
http://journals.cambridge.org Downloaded: 04 Oct 2013 IP address: 158.132.161.103

Revelation of a functional dependence of the sum of two
uniaxial strengths/hardness on elastic work/total work
of indentation

Dejun Ma
Department of Mechanical Engineering, The Academy of Armored Forces Engineering,
Beijing 100072, People’s Republic of China

Taihua Zhang
State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100080, People’s Republic of China

Chung Wo Onga)

Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China

(Received 3 August 2005; accepted 19 December 2005)

Dimensional and finite element analyses were used to analyze the relationship between
the mechanical properties and instrumented indentation response of materials. Results
revealed the existence of a functional dependence of (engineering yield strength �E,y +
engineering tensile strength �E,b)/Oliver & Pharr hardness on the ratio of reversible
elastic work to total work obtained from an indentation test. The relationship links up
the Oliver & Pharr hardness with the material strengths, although the Oliver & Pharr
hardness may deviate from the true hardness when sinking in or piling up occurs. The
functional relationship can further be used to estimate the sum �E,y + �E,b according to
the data of an instrumented indentation test. The �E,y + �E,b value better reflects the
strength of a material compared to the hardness value alone. The method was shown to
be effective when applied to aluminum alloys. The relationship can further be used to
estimate the fatigue limits, which are usually obtained from macroscopic fatigue tests
in different modes.

I. INTRODUCTION

There has been a long-lasting attempt to correlate the
results obtained from indentation test with the fundamen-
tal mechanical properties of a material. More than 50
years ago, Tabor1 first reported that the hardness H of
some metals obtained from indentation tests by using a
conical indenter was ∼3 times a “representative yield
stress (Yo),” where Yo was the true yield stress at a 0.08
true yield strain. This finding linked up the hardness with
the standard material properties obtained from a uniaxial
tensile/compressive test. Along with the development of
depth-sensing indentation technique in the past decades,
Tabor’s conjecture was reexamined over a larger variety
of materials. Cheng and Cheng2 further introduced di-
mensional and finite element analyses (FEA) for conical
indentation, and pointed out that when the ratio of yield

strength to Young’s modulus increased from 0.0002 to
0.1, the ratio H/Yo would drop from about 2.8 to 1.7. Dao
et al. also reported a similar trend,3 leading to the con-
clusion that there was no simple proportional relationship
between hardness and yield stress.

Another line of thought is to correlate the whole set of
load–displacement data, rather than hardness value
alone, with a group of fundamental material elasto-
plastic properties, such as Young’s modulus E, yield
strength, Poisson’s ratio �, and stain-hardening exponent
n.3–5 However, Cheng and Cheng,6 Capehard and
Cheng,7 and Tho et al.8 pointed out that uniquely deter-
mining a set of the material parameters from a single set
of load–displacement curves was unlikely. Therefore,
more recently, a new approach has been developed: using
two conical indenters of different half included angles to
produce independent load–displacement curves for de-
riving material properties like yield stress and hardening
coefficient etc.9–12 In fact, more work is still required to
examine the effectiveness and possible error of the
method.
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In this paper, we report the results of a different ap-
proach. The method involves the symbols as shown in
Fig. 1(a), where �T and �T are the true stress and strain,
�E and �E the engineering stress and strain, and �T,y, �T,y,
�E,y, and �E,y the corresponding values at the yield point.
The true stress and strain at the maximum engineering
stress �E,b (tensile strength) are �T,b and �T,b. Based on
dimensional and finite element analyses, the proposed
method leads to the establishment of a functional
dependence of (�E,y + �E,b)/Oliver & Pharr hardness on
the reversible elastic work/total work ratio deduced from
a set of load–unload curves. The method involves only
the use of one conical indenter. The relationship links up
the Oliver & Pharr hardness with the material strengths.
It is also useful in estimating the sum �E,y + �E,b, where
�E,y and �E,b are usually obtained from a standard uni-
axial tensile test. This method is shown to be effective in
estimating �E,y + �E,b of aluminum alloys according to
the published experimental results. The possibility of us-
ing the relationship in estimating the fatigue limits of
materials is also proposed and discussed.

