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Abstract

In this study, the frequency domain analysis method is introduced for the
analysis and design of nonlinear vehicle suspension systems. The explicit
relationship between system output spectrum and model parameters is
derived. By using optimization method, the optimal stiffness and damping of
the nonlinear vehicle suspension system can therefore be achieved.
Comparison studies indicate that the nonlinear vehicle suspension systems
demonstrate obviously advantageous dynamics performance than the
corresponding linear counterparts over all frequency bands. The optimal
damping characteristic is not only a velocity-dependent function but also
dependent on displacement.
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1. Introduction

In vehicle suspension systems, an important characteristic of any spring is the
fact that it can store energy. However, most springs, such as leaf spring, coil spring
and rubber spring, cannot release energy in a desired way and thus wouldn’t make sure
the life of springs [1]. Therefore, damper is introduced in the suspension system. It can
damp out the vertical motion and increase the spring’s life. For most vehicle
suspension dynamics analysis and calculations, the determination of damping
coefficient is based on the assumption that the damping force is proportional to the
damper piston velocity [1-2]. However, for some real vehicle suspension systems, the
damping characteristic often reflects some nonlinear characteristic. For example, the
damping characteristic curve for a suspension damper is a piecewise linear curve in [1].
Therefore, it is necessary to investigate a vehicle suspension system’s nonlinearity.

There are various analysis methods especially for the nonlinear systems, such as
the harmonic balance method and averaging method. In this study, the frequency
domain analysis method based on Volterra series expansion will be introduced [3-9].
This method is to determine the generalized frequency response functions (GFRFs) for
nonlinear system. By using this method, the system output spectrum polynomial can
be derived to analyze the effect of nonlinear parameters on the output spectrum. The
main advantage of this method is that it can explain how the system output frequency
response is affected by the system nonlinear parameters. By using the numerical
determination approach, the system output frequency response can be derived easily.
This new method makes the nonlinear system analysis much more straightforward.

In this study, the key objective is to employ the existing knowledge of the vehicle
suspension system together with nonlinear frequency domain analysis method to
investigate how to suppress the vehicle suspension vibration. The paper will be
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structured as follows. Section 2 will give the system model of present study. In section
3, the frequency domain analysis method will be introduced for the determination of
the system output spectrum and in section 4, the nonlinear optimal value will be
obtained and some comparisons and discussions will be present in this part. Section 5
will give the conclusions.

2. System model

In the present study, the quarter-car (one degree of freedom) model was used to
analyze vehicle suspension systems as shown in Fig. 1. In this figure, m represents the
about quarter mass of the vehicle body. The vertical displacement of sprung mass is
x; and the base excitation displacement is x; . The system has two nonlinear
components, which are the nonlinear spring and nonlinear damper. The nonlinear
spring force can be described as F,, = kx + c4x3and the nonlinear damping force can
be written as F, = cx + ¢, % + ¢,%%x + c3xx2.In this study, k is the stiffness, c is the
damping, ¢, ¢, ¢34 are the nonlinear coefficients and x is the relative displacement
between sprung mass and the base excitation which can be defined as

TERTh (1)
Then the governing equation for this suspension system can be written as

mi,+F +F =0 (2)
Substitutex, Fy,, F., Eq. (2) can be written as

mx+ ke + cx + ¢, x° + ¢, x°x + ¢, ix’ + ¢, x’ = -m %, (3

Assuming that the base excitation is considered to be a sinusoidal function which can
be written as

X = Fsin( wt) “4)

Where o is the frequency and Y is the magnitude of the base motion.

Fig. 1 A base excited suspension model
In order to conduct the analysis which is not specific to particular choices of
system initial parameters, such as the sprung mass and the spring stiffness, the non-
dimensional form of the governing equation can be derived as

He)+ o)+ o)+ E(e) + EHef U+ EHA) +&{e) =T 5in€2r) (5)

where,
T =0, = Jk/m Q="
@,
(6)
Y= mswz’z(r).; x(t): X(L],y(f)z kZ(T),
@, Y
CIY2 C:YZ 03Y2 C4Y2

&
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In this study, let the transmit force be the output and it can be written as
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F={0)+8(0)+£3{e) + &30 Ha)+EHeof +6lef )

Therefore, the vehicle suspension system and the system output can be described
as a non-dimensional model as

S leh 3+ (e +6F e &lablef + o ~Fsint)
Fplehe )+ &30 (el ole)£5(eble +2ole) ®

3. Determination of the output spectrum

A brief review about the theory of nonlinear output spectrum is given firstly and
then an efficient numerical approach is discussed for the determination and
optimization of nonlinear output spectrum in terms of system parameters.

