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Abstract—Live migration, which allows virtual machines
(VMs) to move across distinct physical hosts, is widely adopted
for realizing energy saving and load balancing in modern Cloud
data centers. However, putting VMs with high correlations on
their CPU utilization patterns onto the same host is very likely
to trigger overloading incidents and commit Service Level Agree-
ments (SLA) violations, even when the host has not yet reached
its critical limits. To avoid such SLA violations and to maintain
a low energy consumption, this work proposes a heuristics-based
VM allocation mechanism. Under the proposed mechanism, VMs
showing high CPU utilization correlations to other co-located
peers and hosts with extreme utilization values are both assigned
with high heuristic values. VMs with high heuristic values are
therefore less preferred to be co-located onto a host that has a
high heuristic value. Performance of the proposed mechanism
was evaluated using CloudSim with real-world workload data.
Simulation results show that when comparing with other existing
mechanisms, the proposed idea can further reduce both energy
consumption and SLA violations.
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I. INTRODUCTION

Cloud data centers are now expanding in unprecedented
scales and complexities to catch up with the soaring demands
from Cloud service subscribers. With massive numbers of
servers and networking equipment, Cloud data centers con-
sume a tremendous amount of energy in their daily opera-
tion, including energy used in cooling their infrastructures.
Therefore, reducing energy consumption while providing the
required services to their subscribers has become a major
concern to Cloud service providers all over the world. Toward
energy saving, computing resources need to be provisioned
dynamically and efficiently. This requires the technique of vir-
tualization, which yields better resource utilization by accom-
modating multiple virtual machines (VMs) onto each physical
host. However, co-located VMs with high correlations in their
CPU utilization patterns are associated with higher risks of
overloading their host, as these VMs are more likely to reach
their peak utilization levels at the same time and exhaust all the
available resource on the host. An overloaded host may result
in violations of Service Level Agreements (SLA) which may
lead to additional economic losses. The necessary migration
procedures after an overloading event will also introduce extra
energy consumption to the system. Therefore, both utilization
levels of the hosts and CPU utilization correlations among co-
located VMs need to be taken into account in an allocation
process.

Extensive studies have been conducted on using CPU
utilization correlations among co-located VMs as a migration
criterion. Verma et al. [1] conducted some pioneering work
regarding the resource utilization correlations (RUC) among
co-located applications and sheded light on the possibilities
of applying it as a criterion in VM placement processes. In
[2], Zhang et al. proposed a VM migration algorithm that
minimizes the number of VM migrations in an over-committed
data center. In their proposed idea, VMs with high inter-
RUC should be scattered onto different hosts. Canali and
Lancellotti [3] exploited the correlations on various resource
utilization indices among VMs to cluster VMs according to
their behavioral patterns. In [4], Hwang and Pedram modeled
resource demands as random variables and then considered
the correlations among these random variables to solve the
VM consolidation problem. In their work, the RUC between
two co-located VMs is adopted for performance evaluation
purposes instead of making decisions in the optimization
process. However, most aforementioned work did not consider
the status of the source and destination hosts in their migration
processes. Pillai et al. [5] proposed a resource allocation
mechanism based on the principles of coalition formation
and the uncertainty principle of game theory. In an earlier
work of the authors in this paper [6], host’s temperature was
considered as a migration criterion, which provides a better
option in reflecting the utilization levels of hosts. In [7], the
VM provisioning process was formulated as a stable matching
problem that allows VMs and hosts to have different objectives
in the allocation process.

In this paper, by considering hosts’ utilization levels as well
as RUC among co-located VMs, we proposed a VM allocation
mechanism by assigning heuristics to those entities. VMs with
high heuristic values (i.e. high correlations in their resource
utilization patterns) are intended to repel each other, such
that they are less willing to be allocated onto the same host.
Similarly, hosts with high heuristic values (i.e., high utilization
levels) will also intend to repel VMs from migrating onto them
and may even expel their VMs. The proposed mechanism
aims to reduce the overall energy consumption of a Cloud
data center and keep its SLA violations at a relatively low
value. Performances of the proposed mechanism were verified
using CloudSim, an open-platform that supports modeling
Cloud applications and services. Simulation results show that
the proposed heuristics-based mechanism can achieve better
performances comparing with other existing mechanisms under
test.
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The rest of the paper is organized as follows. Preliminaries
are given in Section II. In Section III, formulations of the
heuristics used in the proposed mechanism are introduced.
Section IV explains and elaborates the proposed heuristics-
based VM allocation mechanism. Simulation setup and results
are presented and discussed in Section V. Finally, Section VI
draws some conclusions.