II. FUNCTIONAL DEPENDENCE OF �E,Y

AND �E,B ON FUNDAMENTAL
MATERIAL PARAMETERS

A. Functional dependence of �E,y on
fundamental material parameters

The uniaxial true stress–strain behavior of a solid to be
analyzed is assumed to have a line with a slope of E in
the elastic region, plus a curve obeying Hollomon’s
power law of hardening in the plastic region [Fig. 1(a)].
The function form is

�T = �E �T, �T � �T,y

�T,y��T��T,y�n, �T � �T,y
, (1)

where �T,y � �T,y/E. In Appendix A, it is found that �E,y

can be expressed as a function of the fundamental ma-
terial properties �T,y (or �T,y), E and �.

�E,y = �T,y�exp�2��T,y� = �T,y�exp�2��T,y�E� . (2)

B. Functional dependence of �E,b on
fundamental material properties

We derive the functional dependence of �E,b on the
fundamental material properties of the indented material
for two cases. Case 1 is for the condition of �T,b � �T,y.
Figure 1(b) provides a primary sketch for this case. When
the engineering stress is increased to �E,y, the specimen
reaches the yield point. For further increase in engineer-
ing strain, the corresponding engineering stress decreases
subsequently. This means that the engineering yield
stress �E,y is the maximum in the engineering stress-
strain curve, and hence is equal to �E,b, i.e., �E,b�
�E,y � �T,y /exp(2��T,y).

Case 2 is for the condition of �T,b > �T,y as shown in
Fig. 1(a). Appendix B shows that the true strain �T,b at
maximum engineering stress �E,b is

�T,b = n�1 + �1 − 2�� �T,y
1−n �T,b

n � . (3)

Conceptually, �T,b can be regarded as a function of n, �,
and �T,y, because when these three parameters are
known, �T,b can normally be deduced by using Newton’s
method. Appendix B also shows that:

�E,b = �T,b�exp��T,b + �2� − 1� �T,y
1−n �T,b

n �

= �T,y��T,b��T,y�n�exp��T,b + �2� − 1� �T,y
1−n �T,b

n � ,
(4)

where �T,b � �T,y (�T,b / �T,y)n is applied. Summarizing
the results of the two cases:

FIG. 1. Schematic diagrams showing the true and engineering stress–strain curves and the stress and strain quantities related to the study for the
cases of (a) �T,b > �T,y and (b) �T,b � �T,y.
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�E,b =

�
�E,y = �T,y�exp�2��T,y� , �T,b � �T,y

�T,y��T,b��T,y�n

exp��T,b + �2� − 1� �T,y
1−n �T,b

n �
, �T,b � �T,y

,

(5)

indicating that in any case �E,b is a function of funda-
mental material properties �T,y (or �T,y), E, �, and n.

Combining Eqs. (2) and (5), one obtains an important
corollary that the sum �E,y + �E,b is a function of the
fundamental material properties. This conclusion can be
expressed with an implicit relationship like

�E,y + �E,b = f��T,y, E, �, n� , (6)

or alternatively

�T,y = g���E,y + �E,b�, E, �, n� . (7)

III. DIMENSIONAL AND FINITE ELEMENT
ANALYSES OF HYPOTHETICAL
INDENTATION TESTS

We use the Oliver & Pharr hardness in this study,
which is defined as11–13:

H = Pm�A�hcm� , (8)

where hcm and A(hcm) are the maximum contact depth
and the related projected contact area measured at the
peak load Pm. hcm is defined according to the formula

hcm = hm − 0.75Pm�Su , (9)

where hm and Su are the maximum displacement and
unloading slope at Pm. The indenter is considered to be
an elastic body. The contact interface between the in-
denter and the indented material is assumed to be fric-
tionless. H is regarded to be the indentation response, and
is a function of the elasto-plastic properties E, �, �T,y,
and n of the indented material; the elastic properties Ei

and �i of the indenter; and the maximum indentation
depth hm. It can be expressed in an implicit form of

H = FH�E, �, �T,y, n, Ei, �i, hm� . (10)

By substituting Eq. (7) into Eq. (10), H can be expressed
as

H = FH�E, �, g ���E,y + �E,b�, E, �, n�, n, Ei, �i, hm�

= �H�E, �, ��E,y + �E,b�, n, Ei, �i, hm� . (11)

