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A Neural-Network-Based Channel-Equalization Strategy
for Chaos-Based Communication Systems

Jiuchao Feng, Chi K. Tse, and Francis C. M. Lau

Abstract—This brief addresses the channel-distortion problem and pro-
poses a technique for channel equalization in chaos-based communication
systems. The proposed equalization is realized by a modified recurrent
neural network incorporating a specific training (equalizing) algorithm.

Index Terms—Channel equalization, chaos-based communications, re-
current neural networks (RNNs).

I. INTRODUCTION

Chaotic signals, by virtue of their wideband and deterministic nature,
are well suited for carrying information in a spread-spectrum communi-
cation environment [1]. However, in reality, the performance of a com-
munication system can be seriously impaired by channel effects and
noise. Theoretically, if a wideband chaotic signal is transmitted through
a band-limited channel, the inevitable loss of spectral components in
the received signal may cause the transmitted signal of one symbol
to spread over and overlap successive symbol intervals and this ef-
fect is commonly termedintersymbol interference(ISI) [2]. It has been
demonstrated that even simple variations of channel gain or pure phase
distortions in the channel may adversely affect the transmitted signal
[3], [4]. In addition to linear distortion, the transmitted signal is sub-
ject to other contaminations such as thermal noise, impulse noise, and
nonlinear distortions arising from the modulation process. The idea of
channel equalization is to combat the unfavorable channel effects such
that the transmitted signal can be preserved with highest integrity. Re-
cently, some approaches have been proposed for combating the effect
of channel distortions in chaotic communication systems. For example,
the synchronization-based method [5], [6] takes advantage of synchro-
nization between the transmitter and receiver to estimate channel dis-
tortion. However, it is not easy to choose a suitable coupling parameter
(or adaptive coupling parameter) to ensure that all of the conditional
Lyapunov exponents in the demodulator are less than zero so that the
receiver can approximately synchronize with the transmitter. Motivated
by the lack of effective channel-equalization methods for chaos-based
communication systems, this brief attempts to design a channel equal-
izer for chaotic signals. Linear and nonlinear distortions are considered,
in addition to additive white Gaussian noise (AWGN). Specifically, we
will employ a modified recurrent neural network (RNN) to realize the
equalization task.

II. PRELIMINARIES

Supposex is the transmitted signal in a communication system pro-
duced by a chaotic modulator andh is the transformation function of
the channel. The output of the channels is corrupted by noise�, which
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is usually modeled as an AWGN process with a zero mean. In general,
h can be modeled as a nonlinear operator, i.e.,s = h(x) [2]. The input
to the equalizer is theny = s + �.

The problem addressed in this brief may be summarized as follows.
Given the noisy and distorted sequencey, the problem is to find an
equalizer such that the originally transmitted sequencex, or at least a
delayed and/or phase shifted version of it, can be reconstructed. There-
fore, the ideal equalization requiresx̂ = �tLe

j�x be achieved, wheret
is the time instant,L is the time delay,� is a constant phase shift, and
� is the Kronecker delta function.

The aforementioned equalization problem can be regarded as a non-
linear modeling problem. The nonlinear autoregressive moving average
(NARMA), model which is a widely used tool for modeling nonlinear
dynamical system, can be used to describe the said system [7]. Typi-
cally, we writex(t) = $(y(t � 1); y(t � 2); � � � ; y(t � M);e(t �
1); e(t � 2); � � � ; e(t � N)) + e(t), wheree(t) is the error signal at
time instantt between the original and the estimated signal,$ is an un-
known function,M andN are the time delays of the input signal and
the error signal, respectively. The conditional mean ofx based on the
infinite past observations iŝx(t) = E[$(y(t�1); y(t�2); � � � ; y(t�
M); e(t� 1);e(t� 2); � � � ; e(t�N))jy(t� 1); y(t� 2); � � �], where
E denotes expectation. Suppose that the NARMA model is invertible
in the sense that there exists a function such thatx(t) =  (y(t �
1); y(t � 2); � � �) + e(t). Then, given the infinite past observations
y(t � 1); y(t � 2); � � �, one can, in principle, use the above equation
to estimatee(t � j) in the expression forx(t). In this case, the con-
ditional mean estimate iŝx(t) = $(y(t � 1); y(t � 2); � � � ; y(t �
M);e(t� 1); e(t� 2); � � � ; e(t�N)). Since, in practice, only a finite
observation record is available, one can only perform an approximate
computation of̂x(t) by an recursive algorithm [7], i.e.,̂x(t) = $(y(t�
1); y(t� 2); � � � ; y(t�M);ê(t� 1); ê(t� 2); � � � ; ê(t�N)), where
ê(j) = x(j)� x̂(j), j = t� 1; t� 2; � � � ; t�N . This can be approx-
imated by the following recurrent model [7]:

x̂(t)=

N

i=1

ui'

