a2 United States Patent

Sham et al.

US008671323B2

US 8,671,323 B2
Mar. 11, 2014

(10) Patent No.:
(45) Date of Patent:

(54) HIGH THROUGHPUT DECODER
ARCHITECTURE FOR LOW-DENSITY
PARITY-CHECK CONVOLUTIONAL CODES

(75) Inventors: Chiu Wing Sham, Hong Kong (HK); Xu
Chen, Hong Kong (HK); Chung Ming
Lau, Hong Kong (HK); Yue Zhao, Hong
Kong (HK); Wal Man Tam, Hong Kong
(HK)
(73) Assignee: The Hong Kong Polytechnic
University, Hong Kong (HK)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 197 days.
(21) Appl. No.: 13/371,067
(22) Filed: Feb. 10, 2012
(65) Prior Publication Data
US 2013/0212450 Al Aug. 15,2013
(51) Imt.ClL
HO03M 13/00 (2006.01)
(52) US.CL
USPC oot 7147755, 714/786; 714/773
(58) Field of Classification Search
USPC ot 714/755, 786, 773
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2006/0047857 Al* 3/2006 Dabirietal. 709/250
2010/0199153 Al* 82010 Okamuraetal. ... 714/781
OTHER PUBLICATIONS

Z. Chen, T. Brandon, D. Elliott, S. Bates, W. Krzymien, and B.
Cockburn, “Jointly designed architecture-aware LDPC convolu-
tional codes and high-throughput parallel encoders/decoders,” Cir-
cuits and Systems I Regular Papers, IEEE Transactions on, vol. 57,
No. 4, pp. 836-849, Apr. 2010.

)/

R. Swamy, S. Bates, T. Branson, B. Cockburn, D. Elliott, J. Koob, and
Z. Chen, “Design and test of a 175-mb/s, rate-1/2 (128,3,6) low-
density parity-check convolutional code encoder and decoder,”
Solid-State Circuits, IEEE Journal of, vol. 42, No. 10, pp. 2245-2256,
Oct. 2007.

M. Tavares, E. Matus, S. Kunze, and G. Fettweis, “A dual-core
programmable decoder for LDPC convolutional codes,” in Circuits
and Systems, 2008. ISCAS 2008. IEEF International Symposium on,
May 2008, pp. 532-535.

T. Brandon, J. Koob, L. van den Berg, Z. Chen, A. Alimohammad, R.
Swamy, J. Klaus, S. Bates, V. Gaudet, B. Cockburn, and D. Elliott, “A
compact 1.1-gb/s encoder and a memory-based 600-mb/s decoder for
LDPC convolutional codes,” Circuits and Systems I: Regular Papers,
IEEFE Transactions on, vol. 56, No. 5, pp. 1017-1029, May 2009.

(Continued)

Primary Examiner — Guy Lamarre
(74) Attorney, Agent, or Firm — Muncy, Geissler, Olds &
Lowe, P.C.

57 ABSTRACT

A Low-Density Parity-Check Convolutional Code (LPD-
CCC) decoder (10) for partial parallel decoding of low-den-
sity parity-check convolutional codes, the decoder having: a
plurality of pipeline processors (11) to receive channel mes-
sages and edge-messages; each processor (11) having: a plu-
rality of block processing units (BPUs) (13), each BPU (13)
having a plurality of check node processors (CNPs) (14) to
process check nodes that enter into the processor (11) and a
plurality of variable node processors (VNPs) (15) to process
variable nodes that are about to leave the processor (11); and
a plurality of Random Access Memory (RAM) blocks (30)
for dynamic message storage of the channel messages and the
edge-messages; wherein in each processor (11), the VNPs
(15) are directly connected to corresponding RAM blocks
(30), and the CNPs (14) are directly connected to correspond-
ing RAM blocks (30) such that the connections from the
VNPs (15) and CNPs (14) to the corresponding RAM blocks
(30) are pre-defined and fixed according to a parity-check
matrix of an unterminated time-varying periodic LDPCCC.

18 Claims, 15 Drawing Sheets

R

1
1

Wetriory i sty

T -.':'°2*3.

c1 c2

L = £ 15
ove] | ”: VNP NP J I
- i
e : > [VNP gl VNP e
i ONP] ey [WNP] —[wF e Gl RSN (VT o o

' ' 13 ' 13 . 1

[v [. [
s: 13

[[]] [
- spu1 Y =
] []
. []

14 s 15 14 14 2 15
pN- i S L bt
W GNP VNP i 1(‘, " VNP 1T
3 .
W CNP | = — VNP | i by Nowp | = = 1;— CNP| = =[NP 15
C:P .:9— ST ONF] ——— [WWP] O | ey [P

0 " 0 v
. ’ 13 . y 1B 1] ' 13

¢ osrugmn Y Y Bru-men) B Y sRuMen ¥
Processor A Processor B Processor C

US 8,671,323 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

S. Bates, Z. Chen, L. Gunthorpe, A. Pusane, K. Zigangirov, and D.
Costello, “A low-cost serial decoder architecture for low-density
parity-check convolutional codes,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 55, No. 7, pp. 1967-1976, Aug.
2008.

Z. Chen, S. Bates, and W. Krzymien, “High throughput parallel
decoder design for LDPC convolutional codes,” in Circuits and Sys-
tems for Communications, 2008. ICCSC 2008. 4th IEFEFE Interna-
tional Conference on, May 2008, pp. 35-39.

E. Matus, M. Tavares, M. Bimberg, and G. Fettweis, “Towards a
gbit/s programmable decoder for LDPC convolutional codes,” in

Circuits and Systems, 2007. ISCAS 2007. IEEE International Sym-
posium on, May 2007, pp. 1657-1660.

S. B. D. I. Costello Jr., A. E. Pusane and K. S. Zigangirov, “A
comparison between LDPC block and convolutional codes,” in Proc.
Workshop Information Theory Its Applications, 2006.

S. Bates and G. Block, “A memory-based architecture for fpga imple-
mentations of low-density parity-check convolutional decoders,” in
Circuits and Systems, 2005. ISCAS 2005. IEEE International Sym-
posium on, May 2005, pp. 336-339 vol. 1.

A.Pusane, A. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov,
and D. Costello, “Implementation aspects of LDPC convolutional
codes,” Communications, IEEE Transactions on, vol. 56, No. 7, pp.
1060-1069, Jul. 2008.

* cited by examiner

U.S. Patent Mar. 11, 2014 Sheet 1 of 15 US 8,671,323 B2

[72]

(&)

o

O

o

8

3

£

—

o

Qo
-—
o
| -
>
2
L.

@
N 2 @
< 8.
O o

protograph

US 8,671,323 B2

Sheet 2 of 15

Mar. 11, 2014

U.S. Patent

Z @Inbi4

L
.