Furthermore, according to Dao et al.’s analysis on sharp
indentation,3 the function can be simplified by introduc-
ing a reduced Young’s modulus Er � 1/[(1 − �2)/E +
(1 − vi

2)/Ei], which combines the overall elasticity effects

of the indenter and the indented material. Then, Eq. (11)
becomes

H = �H���E,y + �E,b�, n, Er, hm� . (12)

By applying the � theorem of dimensional analysis,
Eq. (12) can be transformed into the following dimen-
sionless formula

H�Er = 	H���E,y + �E,b��Er, n� . (13)

Similar analysis can be conducted for the ratio of revers-
ible elastic work to total work We/W. Analogous to Eq.
(10), let us write We/W � FW (E, �, �T,y, n, Ei, �i, hm),
where We and W are the areas under the unloading and
loading curves respectively. An expression analogous to
Eq. (13) is obtained, namely:

We�W = 	W���E,y + �E,b��Er, n� , (14)

or

��E,y + �E,b��Er = 	S�We�W, n� . (15)

Substituting Eq. (15) into Eq. (13) to eliminate �E,y +
�E,b, we obtain

H�Er = 	H�	S�We�W, n�, n� = 	HS�We�W, n� .
(16)

Further dividing Eq. (15) by Eq. (16), we obtain

��E,y + �E,b��H = 	S�We�W, n��	HS�We�W, n�

= 	SHW�We�W, n� . (17)

In this study, we applied FEA to simulate the indentation
tests to establish the explicit form of Eq. (17) for prac-
tical use. The commercial finite element code
ABAQUS14 was used for the computation processes be-
cause of its excellent capability for handling problems of
strong nonlinearity and large displacement. The analysis
was performed in the framework of continuum. The in-
denter was assumed to be a cone with a half-included
angle of 70.3° and thus was geometrically equivalent to
an ideal Berkovich indenter. The indented material was
assumed to be isotropic and rate-independent. It obeyed
the Von Mises yield criterion and pure isotropic harden-
ing rule. The details of meshing are described else-
where.16,17 Four-node axisymmetric element type was
used, with a size small enough to give more than
30 nodes around the point of contact. A sensitivity study
was performed by reducing the element size by half.
Results showed that the calculated peak load was not
changed by more than 0.6%, confirming that the selected
mesh size was fine enough for modeling the hypothetical
conical indentation made on a semi-infinite solid.

Considering that (�E,y + �E,b)/H and We/W in Eq. (17)
are independent on Er and hm, we may keep Er and hm

unchanged by assigning fixed values to all the elastic
properties (E, �, Ei, �i) and the maximum indentation
depth hm. In fact, the indenter is assumed to be rigid, so
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that Ei and �i can be removed for further simplicity. E, �,
and hm were fixed at 70 GPa, 0.3, and 1 
m respectively,
and hence Er was calculated to be E /(1− �2) � 70 GPa/
(1 − 0.32) � 76.923 GPa. Fifty-six combinations of �T,y

and n were selected, with their values in the ranges of
0.035–17.5 GPa and 0–0.45 respectively. For each com-
bination, the corresponding value of �E,y + �E,b was
calculated from Eqs. (2) and (5) as shown in Table I.
FEA was applied to simulate an indentation to produce
the load-unload curves, from which the value of We/W
was calculated, and the value of H was derived with the
use of Eqs. (8) and (9). Finally, the value of (�E,y +
�E,b)/H is determined and plotted against We/W in Fig. 2
with n as a parameter. More interpolated data were pro-
duced based on the matrix as shown in Table I, with the
locations selected at 1/3 and 2/3 between every two ad-
jacent n values and every two adjacent �T,y values. This
created 344 more combinations. Starting from a certain n
(i.e., one of 0, 0.15, 0.3 and 0.45), the interpolated vales
of (�E,y + �E,b)/H and We/W were obtained from the FEA
results evaluated at four adjacent �T,y values as listed in
Table I, with the use of a third-order polynomial. Then,
for a certain �T,y, more interpolated values of (�E,y +
�E,b)/H and We/W were derived from the FEA results
evaluated at n � 0, 0.15, 0.3 and 0.45, with the use of a
third-order polynomial. All the FEA data and interpo-
lated data are plotted in Fig. 2. It is found that (�E,y +
�E,b)/H and We/W are correlated with a functional rela-
tionship, which is almost irrespective of the variation of
n in a broad range. Hence, the value of (�E,y + �E,b)/H
and We/W can be uniquely determined by the ratio of
We/W.

