 1: Extracted features on a road segment

Features Description

length the length of each road segment

degree the degree of each road segment

type type of road segments, e.g., motorway and trunk

B(ei,j) the betweenness of the road segment ei,j

C(ei,j) the closeness of the road segment ei,j

#POIs the total number of POIs

#CatPOIs the number of POIs in each category

POI-TF-IDF the tf-idf value of each POI category

4.3.2. Sample generation

To generate training samples, considering all features extracted on a road

segment, we need to fuse the features of each road segment pair, and generate

features for each pair.

For length, degree, betweenness, closeness and total number of POI, we

calculate their difference between segments, and then add them to the features

for each pair. We also add network distance and Pearson similarity of POI

TF-IDF value distributions between road segments into features for each pair.

Network distance between road segment ei1,i2 and ej1,j2 is computed based

on the underlying road network (cf. Definition 1), i.e.,

netDis(ei1,i2 , ej1,j2) = min
i∈{i1,i2},j∈{j1,j2}

{netDis(vi, vj)} (6)
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where netDis(vi, vj) is the length of the shortest path between nodes vi and vj .

To accelerate the computation of network distance, we index road network G

with CH (Contraction Hierarchy) [20] which organizes G in a hierarchy struc-

ture.

For each distinct ordered combination of two road types in a pair of road

segments, we create a binary indicator variable to represent the existence of

it between road segments. For example, a road segment type is ‘trunk’ and

that of the other is ‘primary’, then the corresponding indicator variable that

represents the existence of the ordered combination ‘trunk→primary’ is set to

1, and all other indicator variables of this ordered pair are set to 0. The idea

of this design is to see how congestion correlation varies from one road type

to another. Slightly different, for each distinct ordered combination of two

POI categories, we create a variable to represent the importance level of it by

calculating the product of TF-IDF values of the two categories on each pair

of road segments. The idea of this design is to see how congestion correlation

varies from one POI category to another.

Finally, we apply Min-Max scaling [21] to scale all the features for each

pair of road segments into the range of [0, 1], which not only enhances the

performance of the trained models, but also facilitates the process of analysis

on feature importance later, since the trained models are not biased towards

the features simply due to their large numeric range.

The features for each road segment pair are summarized in Table 2.

4.4. Classification and analysis

In this phase, we input the results of the first two phases into several clas-

sifiers to predict congestion correlation, and analyze the evaluation results for

pattern discovery.

4.4.1. Classification

After finishing the first two phases, we have all the congestion correlation

between road segments, and all features on each pair of road segments. We now
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Table 2: Features for each road segment pair

Features Description

Diff-Len the difference of length

Diff-Degree the difference of degree

Diff-B the difference of betweenness

Diff-C the difference of closeness

Diff-POI the difference of the total number of POIs

netDis the network distance

SimPOIs Pearson similarity of POI TF-IDF value distributions

OrderedComb-

types

the binary indicator variable for ordered combination of

road types

OrderedComb-

POI

the variable for ordered combination of POI categories

combine these two parts to generate training samples for binary classification.

For any given pair of road segments, the models will predict whether there

exists high congestion correlation between them. To refine and enhance the

knowledge models learn from data, we set a threshold of Correlation confidence

(cf. Definition 7) for positive class and negative class, respectively. Thus, we

only keep those pairs of road segments, whose correlation confidence is higher

than the threshold for positive class, and treat them as positive training samples;

or lower than the threshold for negative class and higher than 0, and treat them

as negative training samples.

Usually the classes of training samples are highly imbalanced, i.e., the sam-

ples in uncorrelated class are much more than those in the correlated class,

which will impair the performance of classifiers. Therefore, we apply random

majority undersampling (RUS) [22] to generate a balanced training samples.

Finally, we input the balanced training samples into well-known classifiers

including Decision Tree (DT), Random Forest (RF), Logistic Regression (LR)

and Support Vector Machine (SVM), then evaluate the performance of the built
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models using classic metrics.

4.4.2. Analysis

After the evaluation of the models, we analyze the built models for pattern

discovery.

Feature importance indicates how important a feature is for the prediction of

classifiers, which can help to identify important features and patterns during the

analysis process. We employ different feature importance measures for different

classifiers. For Decision Tree and Random Forest, we use Gini importances [23].

For Logistic Regression and Support Vector Machine, we consider the absolute

values of feature coefficients as the measure of feature importance. Besides, we

also generate some decision rules from Decision tree for better understanding of

the analysis results.

With different training samples, we can build different models on different

classifiers. The comparison of evaluation results, identified features and patterns

among different models on different classifiers can also provide useful insights

on congestion correlation between road segments.

5. Experiments

In this section, we present the details of datasets, experiment settings and

results.

5.1. Datasets

In the experiments, we use three datasets, i.e., road network, POIs, and the

GPS trajectories of taxis. All these three datasets are for Beijing, China and

their details are elaborated as below.

The road network data is extracted from OpenStreetMap (OSM)1, an open

source online map. In Beijing road network, we have 109, 029 edges and 105,

030 nodes, with 13 categories of road types.