XA
oH ! am :

AP
oH |

&

Ty
H

US 8,671,323 B2

Sheet 3 of 15

Mar. 11, 2014

U.S. Patent

ebessaw DZA

abessaw DzA

N
sabessall 7 sabessaw _ sabessaw ‘
NZDIDZA Buuos <m_ NZDIDZA Buuoss <m_ AZ20zZA Bunois W <m,
| abessall DZA w abessaw JZA |
@ === e U
] P !
3 & & H N m{i n_ & M.. A m n_
N\
souenbos NA ND NA ND NA NO
1q popodap — hl\ “Ip
6 W_\ o (=——= b T 5 abessau _\ b
sobessowl 7 abessew jeuueyo ﬁ sobessaw W [auueyo — sebessall ‘
* |auuey? Buuols VY Jpuuey Bulols NV jauueyo BuLIo)s INVY
10ss@20.d 1 108S990.d A\ 16555501
}sen }sad
Ll f I f; b

W
abessaw jauueyd

¢ ainbi4

obessaw |auueyo

w\lp

US 8,671,323 B2

Sheet 4 of 15

Mar. 11, 2014

U.S. Patent

— 4 Gwndg 4
€l (] ¢
' .
[== [ae]
© L] — a2
yl
m%l dNA dND |
Gl . ¥l
'
'
4 kndg g
€l [0
' .

2l
Mﬁ[dNA _ e dND L4
ph dNA ,h dNO
gL |
$)20|q NVY NvYd |}
.......... Aowa n
\|L
bl

0 1088920.d

v 10S59201d

dNA
dNA

(L+N)-Ndg

 s——)

: :
[ow] - e [50)

—

e

H 10SS9204d
. _ .
i oa (windg
- (] (]
€l > »
A dNa | [ano .
MVI{ n_Z>_AH_ ——= | dNO lw_—u
b
AR TV dNO | 1
Sl - 14"
.
0
. _ .
L
3 ' 0
1 (] []
[ann] ¢ == [ano]tt
..... |
SY00|q vy | | wwy
.......... Aowai
\|\
Ll

Sl Y

$)300|q NVH NvY
......... Aows iy

U.S. Patent Mar. 11, 2014 Sheet 5 of 15 US 8,671,323 B2

Figure 3B

Combined as a single memory block

301 RAM | RAM | RAM .o oo
o A1 B1 C1 310
Address
controller 1
302\/\ RAM | RAM | RAM | _ _ _ o
A2 B2 C2
311
303 RAM | RAM | RAM | _ _ _ Address
" | A3 | B3 | c3 controller 2

US 8,671,323 B2

Sheet 6 of 15

Mar. 11, 2014

U.S. Patent

vvi
)
,\L
1914
ﬁ:EG
\L
14
)
&
\::‘3
&
Tw:E»O
)
---'--'----------.---.
:% ﬁﬁ.% quey) _yue 230 = (L ‘Do %v

(
f)o

 2inbi4

US 8,671,323 B2

Sheet 7 of 15

Mar. 11, 2014

U.S. Patent

MNA | dNA | HNA | MNO | dNo | uNO | s |

[MNA | dNA | HNA | MNO | dNO | N0 | S|

NA woyj sebessaw IndinO MNA Buissaooid NA :dNA NA O} sabessaul Induj JYNA
NO woyy sebessaw JndinO MND Buisseooid NO :dNO NO 0} sebessaw Induj :YND sJossaooid usamiaq sebessaw YIus 'S

G ainbi4

US 8,671,323 B2

Sheet 8 of 15

Mar. 11, 2014

U.S. Patent

V9 @Inbi4

Buissao0id apou s|geleA (dNA

Buissaooid apou 393yo (dND

yun Buissanold »20|q oy} 0} sabessaw nduj oy

Jossaooud xau ayj o) sabessaw sjum pue sabessaw Yiys M-S
1)190|q jo Buisseooid :i1g

US 8,671,323 B2

Sheet 9 of 15

Mar. 11, 2014

U.S. Patent

Buissanoid apou ajqeueA (dNA

Buissaooid apou 393Y9 {dN9D

yun Buissaooud ¥o0iq sy} 0} sabessawl Jndu) 'Y

Jossaoold xau el 0} sabessaw ajum pue sobesssll YIUS M-S

1300]q jo Buissao04d :ig

g9 ainbi

US 8,671,323 B2

Sheet 10 of 15

Mar. 11, 2014

U.S. Patent

+02
n

0~D

vH - E-H"A "A RN
00L0 1000} too0 000!
000L 0L00; 0LOO +00O
Loo0 0040} 0oLo 0100
0100 _000F;. 0001 0010
[000L 1000} ;0L00 00L0 | Z-y .
1 L0000 0LO0{i{00LO 0004 ! __ [0l
{0L00 00LO: {000F 1000 = 5
{0010 0001!i{L000 0400
I-H 00LO L0O0O | LOOO 000} |
000F 0L00;{0LOO LOQO |
L0000 00LO [{00L0 0LOO |
0L00 000t i000L 0010 |
¥H EH .
y-H £-H
00L0 L00O{ L1000 000!
000L 0L00I0LO0 LDOO
LO0O 00LO} 00LO 0LOO
0100 000} 000F 00LO
1 0L00 po0LOi000L 100D
0010 ©000L| LOOO 0LOO
| 000+ 1000} 0LOO 0010
| 1000 01000010 000}
¢H L-H

V. ainbi4

peiepdn Ajmau Aijua Wvd

T —

US 8,671,323 B2

Sheet 11 of 15

Mar. 11, 2014

U.S. Patent

oo — ! T E‘& mréDNm”e A mwio,DNn”e A qwzo.DN_Hc. A mwﬂé_DN_.He A £q _MHWMMMOE
__”Hmmma ! LTOA U0 o0 TR ZIBA T 7SO A THOZE0 A T+ 7C0 A SOPOU OOYD
S1IINVY Pl VY €1 AV [48244:1 1T NVYE 0T AVY 6 WVd 10} SNVH
‘L nda4q
P . passaoouid
e A sapou
i yoeud
[2504: 1 10} SWVY
W L0 A STOIA P04 “€T00 A SOPOU B[BIEA JUBPIDUL ,
ﬁ ToN TN sapou ¥oayo ,
m::mtn_: ‘Nndg jo obels 1S| @yl ISl
Ty e T Ty . - - h . - : - 'z Ndd Aq
ITOA TV IO STOAZET0 V0 A ¥ 0 €007 7€T0 PO 780 ElHoin 70 VIO ZTO A ETHIN 7V A pessaooid
Fraazeron | | LTPAZITON CTBATEVON THUATITON THONZI0A VI 7E0 N THONTEON VLonzEeA | sepou joayd
91 WVY STINVY P1 AV AR 71 WV 11 NV oI WVY 6 INVY 10} SWVY
- - - c : - - - _ ‘1 Ndg
"oNTE A FUNTTUA PN A R TA YONTSIA SONZEOA YOnzrA TonzEPA | Kq pesseooid
TONZSTOA ToN 78TO [YA PO ZET0 A OO LA _,QDNo.e A TONZTEA THAZIOA sapou ¥29yd
SIVH LINVY 9NVY SIVH yIAVA £ NVY 7NV 1 AV 10§ SWvYH
‘T dd 4q oy pue oq
8utssedoad Jo 1Je3}S 9

US 8,671,323 B2

Sheet 12 of 15

Mar. 11, 2014

U.S. Patent

paiepdn Apmau Anus Wy

RPN —

‘¢ Ndd

1+QDN1+9> mi%DNmfe\/ :+0.me 9> m._+9DN>.2> >n_ Ummmmoo_a
| A sepouyoeyo
Y1 WVY ITINVYI 10} SNVY i
v o | [Feonop | [Fronge e CTO IO FOA D vOATY nww_w_WMMM MM__uo:
Nth.DNmfe A _hnizDwae A THO VT A T €0 A 1 Yooud 10} SINVY ,
8 NV LINVY 9NV SV £V TINVY TNV w

h;-ou\/.cﬂ_.oﬁ\/.mrﬁ.o&\/. 3.9\/ S8pOoU 3|gBLEA JUBPIDU ,
Yo €0 sapou yoayo ,
Bunepdnndg jo abeis 1s| syl Joyy