In our previous work,15 it was demonstrated that for
We/W < 0.25, the Oliver & Pharr hardness may be very
different from the real hardness (≡ indentation load/real
projected contact area). In addition, the relationships

established to correlate a true hardness with a represen-
tative yield are not applicable to the Oliver & Pharr hard-
ness. Therefore, one needs to ask what the real meaning
of the Oliver & Pharr hardness is, and how it is related to
some fundamental properties like the intrinsic strengths
of a material. The discovery of the above relationship
gives possible answers by correlating the Oliver & Pharr
hardness with the sum of two characteristic strengths of
a material.

Figure 2 also shows the best fit to the data points
produced with a polynomial of

��E,y + �E,b��H = f�We�W� = a0 + �
i=1

6

ai�We�W�i ,

(18)

where a0 = 0.40096, a1 = 1.67585, a2 = −5.64402, a3 =
11.51201, a4 = −0.15716, a5 = −21.09499, and a6 =
15.64194. Equation (18) can also be rewritten in the
form of:

�E,y + �E,b = H� f�We�W�� = H�a0 + �
i=1

6

ai�We�W�i� .

(19)

It is noted that H in Eqs. (18) and (19) is not necessarily
equal to the true hardness. For example, in the present
study, we use Oliver & Pharr’s definition, but it does not
always give the true hardness, since piling up or sinking
in could occur to make the value of hcm deduced from
Eq. (9) different from the true contact depth. The setting
of the value of � induces further uncertainty, e.g., for a
conical indenter Oliver and Pharr use � � 0.75, but

TABLE I. Values of �T,y n, and (�E,y + �E,b) used in numerical
analysis (stresses in GPa).

�T,y

�E,y + �E,b

n � 0 n � 0.15 n � 0.3 n � 0.45

0.035 0.070 0.106 0.212 0.514
0.140 0.280 0.371 0.608 1.171
0.350 0.698 0.852 1.241 2.066
0.700 1.392 1.606 2.151 3.227
1.400 2.767 3.031 3.763 5.128
2.100 4.125 4.399 5.242 6.781
2.800 5.467 5.730 6.644 8.301
3.500 6.793 7.034 7.990 9.731
4.550 8.752 8.949 9.935 11.756
5.600 10.675 10.824 11.808 13.675
7.000 13.185 13.274 14.218 16.107

10.500 19.193 19.195 19.916 21.734
14.000 24.834 24.834 25.253 26.889
17.500 30.125 30.125 30.306 31.687

FIG. 2. Numerical values of (�E,y + �E,b)/H � 	SHW(We/W, n)
against We /W for different values of n and the best fit to the data points
expressed by Eq. (18).
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Sneddon uses � � 0.72. In fact, the meaning of Eq. (18)
or Eq. (19) is to provide a relationship between the sum
of the strengths �E,y + �E,b and Oliver & Pharr’s hard-
ness through proper selection of the coefficients ao to a6,
such that the value of �E,y + �E,b can be deduced from
the measured H value. It is further assumed that the in-
dentation is deep enough such that the indenter is con-
sidered to possess the ideal Berkovich geometry with a
projected area of A(hcm) � 24.5 hcm

2. This is true in the
present study since the experimental data are selected
from indentation tests with maximum displacement hm >
8 
m, which normally exceeds the bluntness of an in-
denter tip.

Denoting (�E,y + �E,b)e as the result calculated from
Eqs. (2) and (5) based on the model of the material prop-
erties, and (�E,y + �E,b)f as the result obtained from
Eq. (19) based on the finite element simulations, the ratio
(�E,y + �E,b)f /(�E,y + �E,b)e would reflect the consistency
between the two values. Referring to Eqs. (17) and (19),
(�E,y + �E,b)f/(�E,y + �E,b)e would depend on We/W and
n, namely, in implicit form:

��E,y + �E,b�f���E,y + �E,b�e =

�H�f�We�W�����H 	SHW�We�W, n�� = 	fe�We�W, n� .
(20)

The numerical results of 	fe(We/W, n) are calculated and
plotted in Fig. 3. A result of 1 refers to a perfect match,
while most data points lie within a narrow band of ±14%.

