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Hopf Bifurcation and Chaos in a Free-Running
Current-Controlled C´ uk Switching Regulator
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Abstract—An autonomous free-running Ćuk converter is
studied in this paper. Analysis of the describing nonlinear state
equations shows that the system loses stability via a supercritical
Hopf bifurcation. The boundary of stability is derived and local
trajectories of motion studied. Cycle-by-cycle simulations of the
actual system reveal the typical bifurcation from a stable equi-
librium state to chaos, via limit cycles, and quasi-periodic orbits.
Experimental measurements confirm the bifurcation scenarios.
The occurrence of such kinds of bifurcation in autonomous dc/dc
converters has been rarely known in power electronics.

Index Terms—Bifurcation, chaos, Ćuk converter, dc/dc con-
verter, power electronics.

I. INTRODUCTION

POWER electronics is a field rich in nonlinear dynamics [1],
and engineers who work in this field are frequent “chaos

observers” whether they know it or not. In fact, during the early
development and testing stages of power electronics systems,
a multitude of nonlinear phemenona, such as subharmonics,
quasi-periodicity and chaos, are almost invariably encountered.
Because power electronics engineers are primarily concerned
with only the regular periodic (fixed point) operation, they tend
to avoid any “strange” operation by adjusting components or pa-
rameters that they believe are causing problems to their systems.
Very often such adjustment processes are done in a trial-and-
error manner. However, to achieve more reliable designs, we
need a better understanding of the circuit operation under all
possible practical conditions. Moreover, we may open up new
possibilities in operating power electronics systems if enough
understanding is gained of the many unused operating regimes.

Self-oscillating or free-running current-controlled switching
converters are often used in low-cost switching power supplies,
since they require no external clocks and their constructions are
relatively simple. In contrast to their nonautonomous counter-
parts for which chaos is observed even for the simplest first-
order discontinuous-mode converters [2], [3], free-running con-
verters of order below three cannot exhibit chaos. The essential
feature of an autonomous switching converter is the absence of
any external driving signal, which is mandatory in the nonau-
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tonomous case for periodic switching of the power switch. Until
now, much has been reported on the bifurcation and chaotic be-
havior of nonautonomous switching converters [2]–[8], while
very little work has been performed in identifying bifurcation
and chaos in autonomous switching converters. In this paper we
study the dynamics of the C´ uk converter which is widely used
in power electronics. Being of fourth-order, the C´ uk converter
can operate chaotically in free-running (autonomous) mode. We
will report in this paper the bifurcation behavior of a free-run-
ning current-controlled C´ uk converter. In particular, our study
will cover the following aspects: 1) derivation of describing state
equation; 2) study of stability of the equilibrium state and identi-
fication of Hopf bifurcation based on the describing state equa-
tion; 3) computer simulations of the circuits revealing the bifur-
cation from stable equilibrium state (fixed point), through limit
cycles and quasi-periodic orbits, and eventually to chaos; and 4)
experimental verification of the bifurcation scenario.

II. SYSTEM DESCRIPTION

Specifically, the system under study consists of a C´ uk con-
verter whose operation is based on a free-running hysteretic
current-mode control. In actual implementation the switch is
turned on and off, in a hysteretic fashion, when the sum of the
inductor currents falls below or rises above a certain preset hys-
teretic band [9], [10]. The average value and width of this preset
band are adjusted by a feedback Schmitt trigger circuit. Also,
the output voltage is fed back to set the average value of the
hysteretic band, forcing the control variable to be related by the
following control equation:

(1)

where
and inductor currents;

output voltage;
control function.

For example, a simple proportional control takes the form of

(2)

where is the gain factor. This equation has the following equiv-
alent form, assuming regulated output:

(3)

where and are the control parameters. Fig. 1 shows a sim-
plified schematic of the system.
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Fig. 1. Ćuk converter under hysteretic current-mode control.

A. Derivation of Autonomous State Equations

The system can be represented by the following state-space
equations where when the switch is turned on, and
when the switch is off:

(4)

The state-space averaged model has the same form as above,
with replaced by the duty cyclewhich is the fraction of the
switching period for which the switch is turned on.

Since is related to by a linear algebraic equation,
the system reduces its order by one. Specifically, when (3) is
taken into account, the system can be reduced to the following
third-order system:

(5)

where is the duty cycle. Also, from (3),
. Substitution of the involving derivatives gives

(6)

which must satisfy . Finally, putting (6) into (5) re-
sults in the following state equations that describe the dynamics

of the autonomous system:

(7)

Note that this representation is valid only if . Such
a condition is satisfied when the system is operating in stable
equilibrium state, corresponding to a fixed point in the above
averaged model.