«.N izDNm T+0) A

m,_éﬁDNm»:Q\/ t—ixDN_v ~+ou>

STAVE ¥ VY

TTHI 78TO A

8§ INVY

9NVH

m»:o_DNmnTQ\/ <.—+€DNw.o~> thgDNh.oa\/ v.TrouDNﬁdu\/ £ IZDNv,o.\/ 2 Ndg %n_
n TIHO 7oA THONZSOA THUNZEB A U070 _uwmwmuoL_n_ S9pou
£1 VY I AV 11 VY 01 AV 6 VY 9842 10} SWvH
L ndd Aq
e e L possaocoid sepou |
ATTON AT0 | yoauo oy vy |
TIAVY 1 IAVY

LT0p $STOVA CTTO A FTT-00 A SOpOU 8|geLieA Juapioul ,
YeN 0N sapou Hoeyod ,
Bunepdn *ndg jo ebeis pug ayi leyy
0/ 8Inbi4

US 8,671,323 B2

Sheet 13 of 15

Mar. 11, 2014

U.S. Patent

pajepdn Aimau Ajua WvH

L+0IA Ul SOPOU 9|geLIBA Pa10aUU0D J1oyl pue 2+0in sapou »2ayo aiepdn 01 'Ndg 1o} Apeay

e AT A [2 Ndg Ag
A 710y L0} A Z1E00) TN TETHO A VSO 7CTH A pessasold sepou
SLINVY €1 VY 01 NV 6 AV %08UD 10 SWYH
reongioA | [ewanzsme, | [Foengiay | [ceoqgmoy .‘, ‘| Ndg 4q
THONZSHOA | [Tonzeoy | [coont o, | [1T0nze1+ : Ww&n pessaooid sapou
8 IAVA LINVY 9 NVA S IWVY CIAVI [WVYd }2aYya 10 SNV
LIBA IO TIDA UG A SOPOU B|qRLIEA JUBPIOU]
YON€0n sapou ¥oByo |
BunepdnZndg o ebeis puz syl Jeuy
Q. 2inbig

US 8,671,323 B2

Sheet 14 of 15

Mar. 11, 2014

U.S. Patent

8¢

°N/%3
/'S 9¢ G& +¥€& €€ <& V€ € 82 8¢
] T I I !] I] I gi—
. m m m oL=1'v20Lt =z-uweiboidy QO
SR m 0} =1 ‘9201 =Z— SYNSBI YO = = =
o m ZL=1‘ve0r=z-uweiboid D ¥
I 2L =1'Y20L =Z—SYNSaI YD 1+ re e
| FREE gL=1|'2ic=z—-weiBoidn []
IS S S NS 8L =121G=2Z-SUNSaI YO ==+ || _
Q A3 gl =|gegr=z-webod < o
N\ \'. | 81 =122r =z sunses yod4
hY " . _ _ _

g ainbi4

Ot

0l

Ol

Bl

U.S. Patent

Mar. 11, 2014

Sheet 15 of 15

Figure 9

US 8,671,323 B2

Divide complete decoding step into G stages

100
/_/

'

Divide check nodes uy that just entered into the processor into G groups

- 101
N

y

Process the groups of check nodes uy

parallel at each stage of the complete decoding step

and their associated variable nodes, in i/-\/102

Store variable-to-check messages for the check nodes upin RAM

103
/\/

r

Store check-to-variable messages updated for the check nodes uy.4 in RAM

—_ 104
e

A

Store variable-to-check messages newly updated variable-to-check messages | -
in the previous decoding step and shifted from the previous processor in RAM |

Y

105

CNP reads the variable-to-check messages from RAM

106
N

\ 4

{nput newly updated check-to-variable messages from CNP to RAM

107
/\/

y

Input newly updated check-to-variable messages to VNP

108
SN

Shift resulting variable-to-check messages into next processor

109
TN

A

Write updated variable-to-check messages to RAM

110
TN

US 8,671,323 B2

1
HIGH THROUGHPUT DECODER
ARCHITECTURE FOR LOW-DENSITY
PARITY-CHECK CONVOLUTIONAL CODES

TECHNICAL FIELD

The invention concerns a high throughput decoder archi-
tecture for low-density parity-check convolutional codes.

BACKGROUND OF THE INVENTION

Low-density parity-check convolutional codes (LDPC-
CCs) achieve a better error performance than the LDPC
block-code counterparts of similar decoding complexity.
LDPCCCs have inherited the basic structure of convolutional
codes therefore allowing continuous encoding and decoding
of codes with variable length. This property has made LDPC-
CCs a promising technique in many applications.

Several parallelization concepts for the decoding process
that lead to a high-throughput decoder architecture can
achieve an information throughput of over 1 Gb/s with a clock
frequency of 250 MHz. However, the decoder architecture is
confined to time-invariant LDPCCCs and cannot be easily
applied to time-varying codes which have a better error per-
formance.

A register-based decoder architecture attaining up to 175
Mb/s throughput was proposed. The architecture successfully
implements a pipeline decoder of ten processing units, but its
register intensive architecture has limited its power efficiency.
Later, alow-cost low-power memory-based decoder architec-
ture that uses a single decoding processor was proposed. On
one hand, the serial node operation uses a small portion of the
field-programmable gate array (FPGA) resources. On the
other hand, such a design has significant limitation on the
achievable throughput. The memory-based design with par-
allel node operations have led to a substantial improvement
on throughput. The high throughput under these designs,
however, is achieved at the cost of a complicated shuffle/
exchange-type switching network.

Previously proposed LDPCCC decoder architectures
mainly handle random time-varying LDPCCCs. In recent
literature, LDPCCCs of regular structures have attracted con-
siderable interest. The construction of LDPCCC based on
circulant matrices have been investigated. A lower bound of
the free distance for unterminated protograph-based
LDPCCC was analyzed and the free distance growth rates
was shown to exceed the minimum distance growth rates of
the corresponding LDPC block codes. Based on the free
distance analysis, the average trapping set enumerators for
the ensembles of protograph based LDPCCC was obtained.
Later, it was observed that the decoding thresholds of asymp-
totically good irregular and regular LDPC codes formed by
terminating the protograph based LDPCCC can approach the
optimal maximum a posteriori (MAP) decoding thresholds of
the corresponding LDPC block code ensembles on binary
erasure channels (BEC) as the terminating length increases.
The same observation is recently generalized to additive
white Gaussian noise (AWGN) channels.

SUMMARY OF THE INVENTION

In a first preferred aspect, there is provided a Low-Density
Parity-Check Convolutional Code (LPDCCC) decoder for
partial parallel decoding of low-density parity-check convo-
Iutional codes, the decoder comprising:

a plurality of pipeline processors to receive channel mes-

sages and edge-messages; each processor having:

15

20

25

30

35

40

45

50

55

65

2

a plurality of block processing units (BPUs), each BPU
having a plurality of check node processors (CNPs) to
process check nodes that enter into the processor and
a plurality of variable node processors (VNPs) to
process variable nodes that are about to leave the
processor; and

a plurality of Random Access Memory (RAM) blocks
for dynamic message storage of the channel messages
and the edge-messages;

wherein in each processor, the VNPs are directly connected

to corresponding RAM blocks, and the CNPs are
directly connected to corresponding RAM blocks such
that the connections from the VNPs and CNPs to the
corresponding RAM blocks are pre-defined and fixed
according to a parity-check matrix of an unterminated
time-varying periodic LDPCCC.