IV. EXPERIMENTAL EVALUATION OF
THE THEORY

We referred to some published data of stress–strain
tests and indentation tests for two aluminum alloys 6061-
T6511 and 7075-T6513 to examine the effectiveness of
the theory. The parameters extracted from the stress–
strain curves of uniaxial tests, and the sum of two
strengths (�E,y + �E,b)t obtained from uniaxial test with
the use of Eqs. (2) and (5) are listed in Table II.

On the other hand, the results of the indentation tests
are summarized in Table III. hm is evaluated from the
equation hm � (Pm/C)1/2, with C being the loading cur-
vature. The hardness H is calculated from Eqs. (8) and
(9). The sum of the two characteristic strengths is esti-
mated from Eq. (19) and is denoted as (�E,y + �E,b)i with
the subscript i referring to a quantity deduced from an
indentation test. The last column of Table III shows the
relative error Re � [(�E,y + �E,b)i − (�E,y + �E,b)t]/
(�E,y + �E,b)i. It is found that the values of Re are located
within a reasonably narrow range, supporting the effec-
tiveness of the theory. Nevertheless, more experimental
work should be done in the next stage to investigate a
broader class of materials for further confirmation of the
universal effectiveness of the method.

V. APPLICATIONS OF THE FUNCTIONAL
DEPENDENCE OF (�E,y + �E,b) /H ON We/W

In this section, we propose two possible applications
based on the functional dependence of (�E,y + �E,b)/H on
We/W.

First, the relationship can be used to deduce the sum
�E,y + �E,b of a material from H and We/W measured in
an indentation test. This quantity reflects the fundamental
property of a material since it is composed of two char-
acteristic material strengths. However, in general, it does
not vary coherently with hardness, although the latter is
widely referred to as a material performance indicator in
practice. This remark is clearly illustrated through Fig. 4,
which shows how the ratio [(�E,y + �E,b)1/(�E,y + �E,b)2]/
[H1/H2] varies with (We/W)1 and (We/W)2, with the sub-
scripts “1” and “2” referring to the quantities of two
materials respectively. According to Eq. (18), the ratio
[(�E,y + �E,b)1/(�E,y + �E,b)2]/[H1/H2] can be expressed
as f [(We/W)1]/f [(We/W)2], i.e., a function of (We/W)1 and

FIG. 3. Numerical values of (�E,y + �E,b)f /(�E,y + �E,b)e � 	fe(We /
W, n) against We /W for different values of n.

TABLE II. Experimental results of uniaxial tests for two
aluminum alloys.

Material E (GPa) � �T,y(MPa) n
(�E,y + �E,b)t

(MPa)

Al 6061 − T6511 66.8 0.33 284 0.08 615.4
Al 7075 − T651 70.1 0.33 500 0.122 1125.6
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(We/W)2. It is found that [(�E,y + �E,b)1/(�E,y + �E,b)2]/
[H1/H2] could deviate significantly from 1. As a numeri-
cal example, when (We/W)1 � 0.6 and (We/W)2 � 0.05,
the values of f[(We/W)1] and f[(We/W)2] are 0.93 and
0.47, respectively. This gives a ratio of [(�E,y + �E,b)1/
(�E,y + �E,b)2]/[H1/H2] � 1.97, which is much greater
than 1. This verifies that comparison of hardnesses of
two materials alone is not sufficient to reflect the differ-
ence between their strengths.