3.1 Nonlinear output spectrum: the theory
For nonlinear systems, the output f(t) can be expressed by a Volterra functional
polynomial of the input u(t) [10] as

(=3 f.00) ©)

n=1

where N is the maximum order of the system nonlinearity, and then the nth-order
output of the system is given by

50 = [ e e[ Tut-2)dr, (10)

where h,(7; ...7,) is the real function of 7; ...7, and is defined as the ‘nth-order
kemnel’ or ‘nth-order impulse response’ of the system. Then the system ‘nth-order
transfer function’ (GFRF) can be derived by using the multi-dimensional Fourier
transform of the nth-order impulse response, which can be written as

H, (@, j0,) = [ [ b (57, expl=j(@,7, + -+ ,7,))d, —d,
S (11)

And when the system is subjected to a input such that
K
u(t)=> |4;|cos (0, + £4,) (12)
i=1

According to [4], the system output spectrum can be written as

Fo)=3 L S H, (o, jo, )i, ) A, ) 13

n=l 2 LUR R

where

A(&’A,)=| A, ‘ef“‘li.ysgn(i}] for &, e[tl,-- 'ﬂ—(}

w@)={"| 220 o sl o]

Therefore, the nonlinear system output spectrum can be obtained according to the
above and the detailed steps can be found in [3].

3.2 Numerical determination of characteristic output spectrum function

In this part, a more efficient numerical approach will be introduced, which allows
nonlinear output spectrum to be determined up to any high orders. Then the system
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output spectrum can be written into a more explicit polynomial form as follows [7, 8]

F(jo)=Y CE(H,()e,(jo) (14)
n=l1
where
l L
oy L i, ) Uliond (15)
99,'(_](0) W(Z}r)n_] w”m_[n{::i}w jwn)g (}wa) o-n:

CE(.) is a coefficient extraction operator which has two fundamental operation ‘@’
and‘®’. The detailed definitions were given in [5], and CE(H,(jw)) is the parametric
characteristics of the nth-order GFRF H,,(.), which can be written as

CBH,())=G,, @('Ega:'éi C,,®CBH, . (.))] ea[ %Cp_u ®CHH,_,..(. ))]

(16)
Obviously, Eq. (14) can be written as
F(jo)=yp(jo) (17)
where
y = @CE(H,,(-)),¢(jw) =[¢(jw),¢,(j@), . ¢,(jo)] (18)

Therefore, the OFRF of the system with respect to nonlinear parameters
§1.5283, §4 can be obtained according to Eq. (17)

4. Optimization of nonlinear suspension systems

4.1 Computation of the nonlinear output spectrum

With the nonlinear output spectrum of the vehicle suspension system derived
above, parameter optimization can then be conducted to find the optimal nonlinear
parameters &;,&, £3,&, . To understand the nonlinear output spectrum with respect to
any nonlinear parameters of interest in the system, consider the output spectrum with
respect to only two parameters §,;,&, which are defined as;, € [0,10],&, € [0,10].
Following the numerical approach above, it can be eventually obtained. The frequency
Q) can be chosen at any values, for example here(l = 1rad/sec, the initial damping
value is § = 0.01 and the magnitude of the system input is Y = 0.2. Then the output
spectrum can be obtained as

F(j)|,, =(1.5599¢ - 001 +1.6160e —001i )+ (- 2.4599 —002 +5.7895¢ — 004i )* &,

+(4.8410¢ — 002 —3.1037¢ — 002i)* &, +(2.5315e — 003 — 2.1792e — 0031 )* &}

+(~1.2208e — 002 +1.0914e —002i )* & * &, + (- 3.4105¢ — 003 ~1.5597e — 003i )* &2

+(1.5519¢ — 004 —9.5445¢ — 0051 )* &} +(2.9229¢ — 004 — 6.2336¢ — 0051 )* £2 * &,

+(2.0404e - 003 —1.8717e — 0031 )* & * &2 +(—5.2480e — 004 +1.0759% — 003i )* &
+(~2.4643e — 005 +2.5870e — 0051 )* &* +(4.5495¢ — 005 — 6.8368e — 0051 )* & * &,
+(=1.1712¢ —004 +1.1884e — 004i )* £ * £2 + (- 4.6285¢ — 005 +4.769% — 005i )* &, * &3
+(4.5823e — 005 - 7.5763¢ — 005i )* &} (19)

Eq. (19) can be plotted in a three dimension figure as

476



14" Asia Pacific Vibration Conference, 5-8 December 2011, The Hong Kong Polytechnic University

Fig. 2 Nonlinear output spectrum with respectto &;,&, (§5 = &, = Othe stars were obtained
by the theoretical computation)
From Fig. 2, it can be seen that the output spectrum is typical nonlinear function of
nonlinear parameterst;,&,. The polynomial provides a straightforward and powerful
insight into the analytical relationship between system output response and system
parameters.