RAM blocks of different processors may be combined into
a plurality larger RAM blocks such that each larger RAM
block has a RAM block from each processor.

Each larger RAM block may have an address controller.

At least two larger RAM blocks may share the same
address controller.

The address controller may be a counter that is incre-
mented by one after every stage of decoding the LPDCCC.

The CNP may be a look-up table tree.

The messages processed by the CNP and from the VNP
may be updated in the same stage using a shifting operation
such that updated messages from the VNP and the channel
messages associated with the updated variable nodes are
directly output to the next processor.

A portion of updated messages from the CNP are not
processed by the VNP and may be written to local memories.

The edge-message may be a check-to-variable message or
variable-to-check message.

The messages may be quantized in a few bits to reduce
complexity.

The VNP may be an adding operation using an adder tree.

The decoder may be implemented on a field-program-
mable gate array (FPGA) or an Application-Specific Inte-
grated Circuit (ASIC)

In a second aspect, there is provided a method for partial
parallel decoding of Low-Density Parity-Check Convolu-
tional Codes (LPDCCCs), the method comprising:

receiving channel messages and edge-messages by a plu-

rality of pipeline processors, and each processor having:

a plurality of block processing units (BPUs),

processing check nodes that enter into the processor by

check node processors (CNPs) in each BPU;

process variable nodes that are about to leave each proces-

sor by variable node processors (VNPs) in each BPU;

dynamically storing the channel messages and the edge-
messages in a plurality of Random Access Memory

(RAM) blocks in each processor;

directly connecting the VNPs to corresponding RAM

blocks in each processor;

directly connecting the CNPs to corresponding RAM

blocks in each processor;

wherein the connections from the VNPs and GNPs to the

corresponding RAM blocks are pre-defined and fixed

according to a parity-check matrix of an unterminated
time-varying periodic LDPCCC.

The method may further comprise combining RAM blocks
of different processors into a plurality larger RAM blocks
such that each larger RAM block has a RAM block from each
processor.

The LDPCCC decoder provided by the present invention
provides a high data throughput and good error performance

US 8,671,323 B2

3

with low hardware complexity. For the same hardware com-
plexity as other technologies, the present invention provides a
high data throughput and/or better error correction capability.
Alternatively, the present invention can achieve a lower hard-
ware complexity for the same data throughput and error-
correction capability.

Compared with the previous implementations of LDPCCC
decoders, the present invention provides an efficient high-
throughput LDPCCC decoder for high-rate LDPCCC codes
that can achieve an error floor of lower than 107>, Such codes
are desirable in many applications, such as next-generation
optical communications. A decoder architecture for proto-
graph-based LDPCCC is provided, which has been imple-
mented on an Altera Stratix FPGA. By taking advantage of
the homogeneous operations of the pipeline processing units,
the data-width in modern FPGA for data storage is used,
attaining an information throughput up to 2.0 Gb/s with a
running clock of 100 MHz. The FPGA simulation results
show that the protograph-based LDPCCC has an excellent
error performance, achieving an error floor of lower than 10*3
at a signal-to-noise-ratio (SNR) of 3.55 dB. Moreover, its
error performance is superior to its block code counterpart of
the same throughput, the same processor complexity and the
same memory requirement.

The present invention provides:

1) A novel dynamic memory storage mechanism with a
simple address controller used in LDPCCC decoders;

2) A novel pipeline processing of different LDPCCCs with
the same hardware; and

3) A novel check-node processor design.

The efficient dynamic memory storage mechanism with a
simple address controller avoids the use of a complex shuftle
switching network, which is inevitable in random time-vary-
ing LDPCCC implementations. In addition, the homoge-
neous operations of the pipeline processing units to increase
the data throughput by a few times is taken advantage of.

The present invention can be readily applied in the next
generation and future generations of long-haul optical com-
munications, satellite communications, space communica-
tions and digital broadcasting. The present invention reduces
the hardware complexity of the decoders for long-haul high-
speed optical communication systems.

BRIEF DESCRIPTION OF THE DRAWINGS

An example of the invention will now be described with
reference to the accompanying drawings, in which:

FIG. 1 is a diagram of an example of lifting (copying and
permute) of the protograph by a factor 3;

FIG. 2 is a diagram illustrating the construction of a pro-
tograph-based LPDCCC from a protograph matrix;

FIG. 3 is a block diagram of an LPDCCC decoder com-
prising a plurality of pipeline processors;

FIG. 3A is a block diagram of processors A, B and C in the
LPDCCC decoder of FIG. 3;

FIG. 3B is a block diagram of combining RAM blocks of
processors A, B and C of FIG. 3A into larger RAM blocks;

FIG. 4 is a diagram illustrating an implementation of check
node processor (CNP) using a tree of look-up tables;

FIG. 5 is a diagram illustrating conventional pipelining;

FIG. 6A is a diagram illustrating a single-codeword pipe-
line;

FIG. 6B is a diagram illustrating a multiple-codeword
pipeline;

FIG. 7A is a diagram illustrating an example of RAM
storage where z=4 and G=2;

25

30

40

45

50

55

60

65

4

FIG. 7B is a diagram of the dynamic storage of the edge-
messages in the RAM storage of FIG. 7A at a first time
instance;

FIG. 7C is a diagram of the dynamic storage of the edge-
messages in the RAM storage of FIG. 7A at a second time
instance;

FIG. 7D is a diagram of the dynamic storage of the edge-
messages in the RAM storage of FIG. 7A at a third time
instance;

FIG. 8 is a chart illustrating BER results of an FPGA
simulation and C program; and

FIG. 9 is a process flow diagram of decoding LPDCCC by
the LPDCCC decoder.

DETAILED DESCRIPTION OF THE DRAWINGS

Referring to FIG. 1, a decoder architecture 10 for low-
density parity-check convolutional code (LDPCCC) based on
protograph is provided. Specifically, the LDPCCC is derived
from a well-designed quasi-cyclic LDPC block code. By
making use of the quasi-cyclic structure, the LDPCCC
decoder 10 adopts a dynamic message storage in the memory
12 and uses a simple address controller. The decoder 10
efficiently combines the memories 12 in the pipelining pro-
cessors 11 into larger RAM blocks so as to take advantage of
the data-width of embedded memory in a modern FPGA. A
rate-5/6 LDPCCC has been implemented on an Altera Stratix
FPGA. It displays an excellent error performance of lower
than 107'? at a signal-to-noise-ratio (SNR) of 3.55 dB and it
can achieve up to 2.0 Gb/s information throughput with a
clock frequency of 100 MHz.

The structure of LDPCCC and protograph-based
LDPCCC is described. The parity-check matrix of an unter-
minated time-varying periodic LDPCCC is represented by:

Ho(0)
H (1)

®
Ho(1)

Hio.eo) =

Hyg(ms) Hypgy (my) Ho(my)

Hyg (1) Hpoy (1) ... Ho(D)

where m, is termed as the memory of the parity-check matrix
and H,(t), where i=0, 1, .. ., m_, are (c—b)xc submatrices with
full rank. A LPDCCC is periodic with period T if H,(t)=H,(t+
T) for all i=0, 1, . . ., m. If T=1, the code is time-invariant;
otherwise, it is time-varying. The code rate of the LPDCCC is
R=b/c. A coded sequence v, .;=[Vg, V1, .. .], Where v,=|v, |,
Vigs - sV, satisfies Hyg o Vig o) =

Given a n_xn,, protograph matrix, a larger Tanner graph is
obtained by first making z copies of the protograph and then
permuting the edges.