II. PRELIMINARIES

Here, we adopt the multiple correlation coefficient [8] to
estimate the RUC between co-located VMs. It is commonly
used in multiple regression analysis to measure the quality of
a prediction of dependent variables from independent variables.
The value of a multiple correlation coefficient varies between 0
and 1. A value of 0 indicates that there is no linear relationship
between those variables. If there exists a perfect prediction, the
multiple correlation coefficient equals 1.

Suppose there are n co-located VMs on a host and they are
represented by vector V = [V}, V5, ..., V,,]. The RUC strength
of the i™ VM toward the other n — 1 VMs is measured based
on their last ¢ CPU utilization observations. We denote the
vector y; to represent the last ¢ observations of the i VM.
Similarly, we denote X as an augmented matrix comprises
the ¢ observations of the remaining n — 1 VMs on the host.
Expressions of y; and X are given as
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Here, x,, ,, is the p" CPU utilization observation of V;,,. The
multiple correlation coefficient RV NV for each V; can then
be calculated as
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where my, and my, are the means of y; and y;, respectively.
Here, y; is a vector of predicted utilization values of the 4th
VM, which can be obtained as
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In this work, the multiple correlation coefficient between the
" VM and other co-located VMs represents the corresponding
RUC between both parties.

III. HEURISTICS FORMULATIONS

As mentioned earlier, VMs with high RUC to their co-
located VMs are more likely to trigger overloading events.
Unfortunately, such a problem cannot be completely resolved
by imposing utilization thresholds to control the utilization
level of hosts. Besides, hosts with relatively low utilizations,
even idle hosts, could still consume up to 70% of their peak
power [9]. This inspires us to formulate the RUC among co-
located VMs and the host utilization level as two heuristics.
They are then consolidated into a single heuristic function to
evaluate the state of each VM for making allocation decisions.
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Fig. 1: An illustration of the heuristic function hr.

We first formulate the heuristic corresponds to the utiliza-
tion level of a host. Hosts with extreme utilization levels are
usually operating outside their maximum efficiency range. In
contrast, it is more desirable for them to keep their utilization
at relatively moderate levels. Because of that, the first heuristic
h1, which corresponds to a host’s utilization, is defined as
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where 7 € [0, 1] denotes the CPU utilization of the host. The
parameters should be selected as @ > 0, 1 > b > 0, and
a > ¢ > 0. In this work, they are selected as a = 0.4, b = 0.5,
and ¢ = 0.2, correspondingly to ensure hosts with extreme
utilization will have relatively higher h;.

We then formulate the second heuristic corresponds to
the RUC among co-located VMs. An exponential function
is chosen here such that VMs with similar CPU utilization
patterns will have higher heuristic values, which will encourage
them to migrate onto different hosts. The second heuristic hs
is formulated as

ha(B) = mexp (nf).

Here, 8 € [0,1] is the RUC of the VM under evaluation to
other co-located VMs. The parameters should be selected as
m > 0 and n > 0. In this work, they are selected as m = 0.2
and n = 2.5 to give higher heuristic values to VMs with higher
RUC values.

The two heuristics are then consolidated into a single
heuristic function ht as

hr(7, B) = hi(y) x ha(B).

An illustration on the characteristics of At versus host’s
utilization level v and VM’s RUC value 3 is shown in Fig. 1.
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IV. PROPOSED VM ALLOCATION MECHANISM

In this work, an ordinary Cloud data center with hetero-
geneous physical hosts and VMs is modelled based on an
Infrastructure as a Service (IaaS) environment. Multiple VMs
can be co-located onto a single physical host to reduce energy
consumption. Furthermore, VMs can be migrated between dif-
ferent hosts for efficient resource management. This dynamic
resource provisioning is triggered periodically according to the
specified interval of the Cloud service provider. The proposed
heuristics-based VM allocation mechanism is composed of the
following three major steps:

Step 1 Identifying critical hosts: The mechanism checks for
VMs with high values of ht. Here, if the ht value of a
VM on a host exceeds a system threshold 77, the VM
is considered as critical. In the proposed mechanism,
if there exists any critical VMs on a host, such host
will be regarded as a critical host. Some VMs on a
critical host will have to be migrated away to prevent
a potential SLA violation.

Step 2 Selecting VM(s) for migration: Once a host has been
identified as critical, the next step is to select one or
multiple of its VMs to migrate away from it. In the
proposed mechanism, a critical VM with the shortest
migration time on a critical host will be given a higher
priority to be migrated first. As long migration time
can cause negative impacts on application performance,
such design can lower the chance of having SLA
violations. After each migration, h; and hy will be
updated. Therefore, Step 2 is executed iteratively until
no more critical VM can be found on the host.