1https://www.openstreetmap.org
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POI data set contains all kinds of physical objects in spatial space such as

shops, schools, banks, and restaurants. Though we can also download POIs

from OSM, the number of POIs there is quite small. To collect enough POIs,

we obtain the POI data from a data sharing web site called DataTang2. This

POI data set is comprised of 220, 137 POIs which cover 21 categories.

We collect a large set of GPS trajectories of over 10, 000 taxis in Beijing for

30 days in 2012.

5.2. Data filtering

From the view of road segments, each road segment has a set of GPS records

with time stamps. The goal of this work is to study the congestion correlation

between road segments. Therefore, it is very important to obtain the traffic

information on road segments as accurate as possible.

0 4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 00
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3 0 k
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Figure 4: The distribution of the number of speed records on each road segment per day

According to [19], more than 12 percent of traffic flow in Beijing is occupied

by taxi trips, it is reasonable for us to use the speeds of GPS records of taxis

2http://www.datatang.com/
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(a) Remaining roads (red) (b) Real traffic in Beijing at 6pm

Figure 5: The remaining road segments after filtering and the real traffic in Beijing at 6pm.

to approximate the real traffic congestion information. However, though we

have over 10, 000 taxis, the number of speed samples of some road segments

are still very small, which makes it difficult to capture the real traffic on these

road segments. In the experiments, we divide a day into 10 minutes time slots,

resulting in 144 time slots one day. According to Figure 4, many road segments

have speed records less than 100 per day meaning that there is no traffic infor-

mation in some time slots for many road segments. To alleviate the impact of

data sparsity, we remove those segments that have less than 500 speed samples

in a whole day. Finally, we get 3,004 road segments which have enough traffic

information to support our further analysis. The remaining roads are plotted

with red color in Figure 5(a). Figure 5(b) illustrates the real traffic in Beijing

at 6pm, where red color represents busy traffic. Obviously, the remaining roads

in Figure 5(a) cover most of the roads that have busy traffic in Figure 5(b).

Therefore, it is reasonable for us to conduct analysis on remaining roads since

our goal is to study the congestion correlation between road segments.
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5.3. Settings

In the experiments, we set the ratio in Definition 5 to 0.5, which is similar

to [7], and compute the average speed on a road segment by all GPS records on

the segment over 30 days.

Figure 6: The number of congested roads, the number of roads with GPS records, and the

proportion of congested roads

Table 3: 10-fold CV Results on Different Classifiers of Two Models

Morning Peak Evening Peak
PPPPPPPPPPClassfiers

Metircs
Precision Recall Precision Recall

Decision Tree 0.615(0.012) 0.598(0.033) 0.661(0.014) 0.642(0.053)

Random Forest 0.693(0.020) 0.550(0.029) 0.742(0.013) 0.627(0.031)

Logistic Regression 0.626(0.017) 0.559(0.048) 0.682(0.012) 0.665(0.030)

SVM 0.639(0.027) 0.446(0.055) 0.692(0.011) 0.633(0.032)

As illustrated in Figure 6, there are three sub-figures representing respective-

ly the number of congested roads, the number of roads with GPS records and

the proportion of congested roads from 0:00 to 23:59 over 30 days. We can see

two peaks of congested roads and the proportion, which corresponds to morning

peak and evening peak in a day. Besides, during late night, the number of roads
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Table 4: Commonly identified important features

Features Description

Morning Peak

Diff-B the difference of betweenness

Diff-C the difference of closeness

Diff-POI the difference of the total number of POIs

SimPOIs Pearson similarity of POI TF-IDF value distribu-

tions

netDis the network distance

‘trunk→trunk’ binary indicator variable for the ordered combi-

nation ‘trunk→trunk’of road types

‘motorway→motorway’ binary indicator variable for the ordered combi-

nation ‘motorway→motorway’of road types

‘catering→catering’ variable for the ordered combination

‘catering→catering’of POI categories

Evening Peak

Diff-B the difference of betweenness

Diff-C the difference of closeness

Diff-POI the difference of the total number of POIs

netDis the network distance

‘trunk→trunk’ binary indicator variable for the ordered combi-

nation ‘trunk→trunk’ of road types

‘trunk→secondary’ binary indicator variable for the ordered combi-

nation ‘trunk→secondary’ of road types

‘tertiary→secondary’ binary indicator variable for the ordered combi-

nation ‘tertiary→secondary’ of road types

19



Table 5: Generated Rules

Rules

Morning Peak
If 0.4184 < Diff-POI ≤ 0.4454 and Diff-B > 0.4755 and Diff-C ≤

0.4906, then uncorrelated

If Diff-POI > 0.4947 and netDis ≤ 0.294 and

‘motorway→motorway’ = 1, then correlated

Evening Peak
If Diff-POI ≤ 0.49 and Diff-B > 0.4938 and ‘tertiary→secondary’

= 1, then uncorrelated

If 0.0038 < netDis≤ 0.0877 and ‘trunk→trunk’ = 1, then correlated

with GPS records dramatically falls, which is probably because there are much

fewer taxis travelling during this period. Since our goal is to study congestion

correlation between road segments, to ensure accurate traffic information ex-

traction and enough congested roads for analysis, we focus on morning peak

and evening peak. Specifically, we generate two sets of training samples from

these two peaks in 30 days, respectively. The morning peak is from 7:30-9:00,

and the evening peak is from 17:30 - 19:00.