Referring to FIG. 1, an example of lifting a 2x3 protograph
matrix P by a factor of z=3 is illustrated with

111
P=
[111}

This operation is equivalent to replacing the ones in a
protograph matrix with zxz permutation matrices and the
zeros with zxz zero matrices. If an entry in the protograph
matrix is 1 with 1>1, it will be replaced by a sum of 1 random
permutation matrices. An ensemble of protograph-based

US 8,671,323 B2

5

LPDCCC can be constructed in a similar manner except that
the protograph matrix needs to be unwrapped before the
copy-and-permute operation. Suppose a protograph-based
LDPC block code is created by lifting an n_xn,, protograph
matrix by a factor of z, the parity-check matrix fora LPDCCC
is constructed in the following three steps:

1) Partition the zn_xzn,, parity-check matrix H” as a MxM
matrix, where M is the greatest common divisor of n_andn,,
ie., M=gcd(n,_, n,):

HY, .. Hby 2)
| .

b b
HEy oo My

where H, Jb isa

matrix, fori, j=1,2,..., M.

2) Cut H? into H,” and H,” corresponding to the lower trian-
gular part and upper triangular part of H, respectively. H,”
and H,” are denoted as

b
Hyy
b b
» Hy, Hy,
Hi = : :
b b b
Hyy Hya, o Hiyu MxM
and
b b
Hyy Hy iy
b b
» Hy; Hiy
Hll = . .
b
Higsm L

3) Unwrap the parity-check matrix of the block code to obtain
the parity-check matrix of LPDCCC in the form of (1):

Hy €)

|
[0.0] = b
H

U

Hy

Referring to FIG. 2, the above construction process is
illustrated. By comparing (1) and (3), it can be observed that
the period of the derived protograph-based LPDCCC is T=M
and the memory m, satisfies M=m_+1 It can also be observed
that the relative positions between the variable nodes and the
check nodes do not change, hence the girth of the derived
LPDCCC is no less than that of the block code counterpart.
Therefore, a large-girth LPDCCC is constructed by first care-
fully designing the permutation submatrices for a large-girth
protograph-based LDPC block code, and then performing the
unwrapping operation. For clarity of presentation, the focus is
on the case where the variable nodes and the check nodes in
the protograph are connected by non-parallel edges, an analo-

w

10

15

20

25

30

35

40

45

50

55

60

65

6

gous decoder architecture tailored to more general proto-
graph-based codes can also be designed though.

The decoding algorithm for LPDCCCC is described. LPD-
CCC has an inherent pipeline decoding process. The pipeline
decoder 10 consists of I processors 11, separated by c(m+1)
code symbols, with I being the maximum number of decoding
iterations. At the start of each decoding step, the channel
messages 8 along with the variable to-check (V2C) messages
7 associated with ¢ variable nodes denoted by v,o=[v, .
Vioas - -+ V.| enter into the first processor 11A of the
decoder 10. The messages associated with the variable nodes
VtO—i(mS+1):|_Vt0—i(mS+l)5 1, Vio—ima1),25 + ¢ s VtO—i(mS+1),cJ are
shifted from the i-th processor 11 to the (i+1)-th processor,
where i=1, 2, . . ., i-1. Each processor 11 first updates c-b
check nodes u,6=| 1, U0 25 - - - 5 U0 o5] cOrresponding to the
t-th block row of Hy, . in (1) as follows,

@ = Ztanirl[tanh(

' eNm\n

Bt)
)

where a.,,, is the check-to-variable (C2V) message from
check node m to variable node n and f3,,, is the variable-to-
check (V2C) message from variable node n to check node m;
N(m)\n is the set of variable nodes connected to check node m
and N(m)\n is the set N(m) excluding variable node n.

Then, the other processors 11 in the decoder 10 perform
variable node updating and makes hard decision on ¢ variable
00des Vo =|Vio_m 1> Vio_m.2> - - + s Vio_m_| based on the a
posteriori prsobabilitgl (APP).SThe variable-to-check messages
and APP are calculated as follows,

5
R ot ®
m’ e Mnhm
and
6
Bzttt S ©
m’ e Mn)

where A, is the channel message for variable node n, f, is the
APP message for variable node n; M(n) is the set of check
nodes connected to variable node n, and M(n)\m is the set
M(n) excluding check node m.

The message shifting, check node processing and variable
node processing consist of a complete decoding step. After
that, the next decoding step starts and the updated variable-
to-check messages as well as the channel messages associ-
ated with the newly updated variable nodes will be shifted to
the next processor 11. As a result, after an initial delay of
(m, +1)I decoding steps, the decoded code bits 9 begin to be
output continuously from the last processor 11B in the
decoder 10.

The decoder architecture 10 is now described. The archi-
tecture design of the decoder 10 consists of a high-throughput
decoder requiring parallel processing of the LPDCCC. A
partially parallel decoder architecture 10 that utilizes paral-
lelization on both the node level and the iteration level is
described. The row number and column number of the sub-
matrices H, Jb in (2) (corresponding to H,(t) in (1)) is
c-b=zn /M and c=zn /M, respectively.

Referring to FIGS. 3 and 3 A, the decoder 10 comprises a
plurality of pipeline processors 11. Each processor 11 con-
tains a number of RAM blocks 30 and a block processing

US 8,671,323 B2

7

units (BPUs) 13. The BPUs 13 include a number of check-
node processors (CNPs) 14 to process check-nodes and a
number of variable-node processors (VNPs) 15 to process
variable-nodes. The variable-node to check-node (V2C) mes-
sages should be first available in the RAM blocks 30 of the
processor 11. The CNPs 14 process check-nodes by reading
the variable-node to check-node (V2C) messages from the
local RAM blocks 30. The resultant check-node to variable-
node (C2V) messages are either stored into the local RAM
blocks 30 or passed to the VNPs 15. The VNPs 15 process
variable-nodes by either reading the check-node to variable-
node (C2V) messages from the CNPs 14 orlocal RAM blocks
30. At the end, the resultant variable-node to check-node
(V2C) messages are stored into the RAM blocks 30 of the
next processor 11.

The connections between the VNPs 15 and the RAM
blocks 30, and the connection between the CNPs 14 and the
RAM blocks 30 are pre-defined and fixed according to the
parity-check matrix of an unterminated time-varying periodic
LDPCCC, respectively. A fixed connection means that the
CNPs 14 and the RAM blocks 30, and the VNPs 15 and the
RAM blocks 30 are connected directly without an additional
switching network/complicated shuffle switching network.
There is a hard wired connection between CNPs 14 and the
RAM blocks 30, and a hard wired connection between VNPs
15 and the RAM blocks 30. Having fixed connections
between the CNPs 14 to the RAM blocks 30 and fixed con-
nections between the VNPs 15 to the RAM blocks 30 avoids
using a switching network. The advantage of avoiding use of
a switching network is that the same throughput and error
performance can be achieved with a lower hardware com-
plexity. The power consumption and the manufacturing cost
of the system can be reduced accordingly.

In addition, a same memory slot can be used to store both
the check-node to variable-node message (C2V) and the vari-
able-node to check-node (V2C) message of the same edge
because either one of these two messages is required to be
stored at any instance. The total memory size can be reduced
by half.