M

j=1

�wijy(t�j)+

N

j=1

�w0

ij(x(t�j)�x̂(t�j))+�i (1)

which is actually a special case of a general RNN to be described in the
following. Here,ui, �wij , and�w0

ij are coefficients,�i is a parameter, and
' is a nonlinear function.

The RNN we use in this brief is a three-layer network
consisting of the input layer, the hidden layer (processing
layer), and the output layer. The input vector of the input
layer at time instantt is vvv(t), which is defined asvvv(t) =
[v1(t); v2(t); � � � ; vM(t); vM+1(t); � � � ;vM+N+1(t)]

T , where vi(t),
2 � i � M + 1, is the external input which is the delayed version of
y, i.e.,vi(t) = y[t � (i� 1)], andvi,M + 2 � i � M +N + 1, is
the feedback input of theith input unit at time instantt. Also,N is the
number of hidden-layer units andv1 is the bias input which has been
fixed at “+1” in this brief.

The internal activity of theith hidden unit at time instantt is given
by ri(t) = M+N+1

j=1
wij(t)vj(t), wherewij(t) is the connection

weight between theith hidden unit and thejth input unit at time instant
t. At the next time stept+ 1, the output of theith neuronqi(t+ 1) is
computed using a nonlinear activation function,'(�), yielding qi(t +
1) = '(ri(t)). In this study, we choose'(x) = tanh(cx), wherec
is constant. Letui(t) be the connection weight between theith hidden
unit and the output unit. The output of the output unit is given by

x̂(t+ 1) =

N

i=1

[ui(t)qi(t+ 1)] : (2)
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For 1 � i � N , and letting

wij = � �wijui; for M+2�j�M+N+1 (3)

and

wij(if M>N) =
�wij+ �w0

ij ; for 2 � j � N + 1

�wij ; for N + 2�j�M+1
(4)

we can easily see that (1) is a special case of (2) forM > N . Similarly,
for the cases whereM < N andM = N , the same conclusion holds.

The above estimation procedures, together with the training algo-
rithm described in the following section, can be used to realize the
equalization task.

III. T RAINING ALGORITHM

Let d(t + 1) be the desired output of the output unit at time instant
t+1. The error signale(t+1) is e(t+1) = d(t+1)� x̂(t+1). The
weight between the hidden layer and the output unit is then updated by
a least-mean-square (LMS) algorithm, i.e.,ui(t+1) = ui(t)+�1e(t+
1)qi(t+ 1), where�1 is the learning rate. The instantaneous sum-of-
squares errors of the network is defined as"o(t+1) = (1=2)e2(t+1).
Also, we define the local gradient of theith hidden unit at time instant
t + 1, 
i(t + 1), as


i(t+ 1) =�
@"o(t+ 1)

@ri(t)

= e(t+ 1)ui(t)'
0 (ri(t)) (5)

where'0(�) is the derivative of' with respect to its argument. Ac-
cording to the delta learning law, the weightwij (i = 1; 2; � � � ; N ,
j = 1; 2; � � � ;M + N + 1) can be updated usingw�

ij(t + 1) =
wij(t) + �2
i(t + 1)vj(t), where�2 is the learning rate. Now, de-
fine the instantaneous sum of squared errors for the hidden-layer units
as

"(t) =
1

2

N

k=1

e2k(t) (6)

whereek(t) is the difference (error) in the output of thekth hidden
unit before and after the weightwij is updated. Then, the instantaneous
weight is updated aswij(t+1) = w�

ij(t+1)��3[@"(t)=@w
�

ij(t+1)],
where�3 is learning rate. Sinceqi(t+1) = '(ri(t)) and from (6), we
have

@"(t)

@w�

ij(t+ 1)
= �

N

k=1

ek(t)
@q+k (t+ 1)

@w�

ij(t+ 1)
(7)

whereq+k (t + 1) is the output of thekth hidden unit after the weight
wij is updated tow�

ij(t+ 1). From the above equation, we can obtain
the update equation ofwij(t + 1) as

wij(t+ 1) = w�

ij(t+ 1) + �3

N

k=1

ek(t+ 1)
k
ij(t+ 1): (8)

The above procedure is repeatedly applied to all input sample pairs
during the training stage.

