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Abstract. Normal ordering (Wick order) is commonly used in the analysis of

quantum correlations. Unfortunately it can only give partial information for correlation

analysis. For example, for a continuous-mode single-photon state (whose correlation

function consists of two parts, one due to quantum vacuum noise and the other due

to photon pulse shape), the normal ordering analysis simply ignores the contribution

from the quantum white noise. In this paper, we propose to use Wigner spectrum to

analyze single-photon states. We show Wigner spectrum is able to provide complete

quantum correlation in time and frequency domains simultaneously. We demonstrate

the effectiveness of the method by means of two examples, i.e., optical cavity (a passive

system) and degenerate parametric amplifier (a non-passive system). Numerical

simulations show that Wigner spectra are able to reveal the clear difference between

the output states of these two systems driven by the same single-photon state. We also

investigate how to use control methods to engineer photon pulse shapes of the output

state of a quantum linear system in response to a single-photon state.
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1. Introduction

Single photons are fundamental resources for quantum communication [1, 2], quantum

computing [3, Chapter 6.3], [4], quantum metrology [5, 6, 7], and quantum networks

[8, 9, 10]. In contrast to single-mode photon states, continuous-mode photon states

are closer to a real experimental environment in quantum information processing

[11, 12, 13, 14]. In [15], the authors discussed efficient excitation of a two-level atom by

a single-photon state. Both continuous-mode single-photon Fock state and continuous-

mode single-photon coherent states are used as probes. And the effect of their temporal
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pulse shapes (for example Gaussian, hyperbolic secant, rectangular, rising exponential

and decaying exponential) on the excitation probability is studied. A theoretical

framework is presented in [16] which describes the interaction between light wave packets

of arbitrary spectral distribution functions and a quantum system. Master equations

for the system and output field quantities (e.g., quadratures and photon flux) also have

been discussed in this framework. Recently, an experiment has been conducted which

demonstrated real-time measurement of a rising exponential single-photon wavepacket

[17]. In this experiment, a single-mode optical parametric oscillator (OPO) with a built-

in polarization beamsplitter is used to generate a signal photon of rising exponential

pulse shape which is triggered by the idler photon measured by avalanche photodiode

(APD). The quantum filters for an arbitrary quantum system driven by a continuous-

mode single photon Fock state has be investigated in [18]. Two approaches are proposed,

the non-markovian embedding technique [19] and the markovian embedding technique

[20], and the latter discussed how to design a two-level system to generate a desired

continuous-mode single-photon Fock state. The study in [19, 20] are extended in [16] to

derive the master equations of an arbitrary quantum system driven by continuous-mode

multi-photon Fock wave packets. Moreover, based on [19], the quantum filters of an

arbitrary quantum system driven by a continuous-mode multi-photon state are derived

in [21]. By applying the stochastic master equations to a cavity driven by a continuous-

mode single-photon field, the conditional dynamics for the cross phase modulation in a

doubly resonant cavity are analyzed in [22]. Based on a quantum stochastic model, some

previous results are solved numerically, as well as different effects on the distribution of

conditional phase shifts. Furthermore, the formalism is well suited to measurement-

based feedback control [23]. Linear signals and systems theory has recently been

proposed to study single-photon quantum signals, and the response of quantum linear

systems driven by multi-channel single-photon input fields are investigated in [24]. It is

shown that the steady-state output is in a single-photon state for a cavity driven by a

single-photon input state, while this is not the case for a degenerate parametric amplifier

(DPA). A class of photon-Gaussian states is defined which can describe the steady-state

output state of the DPA. It has also been proved that the class of photon-Gaussian states

are invariant in regard to quantum linear dynamics. Interestingly, single-photon states

are special cases of photon-Gaussian states. A mathematical framework for analyzing

the quantum linear systems’ response to multi-photon states is presented in [25], where

both the factorizable and unfactorizable wave packtes are treated. Particularly, a more

general class of states represented by tensor is defined when the quantum linear system

is driven by multi-photon input states.

The Wigner function (also called the Wigner quasiprobability distribution or the

Wigner-Ville distribution) is firstly introduced by Eugene Wigner [26] and used to link

the wave function to a probability distribution in phase space. The simplified scheme

with randomly varied phase has been conducted in [27]. A phase-averaged Wigner

function and diagonal elements of density matrix for a single-photon Fock state are

reconstructed using the method of homodyne tomography. Since the exhibition of
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negative values around the origin of phase space, the reconstructed Wigner function

reflects the non-classical property of the single-photon state. In this case, experimental

results, such as detection efficiency, minimum of Wigner function, are consistent with

the theoretical evaluations. A continuous-wave (cw) laser was used in the experiment as

light source to generate arbitrary superposition of Fock states in [28]. Those generated