The decoder architecture 10 consists of I processors 11
where [is the maximum number of decoding iterations. Since
the memory of a protograph-based LPDCCC constructed
using the previously described method is M ,=M-1, the vari-
able nodes and check nodes in each processor 11 are sepa-
rated by a maximum of M-1 time instants. Assume the c-b
check nodes and the ¢ variable nodes that last enter into the
processor 11 are denoted by u,0=[U, 1, o, - - - » Uy] and
Vol Vio1s Vios - - - » Vio.o]» Tespectively, then the check nodes
and variable nodes that are about to leave the processor 11 are
Woonee1 = Vooaris Urooazeros Wo_ns1e] and
Vioonen1 =\ Viooaze11 Viooass1 20 - - - Vio-azer o] Tespectively. At
each decoding step, a block processing unit (BPU) 13 is
responsible for processing the check nodes that just enter into
aprocessor 11, i.e., u,, and the variable nodes that are about to
leave the processor 11, i.e., v,_,,,,. Referring to FIG. 3, M
BPUs 13 are used in one processor 11. Although only one
BPU 13 is being used at each decoding step, using M BPUs 13
can avoid the complexity of routing the messages and it will
described later that using multiple BPUs 13 can also facilitate
the pipeline of up to M distinct codewords.

At the start of each decoding step, c—b check nodes are to
be processed. The c-b check nodes are divided into G groups
and a complete decoding step is divided into G stages. At the
i-th stage, i=1, 2, , G, (c-b)/G check nodes
|_ut0,(i—1)(c—b)/G+15 Us0,(i—1)(c=b)/Ga2> + - - utO,i(c—b)/GJ are pro-
cessed in parallel. The variable-to-check (V2C) messages
expressed in the sign-and-magnitude format are input to a

15

20

25

40

45

55

60

8

group of (c-b)/G check node processors (CNPs) 14. Among
the resulting check-to-variable (C2V) messages, those
between the check nodes in u,, and the variable nodes not in
thesetv,,_,,,, will be written to the local RAMs, waiting to be
further processed by other BPUs. On the other hand, the
updated check-to-variable messages between the check
nodes in u, and the variable nodes inv,,_,,., are converted to
the format of 2°s complement before being processed by the
variable node processor (VNP) 15. Since each check node is
connected with totally c¢/z variable nodes in v,,_,1,
(c-b/G)*(c/z)=c(c-b)/Gz variable nodes in v,,_,,,, are con-
nected to the newly updated check nodes and c(c-b)/Gz
VNPs 15 are needed in one BPU 13. Finally, the updated
variable-to-check messages are converted back to the format
of sign-and-magnitude and they will be shifted to the next
processor 11 together with their associated channel messages
in the next decoding step.

In the BPUs 13, the CNPs 14 update the check nodes
according to (4). However, in practical implementations the
messages are quantized in a few bits to reduce the complexity.
In the implementation of one embodiment, a four-bit quanti-
zation is adopted, where the quantization step is derived based
on density evolution and differential evolution. Empirical
results show that its error performance is only 0.1 dB worse
than the floating-point sum-product algorithm. The CNP 14
with quantization can be implemented by first pairing up the
input messages 41,42, 43, 44 and then calculating the extrin-
sic messages excluding the input message 41, 42, 43, 44 itself.
More specifically, suppose the variable nodes connected to
check node m is listed as [n, n,, . . ., 1], the corresponding
input messages 41, 42, 43, 44 being [s,, s, . . ., s,]. The
updated check-to-variable message 45 to variable node n, is
calculated as

Q{wmni} =0(S;5:4)»
where

M

o, j) = Q{Ztanh’l(tanhétanh%)},

8, =0(0(O(sy, 82), 83), - - - 8,y), and 5, =0(0(O(s 5 8,_1),
Sz 5)s « - -5 8ip1)- (7) can be implemented based on a simple
look-up table tree 14A as shown in FIG. 4. The look-up tables
are used to compute O(s,, s,), O(O(s, s,), 55) and O(O(O(s,,
$5)s S3), S4), €tC. . . ., while last column of the look-up tables
is used to compute Q{e }. The VNP 15 is basically an
adding operation which can be implemented using an adder
tree.

The memory storage 12 is described. Referring back to
FIG. 3A, the small RAM blocks 30 in the memory storage 12
of each processor 11 can be combined into larger RAM
blocks 301, 302, 303 as illustrated in FIG. 3B. For example,
processor A has RAM blocks A1, A2, A3, etc. Processor B has
RAM blocks B1, B2, B3, etc. Processor C has RAM blocks
C1, C2, C3, etc. RAM blocks Al, B1 and C1 of all three
processors 11 are combined into a larger RAM block 301.
RAM blocks A2, B2 and C2 of all three processors 11 are
combined into a larger RAM block 302. RAM blocks A3, B3
and C3 of all three processors 11 are combined into a larger
RAM block 303. Combining the small RAM blocks 30 in
each processor 11 into a larger RAM block takes advantage of
the data-width of embedded memory in a modern FPGA. This
helps to utilize the embedded memory of the FPGA more
efficiently. In addition, a small number of large-sized RAM
blocks consume a lower number of logic gates (lower hard-
ware complexity) than a larger number of small sized

US 8,671,323 B2

9

memory blocks with the same size of storage. The power
consumption and the manufacturing cost of the system can be
reduced accordingly.

Also, some address controllers can be shared by multiple
RAM blocks because the address sequence of different RAM
blocks may be the same. For example, larger RAM blocks
301, 302 containing smaller RAM blocks A1, B1, C1, A2, B2
and C2 share the same address controller 310. Sharing the
same address controller 301 helps to reduce the total number
of address controllers. By reducing the number of address
controllers, the hardware complexity of the system can be
lower. The power consumption and the manufacturing cost of
the system can be reduced accordingly. The address control-
ler may be a counter computing the address for the memory.
If it not possible for multiple memory blocks to share the
address controller, then there is one address controller 311 for
each larger RAM block 303.

In one embodiment, it is assumed that M=n_, hence c-b=z
and c=zn,/n,.. [t is also assumed that each entry in the original
protograph-matrix (1) is one. Suppose the decoding step is
divided into G stages with z/G check nodes being processed
in parallel. Consider the t,-th block row in Hy, ..;"* as shown
in FIG. 2, it consists of 1x(n,/n_) submatrices of size z which
correspond to z check nodes and zn,/n_ variable nodes in the
Tanner graph. Suppose u,, and v, just enter a processor 11
and v,,_,,,, and v,,_,,., are about to be shifted to the next
processor 11. The memory requirement is explained below.

The storing of check-to-variable/variable-to-check mes-
sages is described. The check nodes are denoted by u,0=| u,q ;,
Uy s - - - Uy | and divide them into G groups with the i-th
group being denoted by |_ut0,1+(i—1)z/G5 Uo,24G-1)z/Gs + + + 3
Uy oriiywels 51, 2, .., G. As explained previously, at the
i-th stage of the decoding step for processing u,,
|_ut0,1+(i—1)z/G5 Uy0,24(i=1)2/Go + + + » utO,z+(i—1)Z/GJ are processed in
parallel. Therefore in order to avoid collisions of memory
access, z/G different RAMs are needed to store the messages
of one edge incident on the set of check nodes. From the
construction of the protograph-based LPDCCC, each check
node has a regular degree of n,. Therefore, totally zn /G
RAMs are needed to store the edge-messages passing
between the check nodes in u,, and their connected variable
nodes. Each processor 11 has M sets of such check nodes, i.e.,
Uy, Uy g5 « - - 5 Uy ar; - In summary, in one processor 11
totally zn, M/G RAMs are allocated to store edge-messages,
i.e., check-to-variable or variable-to-check messages. The
data-depth and data-width of the RAMs equal to G and the
number of quantization bits, respectively.