Second, the �E,y + �E,b value deduced from the
method can further be used to estimate the fatigue limits
of some structure steels. At present, there are many em-
pirical relationships established for correlating the

fatigue limits with �E,b, but obviously the fatigue behav-
ior should also be related to the yield stress �E,y.18 A
more reasonable approach is to link up the fatigue limits
with some quantity containing both of them. According
to Ref. 19, the fatigue limits measured with symmetric
cycling stress in tensile-compressive mode, rotating-
bending mode, and shearing stress mode are estimated
to be

�−1l = 0.23 ��E,y + �E,b� , (21)

�−1 = 0.27 ��E,y + �E,b� , (22)

�−1 = 0.55 �−1 = 0.1485 ��E,y + �E,b� . (23)

The corresponding quantities measured with pulsating
cycling stress in the three modes are

�ol = 1.42�−1l = 0.3266 ��E,y + �E,b� , (24)

�o = 1.33�−1 = 0.3591 ��E,y + �E,b� , (25)

�o = 1.50�−1 = 0.22275 ��E,y + �E,b� . (26)

Some experimental results cited from Ref. 20 for middle
or low strength steels are shown in Table IV to show the
effectiveness of Eqs. (21)–(26). In Table IV, (�−1l)exp,
(�−1)exp, (�−1)exp, (�0l)exp, (�0)exp, and (�0)exp denote the
experimental data; �−1l, �−1, �−1, �0l, �0, and �0 denote
the estimated fatigue limits deduced from the respective
Eqs. (21)–(26); and “%err” represents the relative errors
of the estimated fatigue limit. For the purpose of evalu-
ating the fatigue limits of materials, it is conceivable that
Eqs. (21)–(26) can give reasonably good estimates. Be-
cause our present method provides an effective means to
estimate the sum �E,y + �E,b, it would also be useful for
estimating the fatigue limits for the cases when facilities
for standard fatigue tests are not conveniently available.
At last, we need to point out that the empirical Eqs.
(21)–(26) are suggested for middle or low strength steels

TABLE III. Experimental data of indentation tests for two aluminum alloys with a fixed Pm � 3N.

Material C (GPa) hm (
m) Su (N/mm) H (GPa) We/W f(We/W) (�E,y + �E,b)i (MPa) Re (%)

Al 6061 − T6511
Test 1 27.4 10.46 4768 1.226 0.098 0.5216 639.8 3.8
Test 2 28.2 10.31 4800 1.263 0.095 0.5189 655.5 6.1
Test 3 27.2 10.50 4794 1.217 0.096 0.5198 632.4 2.7
Test 4 27.3 10.48 4671 1.224 0.111 0.5328 652.3 5.7
Test 5 27.0 10.54 4762 1.208 0.111 0.5328 643.6 4.4
Test 6 27.6 10.43 4491 1.243 0.109 0.5312 660.3 6.8

Al 7075 − T651
Test 1 42.0 8.45 3665 1.993 0.167 0.5745 1145.2 1.7
Test 2 40.9 8.56 3658 1.938 0.162 0.5711 1106.6 −1.7
Test 3 42.3 8.42 3654 2.010 0.168 0.5752 1156.0 2.6
Test 4 43.1 8.34 3744 2.043 0.164 0.5725 1169.5 3.8
Test 5 43.5 8.30 3789 2.060 0.161 0.5704 1174.7 4.2
Test 6 44.6 8.20 3706 2.123 0.169 0.5759 1222.6 7.9

FIG. 4. Plot of the ratio [(�E,y + �E,b)1/(�E,y + �E,b)2]/[H1/H2] as a
function of (We/W)1 and (We/W)2, with the subscript “1” and “2”
referring to the quantities of two materials.

D. Ma et al.: Functional dependence of the sum of two uniaxial strengths/hardness on elastic work/total work of indentation

J. Mater. Res., Vol. 21, No. 4, Apr 2006900

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 04 Oct 2013 IP address: 158.132.161.103

only. If it is applied to high strength steels, the fatigue
limits may be overestimated.

VI. CONCLUSIONS

In this study, the existence of a functional dependence
of (�E,y + �E,b)/indentation hardness on reversible elastic

work to total work ratio was established by using dimen-
sional and finite element analyses. The published experi-
mental data of uniaxial tests and indentation tests made
on aluminum alloys 6061-T6511 and 7075-T651 support
the effectiveness of the theory. The establishment of
the relationship gives a physical explanation to the Oliver
& Pharr hardness, which may be very different

TABLE IV. Experimental and evaluated fatigue limits for some steels (unit in MPa, stress cycling number N � 107).