superposition states with wider bandwidth are applicable to the teleportation-based

quantum operations. Particularly, a three photon Fock state |3〉, superpositions of Fock

states |1〉 and |3〉, and |0〉 and |3〉 are generated in the experiments. Multiple areas

of negativity of Wigner function are observed to verify the non-classical property of

the generated states. An experimental technique of polychromatic optical heterodyne

tomography is presented in [29] and nonvanishing imaginary parts have been added

into the temporal mode function (TMF) to demonstrate the technique can reconstruct

photon states with complex temporal modes. Both the real and imaginary components

of a single-photon’s temporal density matrix are considered by measuring the reduced

autocorrelation matrix. In addition, the experimental temporal modes and their

theoretical predictions are compared with several modulations.

The first goal of this paper is to use Wigner spectrum, the time-frequency variant

of the Wigner function, to analyze the covariance functions for continuous-mode single-

photon states. In most literature, correlations are calculated for normal ordered (Wick

order) operators to avoid the delta function, see e.g. [30]. For example, the normal

ordering of â(t)â†(r) is : â(t)â†(r) := â†(r)â(t). That is, the impulse function δ(t − r)
has been thrown away. In our paper, instead of the partial information of the normal

ordering term : â(t)â†(r) :, we intend to present a direct analysis on â(t)â†(r) in terms

of the Wigner spectrum method, therefore keeping the complete information.

The problem of pulse-shaping of single-photon states has been investigated in [31].

The relation between input and output pulse shapes is derived in the frequency domain

when the underlying system is an empty cavity. Quantum interface between optical and

microwave fields is described by using a micromechanical resonator (MR) in [32]. The

outputs of the local oscillator and the cavity are mixed by a beamsplitter and filtered

output modes can be defined by proper temporal mode function of this oscillator. In the

case of an even cat input state, the fidelity has been calculated and simulation results

show that the proposed teleportation scheme has high quality. The response of quantum

nonlinear systems to single-photon input states is presented in [33]. Particularly, the

output states and pulse shapes for quantum two-level systems are derived explicitly in

time and frequency domains. The input-output relation of pulse shapes is expressed

by transfer function in [24]. The pulse-shaping problem in the case of quantum linear

systems has also been discussed and can be implemented. A memory subsystem within

a linear network is proposed in [34]. The memory system is decoupled from the optical

field during the storage process while coupled to the field in the other processes. The

zero-dynamic principle, that is, the output field for passive system must be vacuum,

is emphasized for quantum memory problem. Recently, a complete framework with

the temporal modes (TMs) of single-photon states is proposed in [14]. The definition
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of temporal modes and its application in quantum information encoding are reviewed.

Particularly, the quantum pulse gate (QPG), which is equivalent to a TM reshaper, is

presented and the reshaping operation is given theoretically.

Along the above lines, the second goal of this paper is to show how to use coherent

feedback control to engineer wave packets and Wigner spectra of single-photon states.

The rest of the article is organized as follows. Single-photon states, Wigner

distribution and Wigner spectrum are briefly introduced in Section 2. Then Wigner

spectrum for an optical cavity is characterized later, the changes of Wigner spectrum

with respect to cavity decay rate and de-tuning are treated. In contrast to the cavity

case, Wigner spectra for DPA are also presented in Section 3. In Section 4, the wave

packets of several coupled systems are compared, together with the corresponding

detection probabilities. Moreover, Wigner spectrum for a feedback network which

contains a cavity and a beamsplitter is analyzed. Finally, Section 5 contains some

concluding remarks.

2. Wigner spectrum for optical cavity

2.1. Single-photon states

Let b̂[ω] be the annihilation operator for mode ω of the input field. b̂[ω] and its adjoint

operator b̂†[ω] satisfy the singular commutation relation[
b̂[ω1], b̂

†[ω2]
]

= δ (ω1 − ω2) . (1)

Define an operator in the interaction picture

B̂(ξ) ,
∫ ∞
−∞

dω ξ∗[ω]b̂[ω], (2)

where ‖ξ‖ ,
∫∞
−∞ dω |ξ[ω]|2 = 1. A continuous-mode single-photon Fock state with the

spectral pulse shape ξ[ω] is defined to be

|1ξ〉 ≡ B̂†(ξ) |0〉 ,
∫ ∞
−∞

dω ξ[ω]b̂†[ω] |0〉 . (3)

b̂†[ω] is the creation operator of the light field, and thus b̂†[ω] |0〉 ≡ |1ω〉 can be understood

as photon generation at frequency ω, while the probability is given by |ξ[ω]|2. So the

continuous-mode single-phton Fock state |1ξ〉 can be interpreted as a photon coherently

superposed over a continumn of frequency modes, with probability amplitudes given by

the spectral density function ξ[ω]. The Fourier transform of (3) gives the time-domain

expresson of the single-photon Fock state, which is

|1ξ〉 =

∫ ∞
−∞

dt ξ(t)b̂†(t) |0〉 . (4)