The storing of channel messages is described: In terms of
channel messages, the memory storage mechanism is similar.
The set of z variable nodes corresponding to every submatrix
are first divided into G groups; then G RAMs, each of which
having G entries, are allocated to store their channel mes-
sages. The variable nodes in v,, correspond to n,/n,. subma-
trices and each processor 11 has variable nodes v,
Vio_1s - - - s Vio_arer- 1 sSUMmary, in one processor 11 totally
zn, M/n G RAMs are allocated to store the channel messages.
The data-depth and data-width of the RAMs equal to G and
the number of quantization bits, respectively.

For a general case that M is not necessarily equal to n_, in
one processor 11 zn_n /G RAMs store edge-messages and
zn, M/n G RAMs store channel messages. In modern FPGAs,
the total number of internal memory bits are sufficient to store
the messages for codes of a reasonable length and for a
reasonable number of iterations. However, the number of
RAM blocks is usually insufficient. Note that the operations
of the pipeline processors 11 are identical, the connections
between the RAMs and the BPUs are the same and the

10

15

20

25

30

35

40

45

50

55

60

65

10

addresses of accessing the RAMs are the same. By taking
advantage of the homogeneity of the processors 11, the
RAMs in different processors 11 are combined into one large
RAM block. In particular, for the RAMs handling edge-mes-
sages, the I sets of zn.n /G RAM blocks distributed in I
processors 11 are combined into one set of zn.n,/G RAM
blocks. Similar for the RAMs storing channel messages, [sets
of'zn, M/n G RAM blocks are combined into one set of zn, M/
n,G RAM blocks. The data-depth of the RAMs remains the
same, while the data-width becomes I times wider. Note that
the memory combination is a unique feature of LPDCCC and
is notboasted by LDPC block codes. For block codes, sophis-
ticated memory optimization has been proposed in but it
involves a high complexity and memory efficiency is
achieved at the cost of lower throughput.

Another advantage of such memory storage mechanism is
that the address controller is a simple counter incrementing
by one at every cycle, thanks to the quasi-cyclic structure.
Specifically, at the start of each decoding step, the addresses
of accessing the RAMs are initialized based on the parity-
check matrix Hy, ..;”. As the decoding process proceeds, the
addresses are incremented by one after every stage, until G
stages complete.

Pipeline scheduling is described. Referring to FIG. 5, con-
ventional LPDCCC decoder architectures adopts a pipeline
design. Each processor 11 sequentially does the following:
shift the messages in, update check nodes, write data to
memories, input messages to VNP and update variable nodes.
This pipeline schedule only utilizes pipelining on the iteration
level following the standard decoding process.

A more efficient pipeline scheduling based on the dynamic
memory storage structure is provided. The pipeline schedule
for a single codeword is described. Instead of writing the
updated messages from CNP 14 and those from VNP 15 in
two separate stages, they are combined with the shifting
operation. The updated messages from VNP 15 and the chan-
nel messages associated with the updating variable nodes are
directly output to the next processor 11, which completes the
writing and shifting operations at the same time. Since some
of'the updated messages from CNP 14 need not be processed
by VNP 15, they are written to the local memories at the same
time. Note that the memory locations into which the messages
are shifted are exactly those storing the original messages
loaded by the BPU 13. Therefore, there would not occur
memory collisions during the process.

It can also be inferred from this process that the types of
messages stored in the memories are dynamically changing.
The messages associated with check node u,,, are all variable-
to-check messages by the time u,,, first enter into the processor
11 and are ready to be processed by CNP 14. After each
decoding step, parts of the messages are substituted by the
updated variable-to-check messages from the previous pro-
cessor 11. When M decoding steps are completed, all the
check-to-variable messages originally associated with check
node u,, will be substituted again by variable-to-check mes-
sages, but now they are messages for checknodeu,,_,,,, and
ready for CNP 14 in a new around of decoding.

FIG. 6A illustrates the pipeline for a single codeword
assuming G=3 and M=4. Comparing FIG. 5 and FIG. 6A, it
can observed that decoding a group of check nodes only takes
4/7 of the time cost in conventional scheduling. The homog-
eniety of the pipeline processors 11 also facilitates a pipeline
processing of multiple codewords. As shown in FIG. 6A, of
the single-codeword case, the processing time of different
BPUs are separate in the sense that while one BPU is pro-
cessing, the other BPUs remain idle. To further increase the
throughput, the other BPUs are scheduled to process other

US 8,671,323 B2

11

codewords. Since the total blocks in a processor 11 is M, a
maximum of M different codewords are incorporated in one
processor 11, letting BPU, process codeword-i, for i=1,
2, ..., M. Depending on how many codewords are incorpo-
rated, the throughput can be increased substantially by a
maximum factor of M at the cost of additional memory stor-
age and the additional hardware complexity of the BPUs.
FIG. 6B illustrates the pipeline schedule for four codewords
with G=3 and M=4.

Using the described pipeline schedule, the throughput of
the decoder is (n,-n.)z/M information bits for every G+d
cycles, where d is the time delay for each pipeline stage such
that G+d cycles are used by one BPU. As more decoding
stages are divided, i.e., G increases, the throughput tends to
(n,~n,)zt/MG bits/s with a running clock of f Hz.

An illustrative example of the RAM storage and decoding
process is described. Consider a LPDCCCC with G=2 and
7=4 based on a (n,=2)x(n,=4) protograph matrix:

1111
P=
[1111}

Since M=gcd(n,, n,)=2, each processor 11 has M=2 BPUs.
In each processor 11, zn.n,/MG=8 RAMs are dedicated to
store edge-messages and zn, /MG=4 RAMs are dedicated to
store channel messages. Assume that the check nodes
U0={Us0,15 W 55 - - - » Uy 4] just enter into the processor 11 and
variablenodes v,_;=|V,o_, 1, Vio_1 25 - - > Ug_;] areabout to
leave. The check nodes u,,=|u,0 1, Uy 5, - - - » Uy 4] are divided
(101) into G=2 groups. The decoding step of processing
BPU,, i=1, 2, is divided (100) into G=2 stages. Referring to
FIG. 7A, the dynamic storage of the edge-messages in the
RAMs at different time instances is illustrated.

Firstly, the top half of FIG. 7B shows the RAM storage at
the start of processing (102) check node u,, and variable node
V,o_; by BPU, . It can be seen that RAM 1 to 8 store (103) the
variable-to-check messages for check node u,, ready to be
processed. RAM 13 to 16 store (104) the check-to-variable
messages updated for check node u,,_, in the previous decod-
ing step by BPU,. RAM 9 to 12 store (105) the variable-to-
check messages that are newly updated in the previous decod-
ing step and shifted from the previous processor 11.