Step 3 Reallocation of migrated VMs: The last step of
the VM allocation process is to find new hosts to
accommodate the migrated out VMs. This problem
can be viewed as a bin packing problem with variable
bin sizes and prices. Here, bin sizes are representing
the available CPU resource of the physical hosts,
while prices are corresponding to the hr values of
the selected VMs if they are reallocated onto some
hosts. As the bin packing problem is an NP-hard
problem, we adopt a modified Best Fit Decreasing
(BFD) algorithm known as heuristics-based BFD to
solve it. In heuristics-based BFD, the selected VMs
obtained from Step 2 are sorted in a decreasing order
based on their current CPU utilizations. Each sorted
VM will be allocated to a host that can yield the lowest
value of hr which is lower than the system threshold
7.

The rationale of the proposed VM allocation mechanism is
to arrange VMs with low ho values to be operated under hosts
with appropriate utilization levels (i.e. low h; values). The
proposed idea reallocates critical VMs to hosts that can yield
minimum ht values. This allows critical VMs to choose more
capable hosts and avoid co-locating with VMs with similar
utilization patterns. If no active host can accommodate the
migrated out critical VMs, an inactive host will be turned on.
On the other hand, under-utilized hosts will be turned off for
energy saving. The mechanism is repeated until all the critical
VMs have been re-allocated.

V. PERFORMANCE EVALUATION
A. Simulation Setup

We carried out extensive simulations on CloudSim-4.0 [10]
to evaluate the effectiveness of our proposed mechanism. The
data set we used in the simulations is obtained from real-world
workload traces of PlanetLab [11]. We choose 10 days from
the dataset as in [7] and average out the simulation results
for comparisons. Two kinds of servers were emulated in the
simulated data center: HP ProLiant G4 (2 cores x 1860 MIPS),
and HP ProLiant G5 (2 cores x 2660 MIPS). In the simula-
tions, 800 heterougenous hosts were deployed equally with
these two configurations. The corresponding power models
of the selected hosts were adopted from SpecPower0O8 [12].
We have simulated four different types of VMs with various
characteristics. Each VM is a single-core machine configured
with 100Mbit/s of bandwidth and 2.5 Gigabytes of VM size.
In the simulations, VM provisioning processes were triggered
every five simulated minutes.

In this paper, we adopt two independent metrics given
in [13] to evaluate the level of SLA violation: (1) SLA
violation Time per Active Host (SLATAH) is an estimate of
the percentage of time which the CPU utilization of physical
hosts have reached 100%, and (2) Performance Degradation
due to Migrations (PDM) is an estimate of the overall perfor-
mance degradation during VM migration processes. These two
metrics are with equal importance. By combining both metrics,
a parameter called SLA Violation (SLAV) is defined as

SLAV = SLATAH x PDM.

The objective of a VM allocation mechanism is to achieve
a reasonable trade-off between energy consumption and SLA
violations. Toward these two conflicting metrics, in this work,
we adopt a combined metric, the Energy and SLA Violations
(ESV) [13] to evaluate the overall performance of a Cloud
data center. Here, ESV is calculated as

ESV = E x SLAV,

where F is the total energy consumption of a data center.

In the simulations, four other existing mechanisms were se-
lected for comparison purposes, namely the power-based LRR
method [13] and the three allocation mechanisms adopting
different correlation-based criteria in [14]. In the power-based
LRR method, the increase in host’s power consumption after
receiving a VM is regarded as the migration criterion. While
for the other three mechanisms, their criteria presented in [14]
were adopted correspondingly.

In the simulations, the system thresholds 7} and 7% of
the proposed mechanism were chosen as 0.9 and 0.3, respec-
tively. Six different metrics were chosen for evaluating the
performance of the mechanisms under test, namely energy
consumption, VM migration number, number of hot-spots,
number of cold-spots, SLAV, and ESV. Hosts with CPU
utilization above 90% or below 25% are considered as hot-
spots or cold-spots, respectively [15]. Table I shows average
daily results over 10 simulated days.