4.2 Parameter optimization

According to Eq. (17), the polynomial with respect to all the nonlinear

parameters can be derived. To this end, the following points should be noted.

a. Matrix y should cover a large range to make sure the optimal results can be
found as mentioned above. However, usually when the range of the
nonlinear parameter is too large, the matrix inverse in would be ill-
conditioned. To solve this problem, the range of the variables can also be
divided into several parts. For example, the range of [0,100] can be divided
into[0,1], [1,10]and[10,100]. Using this subsection method, together with
the scaling method discussed in [7], the matrix will be easy to be non-
singular and the accuracy of the solution can be guaranteed.

b. The optimal solution should be the optimal one within all the sub-ranges.

Moreover, two new variables a, b can be introduced which are defined as

& =a,& =3ab& =3ab* &, = ab’ (20)
Therefore, Eq. (7) can be written as
F = y(z)+ &(c)+ alp(e)+ by (o)} 1)

Then the system output spectrum is a function with respect to two variables a,b
and can be obtained. In this study, the range of a,b is [0,10] and [—1,0] respectively.
The system output frequency response with respect to nonlinear variables was
obtained in this study.

F(jQ) g =(1.2297¢-001+2.6101e-001i)+ (1.4043e- 002 - 2.1368¢ - 002i)* a

+(3.1627¢-002 +3.7759¢ - 003i)* 3ab + (- 7.5741e - 003 + 2.3285¢ - 002i)* 3ah>

+(4.8602¢-003 +1.7763¢-001i)* ab® + (- 1.8905¢ - 003 +1.9025¢ - 003i)* a*

+(-2.8603e - 003 +9.4444¢ - 004i)* 3a’b +(6.9260e - 005 - 8.4367¢ - 004i)* 3a°h*

+(-1.2002e - 002 + 1.3644¢ - 002i)* a*b* +(1.5270¢ - 003 - 9.8513¢ - 004i)* 9a°h*
+(1.6447¢ - 003 - 2.7494e - 004i)*9a°b* + (- 2.2671e - 003 + 2.4648¢ - 002i) * 3a*b*
+(5.7254e - 003 - 3.0388e - 003i)*9a’b* +(3.5859¢- 003 + 2.4658¢ - 002i)* 3a°b°
+(-7.3119¢-002 + 2.0120e- 001i)* ab*

Note that the parameter here is dimensionless. In this study, the optimal value for
the non-dimensional system with initial parameters ¥ = 0.2 and £ = 0.01 can be

22)
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derived as
a=3.89b=-0.772|F(w)| =0.251 (23)
And the system output magnitude with respect to a and b will be given in Fig. 3.

Fig. 3 Nonlinear output spectrum with respect to a, b

4.3 Comparison with linear systems
For pure linear system, the spring force is F; = kx and the damper force is
F. = ¢x.Then the non-dimensional linear system governing equation can be written as

¥(z)+ & (z)+ y(r)= Y sin(Qr) (24)

The definitions of Q, 7, §, y(t) can be found in Eq. (6). Similarly, let the transmit force be
the output and the system transfer function can be written

sl 5( jQ) +1
HR)- () +&jQ)+1 (25)

According to the [2], the magnitude of the transfer function is

el 1+ ()
|H(JQX—J(1_Q:)3+(;Q)2 (26)

From Eq. (26), it can be shown that when the input frequency Q = 1rad/sec, the
transfer function is a decreasing function and the minimum is 1 when the linear damping §
is as large as possible. However, the recommended linear vehicle suspension damping ratio
usually gets the value of 0.25[2]. Therefore, according to the definition in Eq. (6), in the
present study the damping value will be § = 0.5. In this study, the recommended linear
damping will be used to compare with the nonlinear optimal damping. To be noted that, the
system transmissibility for the three different systems are used to compare the effectiveness.
According to [9], the system transmissibility can be defined as the system output spectrum
divided by input spectrum. Then the system transmissibility for the system with respect to
different system values can be shown in tablel. In tablel, linear 1, linear 2, nonlinear
represent the initial linear system, recommended linear system and nonlinear optimal
system, respectively.

Table 1 the system transmissibility

Parameters Linear | Linear 2 Nonlinear
g 0.01 0.5 0.01
a 0 0 3.89
b 0 0 -0.77
2IFGI/Y 100.005 2.2361 1.2550
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In order to verify whether the nonlinear optimal value has a positive effect on the
system output spectrum in the whole frequency range, the system transmissibility for
the three different systems was obtained and can be shown in Fig. 4
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Fig. 4 The force transmissibility for different systems
By further investigating Fig.4, here are three conclusions:

1. It is obvious that when the nonlinear parameters get an optimal value, the system
transmissibility at the frequency of Q = 1is excellent than the initial linear system. In
Fig.4, the peak at the frequency of = 1means the maximum transmissibility. It can
be shown that the nonlinear optimal system can get the smallest transmissibility at the
frequency of() = 1, which means that when the system under the same input signal,
the system output spectrum with the nonlinear optimal value will get the lowest output
spectrum. Therefore, it can be concluded that the system vibration is well suppressed
at the system resonant frequency when the nonlinear system get the optimal value.