Remarks: It should be noted that averaged models have lim-
ited validity for nonlinear analysis. Specifically, the averaged
model, as derived above, is valid when the system remains in
continuous mode and the switching frequency is relatively high.
Thus, we may use such a model only to study the behavior of
the system up to the point of losing stability. Nonetheless, as we
will see, the averaged model gives useful clues to the way the
system loses stability, although it stops short of predicting the
behavior beyond the bifurcation point.

B. Equilibrium Point Calculation

To find the equilibrium point, we set all the time-derivatives
to zero and solve for , , and . This gives

(8)

Note that the choice of the control parametersand will
set the steady-state output voltage level, provided the system is
stable. The stability of the system is yet to be studied for dif-
ferent sets of parameters. Furthermore, assuming the existence
of a stable steady state, the value of the duty cycle can be found
by putting in (6)

(9)

Also, since , we can write

(10)
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Since and , is not possible. Thus, we
have and the only equilibrium point is given by

(11)

C. Dimensionless Equations

The afore-derived state equations can be put in a dimension-
less form. Define the dimensionless state variables as follows:

(12)

Also define the dimensionless time and parameters as follows:

(13)
Direct substitution of these new dimensionless variables, time,
and parameters in the autonomous equations of (7) yields the
following dimensionless autonomous equations:

(14)

To complete the model, saturation must be included. Now,may
be written as

(15)

The condition for saturation is

(16)

or

(17)

By putting or in (5) and performing dimensionless

substitution, the state equations for saturation are

for (18)

and

for (19)

The equilibrium point can be calculated by putting
in (14) and considering the restricted

sign of . This gives

(20)

where

(21)

III. STABILITY OF EQUILIBRIUM POINT AND

HOPFBIFURCATION

The Jacobian matrix, , for the dimensionless system
evaluated at the equilibrium point is given by

where

(22)

(23)

(24)

From (21), . The Jacobian matrix can
hence be simplified to (25), as shown at the bottom of the page.

(25)
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TABLE I
EIGENVALUES AT � = 0:0136 SHOWING

DEPENDENCE ON�

We shall attempt to study the stability of the equilibrium point
and the trajectory around the equilibrium point by deriving the
eigenvalues of the system at the equilibrium point. The usual
procedure is to solve the following equation for:

(26)

Upon expanding, we get

(27)

Using this equation, the following conditions are easily verified:

(28)

and

(29)

Hence, there exists at least one such that
, i.e., the system has at least one negative real eigen-

value. Also, numerical calculations of eigenvalues for the prac-
tical range of parameters , , and

reveal that the other two eigenvalues are a com-
plex conjugate pair which have either a positive or negative real
part depending upon values of and . In particular the fol-
lowing observations are made.

1) For small values of , the pair of complex eigenvalues
have a negative real part.

2) As increases, the real part of the complex eigenvalues
gets less negative, and at a critical value of, the real
part changes from negative to positive. Table I shows a

Fig. 2. Locus of the complex eigenvalue pair corresponding to Table I.

Fig. 3. Boundary of stability. Area below the curve corresponds to stable
equilibrium points and that above to unstable equilibrium points.

typical scenario of the variation of the eigenvalues. The
locus is plotted in Fig. 2 for ease of reference.

3) The critical value of depends on the values of and
. Fig. 3 shows the boundary curves where the sign of the

real part of the complex eigenvalues changes. On these
curves, the system loses stability via asupercritical Hopf
Bifurcation [11]–[13].

Remarks: To establish a supercritical Hopf bifurcation for-
mally, one needs to show that, for givenand , there exists

for which the following conditions are satisfied by the com-
plex eigenvalue pair [13]:

(30)

(31)

(32)

where is the critical value of at which a supercritical Hopf
bifurcation occurs. Note that the last condition is necessary to
ensure that the complex eigenvalue pair moves from the left side
to the right side of the complex plane (preventing it from “lo-
cusing” along the imaginary axis). In fact, all the above condi-
tions can be numerically established using (27).

IV. L OCAL TRAJECTORIES FROMDESCRIBINGEQUATION

In this section we re-examine the stability in terms of the local
trajectories near the equilibrium point. It should be stressed that
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Fig. 4. Two views of the “stable” local trajectory for� = � = � = 1 (based on averaged model).