Clearly, the time-domain counterpart of the commutation relation (1) is[
b̂(t), b̂†(r)

]
= δ (t− r) . (5)
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It is easy to show that the continuous-mode single-photon Fock state |1ξ〉 has the

following properties,〈
1ξ|B̂†(ξ)|1ξ

〉
=
〈

1ξ|B̂(ξ)|1ξ
〉

= 0, (6)

and

B̂(ξ) |1ξ〉 = ‖ξ‖2 = 1. (7)

Next we discuss continuous-mode single-photon coherent states, which can be

defined to be, [13, Eq. (3.1)]

|αξ〉 = exp
(
αB̂(ξ)† − α∗B̂(ξ)

)
|0〉 (8a)

= exp

(∫ ∞
−∞

dω αξ[ω]b̂†[ω]−
∫ ∞
−∞

dω (αξ[ω])∗b̂[ω]

)
|0〉 , (8b)

where α = eiθ is a complex number. Clearly, by the Baker-Hausdorff formula, |αξ〉 can

be re-written as

|αξ〉 = exp

(
−|α|

2

2

)
exp(αB̂†(ξ))) exp(−α∗B̂(ξ)) |0〉 . (9)

Consequently, we may express the continuous-mode single-photon coherent state in

terms of continuous-mode number states, that is,

|αξ〉 = exp

(
−|α|

2

2

)
∞∑
n=0

αn√
n!
|nξ〉 , (10)

where

|nξ〉 ,
1√
n!

(B̂†(ξ)†)n |0〉 (11)

is a continuous-mode number state. (10) is similar to Eq. (4.3.1) in [30], with

the exception of replacing the bosonic single-mode annihilation operator â with the

continuous-mode operator B̂(ξ) and accordingly |n〉 with |nξ〉.

It is easy to show that the continuous-mode single-photon coherent state |αξ〉 is the

eigenstate of B̂(ξ), that is

B̂(ξ) |αξ〉 = α |αξ〉 . (12)

Moreover, 〈
αξ|B̂(ξ)|αξ

〉
=
〈
αξ|B̂†(ξ)|αξ

〉
= α 〈αξ|αξ〉 = α. (13)

And the mean photon number is〈
αξ|B̂†(ξ)B̂(ξ)|αξ

〉
= |α|2 = 1. (14)

This is the reason why |αξ〉 is a single-photon coherent state.

Notice that for any function µ[ω],

Eαξ

[
ei

∫∞
−∞ dω µ[ω]b̂†[ω]+µ∗[ω]b̂[ω]

]
= exp

[
−1

2
‖µ‖2 + i (〈η∗|µ〉+ 〈η|µ∗〉)

]
, (15)
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where η , αξ and the subscript “αξ” indicates that the expectation is taken with respect

to |αξ〉. Thus, by the characteristic function theory, |αξ〉 is a Gaussian state. More

discussions on continuous-mode coherent states can be found in, e.g., [13, Eq. (3.1)],

[35], and [24, Section II.E]. It should be emphasized that the Mandel’s Q parameters for

single-photon Fock state and coherent state are different. The Mandel’s Q parameter for

Fock state is less than 0, which indicates the sub-Poissonian statistics. While coherent

states have a Poissonian photon-number statistics for which Q = 0.

Remark 1 In fact, for the continuous-mode single-photon coherent state, αξ[ω] =

eiθξ[ω] plays the same role as α(ω) in [13, Eq. (3.1)]. For the continuous-mode single-

photon state |1ξ〉, (3) is also defined in Section III-B in [13, Eq. (3.1)]. See also [36,

Eq. (3)], [3, Chapter 6], [31, Eq. (9)], [37, Chapter 5], [15, Eq. (19)], [20, Eq. (17)],

[24, Eq. (34)].