Type of steel �E,y �E,b (�−1I)exp �−1I %err �−1I (�−1)exp �−1 %err �−1 (�−1)exp

Carbon steel
St. 34 220 340 120 129 6.8 160 151 −5.8 90
St. 38 240 380 130 143 8.8 180 167 −7.5 100
St. 42 260 420 140 156 10.5 200 184 −8.9 120
St. 50 300 500 180 184 2.2 240 216 −11.1 140
St. 52-3 360 520 200 202 1.2 280 238 −17.8 160
St. 60 340 600 200 216 7.5 280 254 −10.3 160
St. 70 370 700 230 246 6.5 320 289 −10.8 190

Heat-treated steel
C 25 310 500 210 186 −12.7 260 219 −18.9 150
C 35 370 600 230 223 −3.1 290 262 −10.7 170
C 45 400 650 250 242 −3.5 320 284 −12.9 180
C 60 490 750 290 285 −1.7 360 335 −7.5 210
40Mn4 550 800 310 311 0.2 390 365 −7.0 230
37MnSi5 650 900 350 357 1.8 440 419 −5.1 260
42MnV7 800 1000 380 414 8.2 480 486 1.2 290
40Cr4 650 900 360 357 −1.0 440 419 −5.1 260
50CrV4 900 1100 400 460 13.0 510 540 5.6 310
25CrMo4 550 800 310 311 0.2 380 365 −4.3 210
34CrMo4 650 900 360 357 −1.0 440 419 −5.1 250
42CrMo4 800 1000 380 414 8.2 480 486 1.2 290
50CrMo4 900 1100 430 460 6.5 510 540 5.6 310
30CrMoV9 1050 1250 450 529 14.9 560 621 9.8 340
36CrNiMo4 800 1000 390 414 5.8 480 486 1.2 280

Type of steel �−1 %err �−1 (�0I)exp �0I %err �0I (�0)exp �0 %err �0 (�0)exp �0 %err �0

Carbon steel
St. 34 83 −8.2 190 183 −3.9 240 201 −19.3 130 125 −4.2
St. 38 92 −8.6 210 202 −3.7 260 223 −16.8 150 138 −8.6
St. 42 101 −18.8 240 222 −8.1 300 244 −22.9 160 151 −5.6
ST. 50 119 −17.8 300 261 −14.8 370 287 −28.8 190 178 −6.6
St. 52-3 131 −22.4 330 287 −14.8 410 316 −29.7 220 196 −12.2
St. 60 140 −14.6 340 307 −10.7 430 338 −27.4 220 209 −5.1
St. 70 159 −19.6 370 349 −5.9 490 384 −27.5 260 238 −9.1

Heat-treated steel
C 25 120 −24.7 310 265 −17.2 390 291 −34.1 200 180 −10.8
C 35 144 −18.0 370 317 −16.8 440 348 −26.3 250 216 −15.7
C 45 156 −15.4 400 343 −16.6 490 377 −30.0 270 234 −15.4
C 60 184 −14.0 480 405 −18.5 550 445 −23.5 310 276 −12.2
40Mn4 200 −14.7 510 441 −15.7 590 485 −21.7 280 301 6.9
37MnSi5 230 −13.0 580 506 −14.6 680 557 −22.2 410 345 −18.8
42MnV7 267 −8.5 640 588 −8.9 740 646 −14.5 460 401 −14.7
40Cr4 230 −13.0 600 506 −18.5 670 557 −20.4 400 345 −15.9
50CrV4 297 −4.4 680 653 −4.1 800 718 −11.4 480 446 −7.7
25CrMo4 200 −4.8 520 441 −17.9 590 485 −21.7 270 301 10.2
34CrMo4 230 −8.6 590 506 −16.5 680 557 −22.2 390 345 −13.0
42CrMo4 267 −8.5 640 588 −8.9 740 646 −14.5 450 401 −12.2
50CrMo4 297 −4.4 720 653 −10.2 790 718 −10.0 480 446 −7.7
30CrMoV9 342 0.5 760 751 −1.2 880 826 −6.5 480 512 6.3
36CrNiMo4 267 −4.8 650 588 −10.6 730 646 −12.9 450 401 −12.2
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from the real hardness in some situations. One important
application of the functional relationship is for the deter-
mination the sum of the yield strength and tensile
strength based on the results of an indentation test. The
sum of the two strengths obtained was considered to be
more suitable for reflecting the strength level of different
materials since it is considered to be more physically
meaningful than the indentation hardness. Another im-
portant application of the functional relationship is to
estimate the fatigue limits of some structural steel by
using the data of indentation test.
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APPENDIX A: FUNCTIONAL DEPENDENCE OF
�E,y ON FUNDAMENTAL MATERIAL PROPERTIES