IV. SIMULATION STUDY

In this section, we simulate a chaotic communication system which
is subject to channel distortion and AWGN. Our purpose is to test the
ability of the proposed equalizer in combating the channel effects and
noise.

Two chaotic systems will be used to evaluate the performance of the
proposed equalizer in this brief. The first system is based on the Hénon
map [8] and the second one is the Chua’s system [9].

(a)

(b)

Fig. 1. MSE of the equalized samples for Channel I, averaged over 40
independent realizations, versus the number of iterations for (a) the Hénonmap
systems; (b) the Chua’s system, with different numbers of training samples.

Three channel models will be used to test the performance of the pro-
posed equalizer in this brief. The first two channels are linear channels
which can be described in thez domain by the following transforma-
tion functions:

H1(z) = 1 + 0:5z�1 (Channel I) (9)

H2(z) = 0:3 + 0:5z�1 + 0:3z�2 (Channel II): (10)

These two channel models are widely used to evaluate the performance
of equalizers in communication systems [10]. Note that Channel II has
a deep spectrum null at a normalized angular frequency of 2.56, which
is difficult to equalize by the usual LTE [2].

The third channel to be studied is a nonlinear channel, which can be
described by

y = �s+ a1�s
2 + a2�s

3 + � (11)

wherea1 anda2 are channel parameters which are fixed at 0.2 and
�0.1, respectively, and�s is the output of the linear part of the channel,
which is given by�s(t) = 0:3482x(t)+0:8704x(t�1)+0:3482x(t�
2). Thus, the transformation function of the linear component can be
expressed asH(z) = 0:3482+ 0:8704z�1+ 0:3482z�2. It has been
shown that these channels distort the transmitted signal drastically [11].
Furthermore, without an equalizer, the simple inverse system approach
will give unacceptable performance even when the channel, besides
AWGN, is an ideal allpass filter, i.e.,h = 1.

It should be noted that the size of training sample sets is important. If
the sets are too small, the equalizer cannot experience all states of the
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Fig. 2. MSE performance of the recoveredx̂ of the Hénonmap system versus
SNR for Channel I (solid line) and Channel II (dotted line).

Fig. 3. MSE performance of the recoveredx̂ of the Chua’s system versus
SNR for Channel I (solid line) and Channel II (dotted line).

system in the given communication environment, leading to poor re-
construction of the signal. However, if the sets are too large, the training
duration will be excessively long. In our simulations, we first consider
different sizes of the training sample sets, and examine the results in
terms of the mean-square error (MSE) as a function of the number of
iterations (here, one iteration corresponds to the duration for the equal-
izer to go through the training once using all training samples), where
the MSE is defined ash(x̂ � x)2i, in which “h i” is an averaging op-
erator. According to the requirement for the embedding dimension in
Takens’ theory [12], we assign each training sample pair with eight ele-
ments (seven transmitted signals and one known signal at the receiver).
Also, noise is added to the training samples at a signal-to-noise ratio
(SNR) of 10 dB during the training stage, and the RNN is assigned with
M = 7 andN = 6. Fig. 1(a) and (b) shows the MSE of the equalized
samples, averaged over 40 independent realizations, versus the number
of iterations for the Hénonmap system and for the Chua’s system. We
can see that the smaller the training size, the more uncertain the equal-
izer will be and when the size of the training sets is about 600, the MSE
is below�70 dB after some iterations. According to the above results,
we select the size of the training sets as 600 in this study and stop the
training when the MSE for all samples is below10�7.