2.2. Wigner distribution function and Wigner spectrum

Due to the singular commutation relations (1) and (5), for the continuous-mode single-

photon Fock state |1ξ〉, we have〈
1ξ|b̂(t)b̂†(τ)|1ξ

〉
= δ(t− τ) + ξ(t)ξ∗(τ). (16)

(16) shows the non-stationarity of the single-photon state |1ξ〉. The presence of the

Dirac delta function is cumbersome for the statistical analysis of the single-photon state

|1ξ〉. So normal ordering is often used. For example, the normal ordering of b̂(t)b̂†(r) is

: b̂(t)b̂†(τ) := b̂†(τ)b̂(t). (17)

Notice that in this case,〈
1ξ| : b̂(t)b̂†(τ) : |1ξ

〉
= ξ(t)ξ∗(τ). (18)

That is, the Dirac delta function is removed. Because of this, time ordering is commonly

used in quantum optics, see e.g., [30]. In this paper, we adopt an alternative method for

analyzing the statistical properties of input and output quantum signals. The method

we use belongs to the time-frequency analysis. Let x(t) be a quantum variable, see, e.g.,

b̂(t), b̂†(t) or b̂(t)b̂†(t), define the two-time autocorrelation function

rx(t, τ) , Eξ[x(t)x†(τ)], (19)

where the subscript “ξ” indicates that the expectation is taken with respect to the

single-photon state |1ξ〉. Clearly, by (16) we have

rb̂(t, τ) = Eξ[b̂(t)b̂†(τ)] = δ(t− τ) + ξ(t)ξ∗(τ). (20)

Similarly, by normal ordering,

rb̂†(τ, t) = Eξ[b̂†(τ)b̂(t)] = ξ(t)ξ∗(τ) = Eξ[: b̂(t)b̂†(τ) :]. (21)

Applying the Fourier transform to the two-time autocorrelation function rx(t, τ) with

respect to the time variable τ , yields

Sx(t, ω) =
1√
2π

∫ ∞
−∞

rx(t, τ)e−iωτdτ. (22)
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Define

Wx(t, ω) ,
1√
2π

∫ ∞
−∞

x(t)x†(τ)e−iωτdτ. (23)

Clearly, by (19), (22), and (23) we have

Sx(t, ω) = Eξ [Wx(t, ω)] . (24)

In the literature, Wx(t, ω) is called the Wigner-Ville distribution function, or simply

Wigner function, and accordingly Sx(t, ω) the Wigner spectrum, [26], [38], [39]. Notice

that

Sb̂(t, ω) =
1√
2π
e−iωt + ξ(t)ξ∗[ω]. (25)

Comparing (20) and (25), we see that the Dirac delta function does not appear in the

Wigner spectrum Sx(t, ω). Motivated by this, in this paper we use Wigner spectrum

to analyze the statistical properties of quantum signals, instead of resorting to normal

ordering.

2.3. Optical cavity

Briefly speaking, an optical cavity G consists of two mirrors which are aligned on one

optical axis such that the incident light can be reflected in a closed path [40, Chapter

7.1], [41, Chapter 5.3]. The dynamics of the intracavity field operator â(t) can be

described with the following quantum stochastic differential equations

˙̂a(t) = (−κ
2
− iω0)â(t)−

√
κb̂in(t), (26a)

b̂out(t) =
√
κâ(t) + b̂in(t), (26b)

where [â, â†] = 1, b̂in(t) (b̂out(t)) is the input (output) field which satisfies [b̂(t1), b̂
†(t2)] =

δ(t1 − t2), κ is the cavity decay rate and ω0 is the de-tuning. The impulse response

function for this system G is given by

gG(t) = δ(t)− κe(−
κ
2
−iω0)t, t ≥ 0, (27)

while gG(t) ≡ 0 when t < 0. Let |1ν〉 be a continuous-mode single-photon state

|1ν〉 ≡ B†(ν)|0〉 :=

∫ ∞
−∞

b†in(t)ν(t)dt|0〉 (28)

with pulse shape

ν(t) =

{ √
2γe−γt, t ≥ 0,

0, t < 0.
(29)

The state |1ν〉 can describe a single-photon field emitted from an optical cavity with

damping rate
√

2γ [3, 40]. Then the input covariance function is

Rin(t, r) =

[
δ(t− r) 0

0 0

]
+

[
ν∗(r)ν(t) 0

0 ν∗(t)ν(r)

]
. (30)
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On the other hand, by the input-output relation [24], the steady-state output single-

photon state |1η〉 has the pulse shape

η(t) =
√

2γe−γt − κ
√

2γ
κ
2

+ iω0 − γ
(
e−γt − e(−

κ
2
−iω0)t

)
. (31)

Write

χ(t, r) = δ(t− r), (32)

then the steady-state output covariance function is

Rout(t, r) = χ(t, r)

[
1 0

0 0

]
+

[
η(t)η∗(r) 0

0 η∗(t)η(r)

]
. (33)

By (22) and (30), the Wigner spectrum of the input covariance function can be expressed

in terms of both time and frequency

Sin(t, ω) =
1√
2π

[
e−iωt 0

0 0

]
+

1√
2π

[
2γ
γ+iω

e−γt 0

0 2γ
γ+iω

e−γt

]
. (34)