In a tensile test, when the load is increased from zero
to a certain value, the transverse cross-sectional radius
and area vary from the unstressed values ro and Ao � r2

o

to the instantaneous values r and A � r2. At this mo-
ment, the engineering stress is

�E = F�Ao = �F�A��A�Ao� = �T�A�Ao� = �T�r�ro�2 .
(A1)

The r/ro is achieved from the definition of true radial
strain

�T,r = �
ro

r

dr�r = ln�r�ro� ,

which is also equal to −� �T in the elastic regime, such
that

r�ro = exp�−� �T� and , (A2)

A�Ao = �r�ro�2 = exp�−2��T� . (A3)

Substituting Eq. (A3) into Eq. (A1), one obtains:

�E = �T�exp�2��T� , (A4)

and �E,y = �T,y�exp�2��T,y� = �T,y�exp�2��T,y�E� .
(A5)

The latter is Eq. (2) in the text.

APPENDIX B: FUNCTIONAL DEPENDENCE OF
�T,b AND �E,b ON FUNDAMENTAL MATERIAL
PROPERTIES

For an uniaxial stress-strain relation, the true strain �T

in the plastic regime should consist of two parts, i.e.
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elastic strain �T
e � �T/E and plastic strain �T

p � �T −
�T

e � �T − �T/E. According to the theory of elasticity, the
radial strain associated with the former is �e

T,r � −��T/E.
From the constant-volume condition for plastic deforma-
tion, the radial strain associated with the plastic strain �T

p

is �p
T,r � −0.5�T

p � −0.5(�T−�T/E). Summarizing these
results, the overall true radial strain �T,r is expressed as:

�T,r = �T,r
e + �T,r

p

= −���T�E + 0.5��T − �T�E��

= −�0.5 �T + �� − 0.5��T�E� . (A6)

After replacing �T with �T,y(�T/�T,y)n, Eq. (A6) becomes:

�T,r = −�0.5 �T + �� − 0.5� �T,y
1−n �T

n� . (A7)

When the engineering stress reaches the maximum value,
the increase in load for further elongating the specimen is
compensated with the reduction in cross-sectional area,
namely:

dF = d��TA� = �T dA + A d�T = 0 , (A8)
−dA�A = d�T��T . (A9)

The two sides of Eq. (A9) are −dA/A � −2dr/r � −2
d�T,r and d�T/�T � d[�T,y(�T/�T,y)n]/[�T,y (�T/�T,y)n] �
n d�T/�T, respectively, so that:

−2 d�T,r = n d�T��T . (A10)

By substituting Eq. (A7) into Eq. (A10), at �T � �T,b,
Eq. (A10) is transformed to become Eq. (3):

�T,b = n�1 + �1 − 2�� �T,y
1−n �T,b

1−n� . (A11)

From Eq. (A7), when �T,b > �T,y, the radial strain �T,r and
engineering stress �E,b at �T � �T,b can be determined as:

�T,r |�T=�T,b
= −�0.5 �T + �� − 0.5��T,y

1−n�T
n� |�T=�T,b

= −�0.5 �T,b + �� − 0.5��T,y
1−n�T,b

n � ,
(A12)

and �E,b =
F |�T=�T,b

Ao
=

F |�T=�T,b

A|�T=�T,b

A|�T=�T,b

Ao

= �T|�T=�T,b � r

ro
�2

|��=�T,b

= �T,b exp�2�T,r|�T=�T,b
�

=
�T,y��T,b��T,y�n

exp��T,b + �2� − 1� �T,y
1−n �T,b

n �
. (A13)

This is Eq. (4) in the text.
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