Secondly, the bottom half of FIG. 7B shows the RAM
storage after the first stage of BPU, processing. At the first
stage, BPU, will process check nodes u,, , and u,, , and their
connected variable nodes in Vv,o_;, €8, [Vio_13 Vio_1as
Vio_1.5s Vio_1.s]- CNP 14 reads (106) the variable-to-check
messages from the first entries located in RAM 1 to 8. The
newly updated check-to-variable messages between check
node u,, and variable node v,, from CNP 14 are input (107) to
the first entries in RAM 1 to 4, i.e., where the check-to-
variable messages are read. While the newly updated check-
to-variable messages between check node u,, and variable
node v,,_, are input (108) to the VNP 15 and the resulting
variable-to-check messages are shifted (109) into the next
processor 11. As a result, the updated variable-to-check mes-
sages between variable node v, ; and check node u,,,, are
written (110) to RAM 5 to 8 and those between variable node
V,0,; and check node u,,, , are written to RAM 13 to 16.

Thirdly, the top half of FIG. 7C shows the RAMs after the
second stage of BPU, processing. At the second stage, BPU,
will process check nodes u,, ; and u,, 4, and their connected
variable nodes in v,q_, €.8., [Vio_1.15 Vio_1.2> Vio_1.6» Veo_1.7]-
CNP 14 reads the variable-to-check messages from the sec-
ond entries located in RAM 1 to 8. The newly updated check-

10

15

20

25

30

35

40

45

50

55

60

65

12

to-variable messages between check node u,, and variable
node v, from CNP 14 are input to the second entries in RAM
1 to 4, where the check-to-variable messages are read. While
the newly updated check-to-variable messages between
check nodeu,, and variablenodev,,_, areinputto the VNP 15
and the resulting variable-to-check messages are shifted into
the next processor 11. As a result, the updated variable-to-
check messages between variable node v, ; and check node
U,q,, are written to RAM 5 to 8 and those between variable
node v, , and check node u,,, ; are written to RAM 13 to 16.
4. The bottom half of FIG. 7C shows that the RAM updating
at the decoding step of BPU, is analogous to the description
(2) and (3).

Referring to FIG. 7D, after the second stage of BPU,,
RAM 1 to 8 will have the variable-to-check messages ready
for check node u,,,, and their connected variable nodes in
V,0.1- The RAM storage is similar to that in (1) with the time
instances incrementing by M=2. A new round of BPU, updat-
ing will follow according to (2) and (3).

After the address controller is initialized at the start of G
stages, the read/write address of accessing the RAMs are
simply incremented by 1.

The protograph-based LPDCCC decoder is implemented
on Altera Stratix [V field-programmable gate array (FPGA).
The Bit-Error Rate (BER) performance for LPDCCCs of
different sizes based on a 4x24 protograph matrix with 1 in
each entry is simulated. The permutation indices in the block
code counterpart are chosen such that the girth is 8.

First the noise generator is verified by comparing the
FPGA experimental results with those generated by the C
program. It can be observed from FIG. 8 that the FPGA
simulation results match exactly with those generated by the
C program for LPDCCC of different sizes.

An efficient partially parallel decoder architecture for pro-
tograph-based LDPCCC has been provided. It can achieve a
throughput of 2.0 Gb/s without using switching networks. A
rate-5/6 LDPCCC of different sizes has been implemented on
an Altera FPGA. Simulation results show that protograph-
based LDPCCCs outperform the block code counterparts
with the same throughput and similar processor complexity.
Moreover, the protograph-based LDPCCCs derived from
well-designed block codes can achieve an extremely low
error floor and a coding gain of almost 11 dB at 1072,

Although the decoder has been described as being imple-
mented on a field-programmable gate array (FPGA), an
Application-Specific Integrated Circuit (ASIC) may also be
possible.

It will be appreciated by persons skilled in the art that
numerous variations and/or modifications may be made to the
invention as shown in the specific embodiments without
departing from the scope or spirit of the invention as broadly
described. The present embodiments are, therefore, to be
considered in all respects illustrative and not restrictive.

We claim:

1. A Low-Density Parity-Check Convolutional Code (L.P-
DCCC) decoder for partial parallel decoding of low-density
parity-check convolutional codes, the decoder comprising:

a plurality of pipeline processors to receive channel mes-

sages and edge-messages; each processor having:

a plurality of block processing units (BPUs), each BPU
having a plurality of check node processors (CNPs) to
process check nodes that enter into the processor and
a plurality of variable node processors (VNPs) to
process variable nodes that are about to leave the
processor; and

US 8,671,323 B2

13
a plurality of Random Access Memory (RAM) blocks
for dynamic message storage ofthe channel messages
and the edge-messages;

wherein in each processor, the VNPs are directly connected

to corresponding RAM blocks, and the CNPs are
directly connected to corresponding RAM blocks such
that the connections from the VNPs and CNPs to the
corresponding RAM blocks are pre-defined and fixed
according to a parity-check matrix of an unterminated
time-varying periodic LDPCCC.

2. The decoder according to claim 1, wherein RAM blocks
of different processors are combined into a plurality larger
RAM blocks such that each larger RAM block has a RAM
block from each processor.

3. The decoder according to claim 2, wherein each larger
RAM block has an address controller.

4. The decoder according to claim 3, wherein at least two
larger RAM blocks share the same address controller.

5. The decoder according to claim 3, wherein the address
controller is a counter that is incremented by one after every
stage of decoding the LPDCCC.

6. The decoder according to claim 1, wherein the CNP is a
look-up table tree.

7. The decoder according to claim 1, wherein the messages
processed by the CNP and from the VNP are updated in the
same stage using a shifting operation such that updated mes-
sages from the VNP and the channel messages associated
with the updated variable nodes are directly output to the next
processor.

8. The decoder according to claim 7, wherein a portion of
updated messages from the CNP are not processed by the
VNP and are written to local memories.

9. The decoder according to claim 1, wherein the edge-
message is a check-to-variable message or variable-to-check
message.

10. The decoder according to claim 1, wherein the mes-
sages are quantized in a few bits to reduce complexity.

11. The decoder according to claim 1, wherein the VNP is
an adding operation using an adder tree.

10

20

25

35

14

12. The decoder according to claim 1, wherein the decoder
is implemented on a field-programmable gate array (FPGA)
or an Application-Specific Integrated Circuit (ASIC).
13. A method for partial parallel decoding of Low-Density
Parity-Check Convolutional Codes (LPDCCCs), the method
comprising:
receiving channel messages and edge-messages by a plu-
rality of pipeline processors, and each processor having:
a plurality of block processing units (BPUs),

processing check nodes that enter into the processor by
check node processors (CNPs) in each BPU;
process variable nodes that are about to leave each proces-
sor by variable node processors (VNPs) in each BPU;

dynamically storing the channel messages and the edge-
messages in a plurality of Random Access Memory
(RAM) blocks in each processor;

directly connecting the VNPs to corresponding RAM

blocks in each processor;

directly connecting the CNPs to corresponding RAM

blocks in each processor;

wherein the connections from the VNPs and CNPs to the

corresponding RAM blocks are pre-defined and fixed
according to a parity-check matrix of an unterminated
time-varying periodic LDPCCC.

14. The method according to claim 13, further comprising
combining RAM blocks of different processors into a plural-
ity larger RAM blocks such that each larger RAM block has
a RAM block from each processor.

15. The method according to claim 14, wherein each larger
RAM block has an address controller.

16. The method according to claim 15, wherein at least two
larger RAM blocks share the same address controller.

17. The method according to claim 14, wherein the address
controller is a counter that is incremented by one after every
stage of decoding the LPDCCC.

18. The method according to claim 13, wherein the CNP is
a look-up table tree.