Similarly, by (22) and (33), we can get the Wigner spectrum of the output covariance

function

Sout(t, ω) =
1√
2π

[
e−iωt 0

0 0

]
+

1√
2π

[
η(t)S11(ω) 0

0 η∗(t)S22(ω)

]
, (35)

where

S11[ω] =
√

2γ ×
−1

4
κ2 + 1

2
κγ − ω2

0 + ωω0 + i[γω0 + 1
2
ωκ− ωγ]

(γ + iω)(κ
2
− iω0 − γ)(κ

2
− iω0 + iω)

, (36a)

S22[ω] =
√

2γ ×
−1

4
κ2 + 1

2
κγ − ω2

0 − ωω0 + i[−γω0 + 1
2
ωκ− ωγ]

(γ + iω)(κ
2

+ iω0 − γ)(κ
2

+ iω0 + iω)
. (36b)

If we let decay rate κ→∞, then the following equation holds

Sout(t, ω) = Sin(t, ω). (37)

That is, the output single-photon state is identical to the input single-photon state.

It should be noted that the quantities plotted are dimensionless throughout the

paper. In the following we fix damping rate γ = 2. In Fig. 1, (a) and (b) are the diagonal

entries of the input Wigner spectrum respectively and both of them are exponentially

decaying with respect to time t. Fig. 2, Fig. 3 and Fig. 4 are the output Wigner spectra

with different decay rates κ and the same de-tuning ω0 = 0. Fig. 5, Fig. 6 and Fig. 7

are the output Wigner spectra with same decay rate κ = 4 and different de-tunings ω0.

By comparing these figures, we can see that there exist five cases. Case 1: the

output Wigner spectrum will be close to the input when the decay rate κ is very small

and this can be explained by comparing (34) and (35) directly. Case 2: the output

Wigner spectrum will also be close to the input when the decay rate κ is very large.

Since the impulse response function gG(t) → δ(t) when κ → ∞, then the output state

will be close to the input state. Case 3: the output Wigner spectrum would be much
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Figure 1. (Color online) (a) and (b) are the diagonal entries of the input Wigner

spectrum.

Figure 2. (Color online) (a) and (b) are the diagonal entries of the output Wigner

spectrum with de-tuning ω0 = 0 and decay rate κ = 0. The output Wigner spectrum

is as same as the input since the output covariance function reduces to the input.

Figure 3. (Color online) (a) and (b) are the diagonal entries of the output Wigner

spectrum with de-tuning ω0 = 0 and decay rate κ = 3. Compared with the input,

output Wigner spectrum is no longer monotonic in ω = 0 since decay rate κ becomes

larger.

Figure 4. (Color online) (a) and (b) are the diagonal entries of the output Wigner

spectrum with de-tuning ω0 = 0 and decay rate κ = 100. The output Wigner spectrum

is much similar to the input when decay rate κ is large.
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Figure 5. (Color online) (a) and (b) are the diagonal entries of the output Wigner

spectrum with decay rate κ = 4 and de-tuning ω0 = 0. In contrast to the decay rate κ,

the output Wigner spectrum is much unlike the input even de-tuning ω0 is very small.

Figure 6. (Color online) (a) and (b) are the diagonal entries of the output Wigner

spectrum with decay rate κ = 4 and de-tuning ω0 = 10. When de-tuning ω0 becomes

larger, the output Wigner spectrum will tend to be the input.

Figure 7. (Color online) (a) and (b) are the diagonal entries of the output Wigner

spectrum with decay rate κ = 4 and de-tuning ω0 = 50. Finally, if de-tuning ω0 is

sufficiently large, the output Wigner spectrum would be close to the input.

similar to the input when the de-tuning ω0 is very large since the optical cavity has

little influence on the photons, see Fig. 7. Case 4: it can be seen from Fig. 3 that the

output Wigner spectrum is quite different from the input one when κ is not very large or

small. Moreover, (a) (for b̂outb̂
†
out) and (b) (for b̂†outb̂out) are quite different. Case 5: The

output Wigner spectrum would change a lot with a small de-tuning since there exists a

strong interaction between the photon and system (compare Figs. 1 and 5). Therefore,

with Wigner spectrum, we are able to observe the changes of the system’s response to

the input signals in time and frequency domain simultaneously. This has not been done

before in the single-photon setting.
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3. Wigner spectrum for degenerate parametric amplifier

A degenerate parametric amplifier (DPA) is an open oscillator that is able to produce

squeezed output fields [30, Chapter 6.3], [40, Chapter 7.6], [41, Chapter 6.3].