Recall Definition 6, in the experiments, we set t = 2, which is 20 minutes; d

= 5 km, since the average speed of all GPS records in congested roads is about

16 km/h, and in 20 minutes the congestion can propagate at most around 5 km,

thus reducing the false congestion correlation to some extent.

For the two sets of training samples, we set the threshold of correlation

confidence for positive sample to 0.6, and the threshold for negative sample

to 0.4. In the morning peak samples, 33909 positive samples are collected,

and 386875 negative samples are collected. After RUS, a balanced morning

peak samples are generated with a total of 67915 samples. In the evening peak

samples, 53968 positive samples are collected, and 495808 negative samples are

collected. After RUS, a balanced evening peak samples are generated with a

total of 108435 samples. For each sample, we initially generate 618 features

as described in Table 2. Then we discard Diff-Len and Diff-Degree, since they

hardly contribute to the performance of models during the experiments, and
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end up with 616 features for each sample.

We input the two sets of training samples with selected features, and train

the two peak models on four well-known classifers: Decision Tree (DT), Random

Forest (RF), Logistic Regression (LR) and Support Vector Machine (SVM) [24]

to predict congestion correlation. Then the average precision and recall com-

puted by 10-fold cross validation are applied to evaluate the performance of the

trained models.

5.4. Results and analysis

Now we further perform Recursive Feature Elimination on the feature. The

basic idea is to iterate over all combinations of features on a designate model to

find the feature set with best performance.
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(a) Feature Selection Of Decision Tree in

the Morning Peak
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(b) Feature Selection Of Decision Tree in

the Evening Peak

Figure 7: Feature Selection of Decision Tree

We evaluate the trained models using average precision and recall. The

10-fold cross validation results are shown in Table 3, where the number in the

bracket is the standard deviation. Generally, the results are stable with satis-

factory precision and recall, considering that we have not conducted a very fine

parameter tuning for the best performance.

In terms of the two peak models, the evening peak models achieve better per-

formance in both precision and recall than the morning peak models. In terms

of precision, models trained on Random Forest achieve the best performance in

21



both morning and evening peaks. In terms of recall, models trained on Deci-

sion Tree and Logistic Regression achieve the best performance, respectively in

morning peak and evening peak.

We also compare the top 10 important features identified by two models on

different classifiers, and list the commonly identified important features on two

models in Table 4. In addition, Table 5 shows some rules generated by Decision

Tree on the two models (note that all the features have been scaled into the

range of [0, 1] as described in Section 4).

As we can see, Diff-B, Diff-C, Diff-POI, netDis, and ‘trunk→trunk’ are both

commonly identified important features in the two models, meaning that they

are important to predict whether a road segment is correlated with another

one in terms of congestion in both morning and evening peaks. On the other

hand, ‘motorway→motorway’ and ‘catering→catering’ are more important in

the morning peak, and ‘trunk→secondary’ and ‘tertiary→secondary’ are more

important in the evening peak. The results reveal the common and different

patterns between morning and evening peaks.

From the generated rules, we can observe more different patterns in the

morning and evening peaks. For example, in the morning peak, there exits high

congestion correlation from one motorway to another if the POI numbers of

them are quite different, meaning that congestions are more likely to propagate

from a motorway with more POIs to another one with less POIs in the morning

peak. On the other hand, there exits high congestion correlation from one trunk

road to another in the evening peak, meaning that congestions are more likely

to propagate between trunk roads in the evening peak.

6. Congestion transmissibility

Some traffic congestions are correlated and this correlation has transmissi-

bility. For example, the congestion of road A results in the congestion of road

B and road B further leads to the congestion of road C. In some cases, such

congestion transmission can cover a quite wide area. Figure 8 illustrates two ex-
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amples of congestion transmission. Particularly, in Figure 8(a), the congestion

at road 976 has an important effect on road 1233. Road 1233 then may lead to

the congestion of road 753. Similarly, the congestion sequentially transmits to

roads 964 and 1044.Correlation chain 12 (AM)

(a) Congestion transmission (AM)

Correlation chains 12 (PM)

(b) Congestion transmission (PM)

Figure 8: The congestion transmission.

7. Conclusion

In this paper, we outline a three-phase framework to study the congestion

correlation between road segments from multiple sources of data. We first ob-

tain congestion information on road segments from GPS data, give the definition

of congestion correlation and design the mining algorithm. Then we extract

topological and POI features on each road segment, and fuse them to gener-

ate the features of training samples for each pair of road segments. Finally,

the congestion correlation and features on each pair of road segments are in-

put to well-known classifiers including Decision Tree, Random Forest, Logistic

Regression and Support Vector Machine. We train two models on different clas-

sifiers to predict congestion correlation, compare and analyze the performance

and important features. The experiment results show stable and satisfactory

23



performance as well as some important patterns of congestion correlation. No-

tably, the proposed framework is general and can be applied to other pairwise

correlation analysis.
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