Fig. 5. Two views of the “unstable” local trajectory for� = � = 1, � = 4 (based on averaged model).

since the use of an averaged model for predicting nonlinear phe-
nomena will become inadequate when stability is lost, our aim
in this section is to observe, by plotting the local trajectories,
the behavior of the system as it goes from a stable region to an
unstable region. For further investigation beyond the bifurcation
point, we will resort to the exact piecewise switched model, as
will be reported in Section V.

The trajectory of the system near the equilibrium point can be
easily derived from the corresponding eigenvalues and eigen-
vectors. Suppose the eigenvalues and corresponding eigenvec-
tors are

and (33)

The solution in general is given by

(34)

where , , and are determined by initial conditions. The
geometry of the trajectory is best described in terms of the eigen-
line which is parallel , and the eigenplane which is
spanned by and , the intersection of and being the
equilibrium point. Essentially, since the real eigenvalue is neg-
ative, the system moves initially in the direction of going
toward . At the same time it moves in a helical motion con-
verging toward or diverging away from , depending upon the
sign of the real part of the complex eigenvalues. As it lands on

, it keeps spiraling along toward or away from the equilib-
rium point. The following examples illustrate two typical local
trajectories, corresponding to a stable and an unstable equilib-
rium point.

We first examine the stable system with .
The Jacobian matrix evaluated at the equilibrium
point is

(35)

The eigenvalues,, and their corresponding eigenvectors,, are
found as

Using the INSITE program [14], we can view the trajectory
from different perspectives, two of which are shown in Fig. 4.

We next examine the unstable system with and
. As shown in Fig. 3, the system just loses stability. The

Jacobian matrix evaluated at the equilibrium point is

(36)
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Fig. 6. (a) Trajectory spiralling into stable period-1 orbit and (b) stable period-1 orbit enlarged (K = 0:4).

Fig. 7. (a) Trajectory spiralling away from the unstable period-1 orbit and (b) limit cycle (K = 1:5).

The eigenvalues,, and their corresponding eigenvectors,, are
found as

Using the INSITE program [14] again, we can view the local
trajectory from different perspectives, two of which are shown
in Fig. 5.

From the above examples, we clearly observe that the system
loses stability via Hopf bifurcation as a stable spiral develops
into an unstable spiral in the locality of the equilibrium point.
In Section V we re-examine the system using cycle-by-cycle
computer simulations of the actual switching circuit. As we will
see, the system develops into a limit cycle as it loses stability,
and further develops into quasi-periodic and chaotic orbits.

V. COMPUTERSIMULATION STUDY

Since the foregoing analysis is based on a nonlinear state
equation which is derived from an approximate (average) con-
tinuous model, it falls short of predicting the details of the bifur-
cation sequence. Instead of refining the model, we will examine

the system using computer simulation which employs an exact
piecewise-switched model. Essentially the computer simulation
program generates the cycle-by-cycle waveforms of all capac-
itor voltages and inductor currents by toggling between a set of
linear differential equations that describe the constituent linear
circuits for all possible switch states. The program also incorpo-
rates the free-running current-control algorithm for determining
the switch state during simulation.

In our simulation study of the free-running C´ uk converter, we
set the input voltage at 15 V and the values of the components
as follows:

H

Note that since we are simulating the actual circuit, the param-
eters used will be and instead of the dimensionless ones
used for analysis. In particular we will focus on the qualitative
change of dynamics as the parameters are varied, as hinted from
the result of Section III.

To see the trend, it suffices to keepconstant at 0.01 and
vary . A summary of the observed behavior is as follows. A
complete view of the effect of, , and on stability of the
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Fig. 8. (a) quasi-periodic orbit and (b) blow-up of a Poincaré section taken ati = 8:2 (K = 10:5).

Fig. 9. (a) Chaotic orbit and (b) blow-up of a Poincaré section taken ati = 9:5 (K = 13).

fundamental equilibrium state will be provided later in this sec-
tion.

1) When is small, the trajectory spirals into a fixed pe-
riod-1 orbit, corresponding to a fixed point in the aver-
aged system. Fig. 6 shows the simulated trajectory and
the stable period-1 orbit.

2) For a larger , the period-1 orbit becomes unstable, and
the trajectory spirals outward as shown in Fig. 7(a), and
settles into a limit cycle as shown in Fig. 7(b).

3) For yet a larger , a quasi-periodic orbit can be observed,
as shown in Fig. 8(a). A Poincaré section is shown in
Fig. 8(b) which is essentially the points of intersection of
the trajectory and the vertical plane .