A model for a DPA is [24][
˙̂a(t)

˙̂a
†
(t)

]
= − 1

2

[
κ −ε
−ε κ

][
â(t)

â†(t)

]
−
√
κ

[
b̂in(t)

b̂†in(t)

]
, (38a)

b̂out(t) =
√
κâ(t) + b̂in(t), (0 < ε < κ). (38b)

The steady output state is no longer a single-photon state because the DPA has pump

and the system is not passive any more. The steady output state belongs to the class of

photon-Gaussian states which is defined in [24]. Here we assume that the single-photon

input state |1ν〉 is that defined in (29), then the output covariance function is

Rout(t, r) =

[
χ11(t, r) χ12(t, r)

χ21(t, r) χ22(t, r)

]
+∆(ξ−out(t), ξ

+
out(t))∆(ξ−out(r), ξ

+
out(r))

†, (39)

and the Wigner spectrum of output covariance function for the DPA is

Sout(t, ω) =

[
Sout,11(t, ω) Sout,12(t, ω)

Sout,21(t, ω) Sout,22(t, ω)

]
. (40)

Here, the explicit forms of output covariance function Rout(t, r) and Wigner spectrum

Sout(t, ω) are given in Appendix Appendix A. Similar with the cavity case, if we let decay

rate κ → ∞, (37) also holds for the DPA case, which is consistent with the simulation

result in Fig. 10.

In the following we fix ε = 1, γ = 2. The input Wigner spectrum is as same as the

optical cavity case in Fig. 1. In Fig. 8, Sout,11(t, ω), Sout,12(t, ω), Sout,21(t, ω), Sout,22(t, ω)

are the entries for the output Wigner spectrum in (40) respectively, as same as in Fig. 9

and Fig. 10. Those are the Wigner spectra for the DPA case with different decay rates

κ. Compared with the cavity case, there exists non-zero off-diagonal parts since DPA

is a non-passive system. Moreover, it can be seen clearly from Figs. 8 and 9 that the

photon-Gaussian state is significantly different from the single-photon state. A photon-

Gaussian state is obtained by driving a DPA with a single-photon state, [24]. Intuitively,

a photon-Gaussian state is of the form B†(η)|α〉 in which η is a pulse shape and |α〉 is

a coherent state. Clearly, when |α〉 = |0〉, we get a single-photon state.

Now we have considered the Wigner spectra for optical cavity and DPA. And we

can see that the output Wigner spectrum will be much similar with the input when the

decay rates are larger. In the DPA case, since the active system must be stable, we

need decay rate κ to be greater than ε. But if we let ε be a very small parameter, then

decay rate κ can go to 0. By the explicit form of output Wigner spectrum in Appendix

A, we can prove that the output Wigner spectrum would be similar with the input, as

same as the optical cavity case. And all the trends can be verified by the explicit forms

of the input and output Wigner spectrum mathematically.
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Figure 8. (Color online) The output Wigner spectrum with ε = 1, γ = 2 and decay

rate κ = 1.5. Compared with the passive system (optical cavity), the off-diagonal

entries are non-zero and this output Wigner spectrum is much different since DPA is

an active system. And the decay rate κ must be greater than ε to make the system

stable.

Figure 9. (Color online) The output Wigner spectrum with ε = 1, γ = 2 and decay

rate κ = 4. The output Wigner spectrum becomes non-monotonic with a larger decay

rate κ. Compared with Fig. 4, it can be seen that the 1-by-1 and 2-by-2 entries

converge to 0 more slowly with same decay rate κ = 4. What’s more, the off-diagonal

entries cannot be ignored since the corresponding amplitudes are close to 0.4.
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Figure 10. (Color online) The output Wigner spectrum with ε = 1, γ = 2 and decay

rate κ = 100. If we compare the four parts in one figure, it can be seen that the

amplitudes in 1-by-2 and 2-by-1 entries are almost 0 (the corresponding amplitudes

are less than 0.025). Thus, the output Wigner spectrum would be similar with the

input when decay rate κ is large enough although DPA is non-passive.

Figure 11. The original system G.

Figure 12. Directly coupled system G ./ K.

4. Photon pulse shape engineering

In this section, we will discuss how to engineer photon pulse shapes by means of coherent

control methods, namely direct coupling (Fig. 12) and coherent feedback (Fig. 13).
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Figure 13. Linear quantum feedback network consisting of a beamsplitter.

4.1. Direct couplings

In Fig. 12, two independent systems G and K may interact by exchanging energy. This

energy exchange can be described by an interaction Hamiltonian Hint with the form

Hint = X†1X2 +X1X
†
2, (41)

where X1 and X2 are vectors of operators on system G and K respectively. We can

denote the directly coupled system by G ./ K, see [42, 43].

Quantum markovian systems can be conveniently described by the triple (S, L,H)

language, in which S is the scattering operator matrix, L is the coupling between system

and field, and H denotes the Hamiltonian, see [44, 45, 46].