TABLE I: SIMULATION RESULTS

VM allocation mechanisms Energy Migration Hot- Cold- SLAV ESV

‘ consumption number spots spots (x0.00001) | (x0.001)
Power-based [13] 161.71 kWh 28438 1201 5841 5.02 8.03
Correlation of migrated VM(s) [14] 120.99 kWh 11549 1411 618 1.6 1.89
Average correlation level (ACL) [14] 121.07 kWh 11899 1426 620 1.69 1.98
Variation of correlation level (VCL) [14] 121.00 kWh 11477 1391 647 1.55 1.82
Proposed heuristics-based 120.11 kWh 11098 712 448 1.07 1.25

B. Results and Discussions REFERENCES

According to the results, the energy consumption of data
centers with the proposed mechanism is much lower than that
in [13]. Nevertheless, such value of the proposed mechanism is
slightly better compare to that in [14] which can be explained
by the lower number of cold-spots. Moreover, the proposed
mechanism helps data centers to considerably reduce SLAV
compare to its counterparts. The low SLAV values of systems
with the proposed mechanism is a result of lower numbers of
hot-spots among active hosts and fewer VM migrations. As a
result, systems with the proposed mechanism can yield more
desirable ESV values.

In the proposed mechanism, system threshold 73 should
be chosen higher than 75. Systems with high values of 7 can
allow VMs with moderate RUC to be co-located and yield
a better utilization. However, having 77 being too high will
trigger more overloading incidents. On the contrary, a low
value of T, can ensure the destination host of a reallocated
VM to have sufficient resource. A high value of 7% can lead to
a high number of migrations as the selected host is more likely
to be regarded as critical in future evaluations. However, an
extremely low value of 75 is also not desirable as it will trigger
over-provisioning and introduce more under-utilized hosts to
the systems.

VI. CONCLUSIONS

Modern cloud data centers under the IaaS model present
a major challenge in resource management. In this paper, we
propose a virtual machine (VM) allocation mechanism based
on heuristics to improve the VM consolidation processes in
Cloud data centers. The designs of the proposed heuristics
incorporate both the utilization levels of hosts and resource
utilization correlations among co-located VMs. Under the
proposed mechanism, a lower heuristic value indicates a more
desirable operating environment for both VMs and hosts.
Using real-world data traces from PlanetLab, simulation results
show that when comparing with other existing mechanisms
under test, the proposed VM allocation mechanism can lower
the risk of overloading, reduce Service Level Agreements vio-
lations, and achieve reductions in overall energy consumption.

ACKNOWLEDGMENT

This work is supported by the Department of Electronic
and Information Engineering, the Hong Kong Polytechnic
University (Projects G-YBKH and RTMR).

(1]

[2]

[3]

(4]

(3]

(6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,” in
2009 conference on USENIX Annual technical conference. USENIX
Association, 2009, pp. 28-28.

X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine mi-
gration in an over-committed cloud,” in 2012 IEEE Network Operations
and Management Symposium, 2012, pp. 196-203.

C. Canali and R. Lancellotti, “Automated clustering of vms for scalable
cloud monitoring and management,” in 2012 International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
2012, pp. 1-5.

I. Hwang and M. Pedram, “Hierarchical virtual machine consolidation
in a cloud computing system.” in 2013 IEEE International Conference
on Cloud Computing (CLOUD), 2013, pp. 196-203.

P. S. Pillai and S. Rao, “Resource allocation in cloud computing
using the uncertainty principle of game theory,” IEEE Systems Journal,
vol. 10, no. 2, pp. 637-648, 2016.

J. V. Wang, C.-T. Cheng, and C. K. Tse, “A power and thermal-aware
virtual machine allocation mechanism for cloud data centers,” in 2015
IEEE International Conference on Communication Workshop (ICCW),
2015, pp. 2850-2855.

J. V. Wang, K.-Y. Fok, C.-T. Cheng, and C. K. Tse, “A stable matching-
based virtual machine allocation mechanism for cloud data centers,” in
2016 IEEE World Congress on Services (SERVICES), 2016, pp. 103—
106.

H. Abdi, “Multiple correlation coefficient,” The University of Texas at
Dallas, 2007.

X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” ACM SIGARCH Computer Architecture
News, vol. 35, no. 2, pp. 13-23, 2007.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and experience, vol. 41, no. 1, pp. 23-50,
2011.

K. Park and V. S. Pai, “Comon: A mostly-scalable monitoring system
for planetlab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1,
pp. 65-74, 2006.

“Specpower(08,”  (Accessed:
http://www.spec.org

2016-10-29).  [Online].  Available:
A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397-
1420, 2012.

J. V. Wang, C.-T. Cheng, and C. K. Tse, “Effects of correlation-based
vm allocation criteria to cloud data centers,” in 2016 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2016, pp. 398—401.

W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provi-
sioning for the cloud using online bin packing,” IEEE Transactions on
Computers, vol. 63, no. 11, pp. 2647-2660, 2014.