4) Finally, chaos occurs when is further increased.
Fig. 9(a) and (b) shows the measured trajectory and a
Poincaré section.

Furthermore, based on a number of simulation runs, we can
obtain the boundary of stability similar to Fig. 3, for different
values of . More precisely, the boundary curves define the

values of parameters for which a trajectory changes its quali-
tative behavior from one that spirals into a fixed period-1 orbit
(i.e., fixed point corresponding to the case of averaged model) to
one that spirals away from it. As shown in Fig. 10, the stability
boundary curves obtained from cycle-by-cycle circuit simula-
tions agree with those of Fig. 3 obtained from the averaged
model.

VI. EXPERIMENTAL VERIFICATION

We have constructed an experimental circuit for verifying the
transition from stable equilibrium states (fixed points), through
limit cycles and quasi-periodic orbits, to chaotic attractors. The
circuit is shown in Fig. 11(a).

The variation of and is made by adjusting and in
the circuit. To maintain conciseness in this paper, we exemplify
in Fig. 12(a)–(d), the qualitative change of the behavior of the
system as is increased. Specifically, the system goes from
stable operation to chaotic operation, via limit cycles and quasi-
periodic orbits.
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Fig. 10. Boundary of stability from cycle-by-cycle simulation. Area below the
curve corresponds to stable fundamental operation and that above to operations
other than stable fundamental operation. These curves agree with Fig. 3.

Fig. 11. (a) Experimental free-running C´ uk converter circuit and (b) circuit for
highlighting Poincaré section. Thex-input of CRO is taken from voltage across
the0:1 
 that senses the input inductor current using a differential probe. The
y-input of the CRO is taken from output voltage at terminalY .

Fig. 12. Phase portraits from autonomous C´ uk converter showing (a) stable
period-1 orbit (equilibrium state), (b) limit cycle, (c) quasi-periodic orbit, and
(d) chaotic orbit. Poincaré section highlighted in (b)–(d). (Horizontal scale: 0.5
V/div, vertical scale: 0.2 V/div.)

In showing the quasi-periodic orbit and chaotic orbit, we
highlight a Poincaré section on the CRO by using a simple
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circuit that compares the value of the-input with a preset
value and generates a pulse to the-input of the CRO whenever
the -input is equal to the preset value. This simple compare
circuit is shown in Fig. 11(b). The CRO trace will momentarily
brightens when the CRO’s–input receives a pulse. Thus,
the CRO is able to highlight a Poincaré section on top of the
attractor being displayed.

For the quasi-periodic orbit, we clearly see that the Poincaré
section resembles a closed loop around the rim of the torus,
whereas for the chaotic orbit, the Poincaré section contains some
scattered points.

VII. CONCLUSION

The Ćuk converter studied in this paper is a very popular
design choice for dc/dc converters, but its nonlinear dynamics is
seldom seriously analyzed. Previous (probably the only known)
attempts in studying the nonlinear dynamics of this converter
have focused on fixed-frequency current-mode control [15],
[16] which permits a describing discrete-time iterative map to
be used for analysis. In this paper we extend the study to a
different mode of control which is based on a free-running or
self-oscillating loop.

Due to their simplicity, free-running switching converters are
commonly used in the construction of low-cost power supplies.
For simple free-running buck, boost, and buck-boost types of
converters, only fixed points and limit cycles are possible. How-
ever, for higher-order free-running converters, such as those em-
ploying the Ćuk, SEPIC, and Zeta converters, quasi-periodicity
and chaos are possible. In this paper, we examine in particular
the nonlinear behavior of a free-running C´ uk converter. Analysis
of the describing autonomous equations reveals that the system
loses stability via a Hopf bifurcation. Our study has been car-
ried out in three phases. We first employ an analytical model
to predict possible onsets of Hopf bifurcation by studying the
movement of the complex eigenvalues of system’s Jacobian at
the equilibrium point as some chosen parameters are changed.
In particular, we have observed the way the system loses sta-
bility using the INSITE software, which can be used to generate
trajectories for any given dynamical system. Our second phase
of study has been resorted to computer simulations of the ac-
tual system using an exact piecewise-switched model. The bi-
furcation from a stable equilibrium state, through limit cycles
and quasi-periodic orbits, to chaos has been observed. Finally,
we have confirmed the predicted Hopf bifurcation and the sim-
ulated sequence of changes in qualitative behavior by experi-
mental measurements of the actual circuit.
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