Fig. 11 is an optical cavity with the following parameters,

G = (1,
√
κâ1, ω1â

†
1â1), (42)

where κ is the system decay rate and ω1 denotes the de-tuning for system G. |1ξ〉 is

the single photon input state and |1η1〉 is the output state. In Fig. 12, the system G is

directly coupled with another quantum system K with parameters

K = (−,−, ω2â
†
2â2), (43)

where ω2 denotes the de-tuning for system K. In this case, the output state is described

by |1η2〉. Alternatively, we may use a beamsplitter to form a coherent feedback system,

see Fig. 13. In the following, we will derive the explicit forms of output pulse shapes in

the frequency domain.

4.2. Photon shape synthesis

Let the pulse shape of a single-photon input state |1ξ〉 be

ξ(t) =

{ √
2βe−βt, t ≥ 0,

0, t < 0,
(44)

where β is the damping rate. By Fourier transform, we can get the input pulse shape

in the frequency domain

ξ[ω] =

√
2β

iω + β
. (45)

The transfer function for the original system G is given by

G1[ω] = 1− κ

iω + iω1 + κ
2

, (46)
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and the output pulse shape in the frequency domain is

η1[ω] =

(
1− κ

iω + iω1 + κ
2

)
ξ[ω]. (47)

Secondly, for the directly coupled system in Fig. 12, we assume that X1 = αâ1,

α ∈ C and X2 = â2. The interaction Hamiltonian is given by

Hint = ᾱâ†1â2 + αâ1â
†
2. (48)

Then the Hamiltonian for the whole system G ./ K is

H = H1 +Hint +H2, (49)

where H1 = ω1â
†
1â1, H2 = ω2â

†
2â2.

We get the output pulse shape for the system G ./ K, which is

η2[ω] =
−κ

2
(ω + ω2)i− (ω + ω1)(ω + ω2) + |α|2

κ

2
(ω + ω2)i− (ω + ω1)(ω + ω2) + |α|2

ξ[ω]. (50)

Finally, in Fig. 13, let the beamsplitter be

S =

[ √
γ e−iφ

√
1− γ

−eiφ
√

1− γ √
γ

]
, 0 < γ < 1, (51)

and b0 be in the single-photon state |1ξ〉. We can get the pulse shape for the output

field b3 in Fig. 13

η3[ω] =

−
1−√γ
1 +
√
γ

(ω + ω1)i+
κ

2

1−√γ
1 +
√
γ

(ω + ω1)i+
κ

2

ξ[ω]. (52)

4.3. Photon distribution

For the single photon state we defined before

|1ξ〉 =

∫ ∞
−∞

b̂†in(t)ξ(t)dt|0〉, (53)

b̂†in(t) is the creation operator and ξ(t) is the pulse shape which is also known as temporal

wave packet. |ξ(t)|2 denotes the probability of finding the photon (detection probability)

in the interval [t, t+dt). In this subsection, we will focus on how the system parameters

change the detection probabilities in the control schemes discussed above.

By Inverse Fourier transform, we can get the output temporal wave packets

ηj(t) =
1√
2π

∫ ∞
−∞

eiωtηj[ω]dω, (j = 1, 2, 3) (54)

where j denotes the j-th case we discussed before.

For the direct coupling scheme, Fig. 12, we fix β = 2, κ = 1, ω1 = 1. Fig. 14

and Fig. 15 are the detection probabilities for different α and ω2 respectively. For the



Wigner spectrum and coherent feedback control of continuous-mode single-photon states16

Figure 14. (Color online) |ξ(t)|2 denotes the detection probability of input pulse

shape, |η1(t)|2 denotes the detection probability of output pulse shape in the case of

original system (Fig. 11), |η2(t)|2 are the detection probabilities of output pulse shape

in the directly coupled system (Fig. 12) with different parameters α.

Figure 15. (Color online) |ξ(t)|2 denotes the detection probability of input pulse

shape, |η1(t)|2 denotes the detection probability of output pulse shape in the case of

original system (Fig. 11), |η2(t)|2 are the detection probabilities of output pulse shape

in the directly coupled system (Fig. 12) with different parameters ω2.

Figure 16. (Color online) |ξ(t)|2 denotes the detection probability of input pulse

shape, |η1(t)|2 denotes the detection probability of output pulse shape in the case

of original system (Fig. 11), |η3(t)|2 are the detection probabilities of output pulse

shape in the linear quantum feedback network (Fig. 13) with different beamsplitter

parameters γ.
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Figure 17. (Color online) The output Wigner spectrum for quantum feedback network

with beamsplitter parameter γ = 0.01. Since b3 → b2, b1 → b0 when γ → 0, the

feedback network should reduce to the original system without beamsplitter. This can

be verified by comparison with Fig. 3.