2. From Fig.4, it is also clearly that the optimal nonlinear value will be helpful in
the high frequency range. According to [2], in the high frequency range the system
damping value should be as small as possible in order to suppress vibration. Fig. 4
provides information that the system transmissibility obtained by the nonlinear
optimal value can match very well with the curve obtained by the initial damping
value. For the case curve obtained byf = 0.5, it can suppress vibration in the low
frequency range. However, it can increase the system vibration significantly in the
high frequency range. Therefore, it can be concluded that in the high frequency range,
the nonlinear optimal value is much more competitive than the recommended linear
value.

3. In the low frequency, the nonlinear optimal value cannot minimize the force
transmissibility. From Fig. 4, it can be shown that the system transmissibility obtained
by the nonlinear optimal value reached a small peak at the frequency ofQ = 0.5. This
is because that in the present study, the nonlinear stiffness was introduced in this study.
In this study the system stiffness was decreased and therefore the resonance frequency
of the nonlinear system will be changed. However, this will be helpful for the
suspension design as the vehicle suspension system resonance frequency will be
changed by introducing the nonlinear terms, which can be used to design the
suspensions system in order to avoid some important frequency points, such as the
human sensitive frequency or the engine resonant frequency.

In this study, the area which was combined by the three output spectrum curves,
x = 0.1,x = 10and y = 0 can be calculated to show the effect of optimal nonlinearity
in the whole frequency range. The detailed steps of calculating the output spectrums
can be seen in [1, 2]. To be noted that the unit of ylabel is N and the unit of xlabel
is rad/sec, so in this study the unit of the area here is N.rad/sec . The areas of
different systems can be seen in table 2.
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Table 2 the area of different systems

system area(N.rad/sec)
linear £=0.01 1.3091
linear with recommend (=0.5 0.71116
nonlinear optimal system 0.4728]

From table 2 it can be show that though optimal system will get a larger
transmissibility in the frequency of Q = 0.5, the area obtained by the nonlinear system
is the smallest one in the above three different systems. Therefore, the optimal
nonlinear system 1s much more competitive than the linear system as it can
successfully suppress vibration than the linear system in the full frequency range.

4.4 The nonlinear damping characteristics

Based on the above discussion, the system damping force can be obtained in this
study. By further analyzing Eq. (7), the nonlinear damping force with respect to the
displacement and velocity can be written as

F,=0.01y3+3.89y°-8.958 y’y+ 6.9161 yy’ (27)

And the nonlinear spring force with respect to the displacement and velocity can be
written as

F,=y~1.7759 y* -8.9589 5’y + 6.9161 yy’ (28)

In this study, the range of velocity y is chosen to be [—1.5,1.5] and the range of
displacement y is chosen to be [—0.04,0.04] , the non-dimensional units of
displacement and velocity are m?/s? and m?/s3. To be noted that both of these are the
non-dimensional ranges, the real range can be obtained when given a specific system
model parameters. In this study, the damping force was taken as an example to further
investigate and it can be shown in Fig. 5.

mecyfin'n )

Fig. 5 suspension damping force

Fig. 5 is the suspension damping characteristic under different displacements and
velocities. It can be concluded that in this study, the damping force is not only a
function of velocity but also affected by the displacement. From Fig.5, it can be shown
that when the relative displacement gets different value, the curve of the damping
force will change. In some real systems, for example, the viscoelastic damper is not
only affected by the piston velocity but also exits a complex nonlinear function
between the damping force and the deformation [11]. In this study, the damping
characteristic obtained by frequency domain method can reflect the detailed
relationship between the force and velocity-displacement. Similarly, Eq. (28) shows
that the velocity also has an influence on the spring force. For different values of
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velocity, the spring versus displacement curve is different. Therefore, the damping
force and spring force obtained in this study 1s more realistic and can demonstrate the
nature of suspension system.

5. Conclusion

A recently-developed frequency domain method for the analysis and design of
nonlinear systems is applied in this study to the analysis and optimal design of
nonlinear damping and stiffness of vehicle suspension systems. Nonlinear
characteristic output spectrum function was derived to reveal the effect of nonlinear
model parameters on system output vibration response. The optimal solution could be
obtained, which was used to compare with corresponding linear systems. The results
indicate that system vibration suppression performance can be much better with
optimal nonlinear damping and stiffness characteristics than with only linear
counterparts.

Future work will focus on two degree of freedom suspension systems,

considering the nonlinear effects incurred by wheel tires.
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