1) When the RNN-based equalizer is applied to equalize Channels
I and II, the following results are obtained. For the Hénonmap
system, it is found that the equalizer completes the training in
approximately 500 iterations for Channel I and 600 iterations for
Channel II (i.e.,MSE < �70 dB). The trained equalizers are
then used to test their performances when actual communication
takes place. Fig. 2 shows the MSE versus SNR for Channels I

(a)

(b)

Fig. 4. Equalization of the nonlinear channel for the Hénonmap system in
(a) training stage and (b) test stage.

and II. When the SNR exceeds 14 dB, the MSE of the equalized
signal for the two channels is less than�80 dB. For the Chua’s
system, it is found that the equalizer completes the training after
approximately 500 iterations for Channel I and 700 iterations
for Channel II. Again, the trained equalizers are then used to
test their performances when actual communication takes place.
Fig. 3 shows the MSE versus SNR for Channels I and II. When
the SNR is more than 14 dB, the MSE of the equalized signal for
the two channels is less than�76.3 dB.

2) When the RNN-based equalizer is applied to equalize the non-
linear channel described earlier, the following results are ob-
tained. For the Hénonmap system, Fig. 4(a) shows the MSE
versus the number of iterations during training, and Fig. 4(b)
shows the equalization performance of the trained equalizer. We
can see from Fig. 4 that the equalizer completes its training af-
terabout 800 iterations in the training stage, and the MSE is
�73.8 dB when SNR is equal to 14 dB. For the Chua’s system,
similarly (figures omitted for the sake of conciseness), it is found
that the equalizer completes its training after about 900 itera-
tions, and the MSE decreases with the increased SNR in the
equalizing stage. When the SNR is equal to 14 dB in the equal-
izing stage, the MSE of the equalized signal is approximately
�76 dB.

V. COMPARISONS ANDDISCUSSIONS

First, we compare the proposed RNN-based equalizer with conven-
tional 13-tap and 15-tap LTEs. The results are summarized as follows.
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(a)

(b)

Fig. 5. MSE performance of linear transversal equalizers (LTE’s) versus SNR
for (a) the Hénon map system and (b) the Chua’s system. 13-tap equalizer (solid
line) and 15-tap equalizer (dotted line).

Fig. (5a) and (b) shows the MSE performance of the equalized signal
versus the SNR of the channel for the communication systems based
on the Hénon map and the Chua’s system, respectively. When the SNR
is 14 dB, the MSE is�19.2 and�16.7 dB for Channels I and II, re-
spectively, for the Hénon map system. Here, the RNN-based equal-
izer outperforms these LTEs by 60 and 63.3 dB for Channels I and
II, respectively. Likewise, for the Chua’s system, the MSE is�32.8
and�31.8 dB for Channels I and II, respectively. In this case, the
RNN-based equalizer outperforms the LTEs by 45.5 and 44.5 dB for
Channels I and II, respectively. Also, the LTEs are found completely
inadequate for equalizing the nonlinear channel, and results are omitted
here.

Second, we discuss the performance of the proposed equalizer based
on the modified RNN in this brief. Basically, artificial neural networks
(ANN) can perform complex mapping between its input and output
space. Specifically, RNN can perform temporally extended tasks, for
which static networks have serious limitations [13]. The salient prop-
erty of the RNN is that the outputs of the hidden units are fed back
at every time step to provide additional inputs. This recurrence enables
the filtered data of the previous period to be used as additional inputs in
the current period. This additional information of filtered input history
acts as an additional guidance to evaluate the current noisy input and its
signal component. Here, as an example, we use a feedforward neural
network without recurrent input to realize the same equalization task
for Channels I and II. In the adaption stage, the back propagation algo-

Fig. 6. Equalization performance by using an equalizer based on the
feedforward neural network without recurrence using the back propagation
learning algorithm in which the Hénon map is employed in the transmitter.

rithm is used to train the equalizer. Fig. 6 shows the MSE performance
of the equalized signal versus the SNR of the channel. We can see by
comparing Figs. 2 and 6 that when SNR is 14 dB, the RNN-based equal-
izer outperforms the static feedforward network by 48.9 and 51.8 dB
for Channels I and II, respectively.

VI. CONCLUSION

Channel equalization in chaos-based communication systems has
been studied in this brief. The main focus is the kind of channel dis-
tortion arising from linear delays as well as nonlinearity. The equalizer
essentially consists of a modified RNN which incorporates a specific
learning algorithm. It has been found that the proposed equalizer can
effectively “undo” the channel effects, permitting the chaotic signal to
be reconstructed at the receiver.
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