Figure 18. (Color online) The output Wigner spectrum for quantum feedback network

with beamsplitter parameter γ = 0.5.

coherent feedback control case Fig. 13, detection probabilities for different beamsplitter

parameter γ are given in Fig. 16.

By comparing these three cases, it can be easily seen that the linear quantum

feedback network in Fig. 13 has much more influence on the detection probability than

the directly coupled system. In addition, the changes of output Wigner spectrum with

beamsplitter parameter γ for quantum feedback network also have been analyzed. In

Fig. 17 - Fig. 19, let the decay rate of the optical cavity be κ = 4 and damping rate be

β = 2, it can be verified that those changes are consistent with the photon distributions

in Fig. 16.

On the other hand, we assume the system G for the feedback network in Fig. 13 is

a DPA with the triple (S, L,H) parameters

S0 = I, L0 =
√
κâ, H0 =

iε

4
((â†)2 − â2). (55)

Then the whole feedback network system parameters with beamsplitter S are given by

S1 = −I, L1 =

√
1 +
√
γ

1−√γ
κâ, H1 = H0. (56)

So the only change between the feedback network and the original system is κ→ 1+
√
γ

1−√γκ.

There exist three cases as follows:

1) γ = 0, the feedback network reduces to the open-loop system G.
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Figure 19. (Color online) The output Wigner spectrum for quantum feedback network

with beamsplitter parameter γ = 0.99. If γ → 1, then b3 → b0. It means that the

output Wigner spectrum will be close to the input. Thus, the simulation result should

be much similar with the input Wigner spectrum in Fig. 1.

2) γ = 1, then S = I, b3 = b0, there is no interaction between field and system.

3) 0 < γ < 1,
1+
√
γ

1−√γκ > κ, the decay rate is always enhanced. However, it is clear that

lim
γ→0

1 +
√
γ

1−√γ
κ = κ. (57)

Therefore, by tuning the beamsplitter we can get various output single-photon states.

It is worth noting that the same feedback scheme Fig. 13 has been used for optical

squeezing, see theoretical [47] and experimental [48].

5. Conclusion

In this article, Wigner distribution and Wigner spectrum have been used to analyze the

response of quantum linear systems to single-photon input states. In contrast to normal

ordering, they are able to provide full information of the quantum states, in time and

frequency domains simultaneously. Several control schemes are compared for photon

pulse shaping. It has been demonstrated that the coherent feedback control scheme is

very effective in photon pulse shaping.
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Appendix A. The explicit form of output Wigner spectrum for DPA

If the single-photon input |1ν〉 has the pulse shape defined in (29), we can get the pulse

shape of output state

ξ−out(t) =
(ε2 + κ2 − 4γ2)

√
2γ

(κ+ ε− 2γ)(ε− κ+ 2γ)
e−γt +

κ
√

2γ

κ+ ε− 2γ
e(−

ε
2
−κ

2
)t − κ

√
2γ

ε− κ+ 2γ
e(

ε
2
−κ

2
)t,

ξ+out(t) =
2κε
√

2γ

(κ+ ε− 2γ)(ε− κ+ 2γ)
e−γt − κ

√
2γ

κ+ ε− 2γ
e(−

ε
2
−κ

2
)t − κ

√
2γ

ε− κ+ 2γ
e(

ε
2
−κ

2
)t.

Then, the output covariance function is

Rout(t, r) =

[
χ11(t, r) χ12(t, r)

χ21(t, r) χ22(t, r)

]
+ ∆(ξ−out(t), ξ

+
out(t))∆(ξ−out(r), ξ

+
out(r))

†,
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where

χ11(t, r) =


−κε

4(κ+ε)
e(−

ε
2
−κ

2
)(t−r) + κε

4(κ−ε)e
( ε
2
−κ

2
)(t−r), t > r,

δ(t− r) + 3κε2−2κ3
2(κ2−ε2) , t = r,

−κε
4(κ+ε)

e(−
ε
2
−κ

2
)(r−t) + κε

4(κ−ε)e
( ε
2
−κ

2
)(r−t), t < r,

(A.1)

χ12(t, r) =


κε

4(κ+ε)
e(−

ε
2
−κ

2
)(t−r) + κε

4(κ−ε)e
( ε
2
−κ

2
)(t−r), t > r,

κ2ε
2(κ2−ε2) , t = r,

κε
4(κ+ε)

e(−
ε
2
−κ

2
)(r−t) + κε

4(κ−ε)e
( ε
2
−κ

2
)(r−t), t < r,

(A.2)

χ21(t, r) = χ12(t, r), (A.3)

χ22(t, r) =


−κε

4(κ+ε)
e(−

ε
2
−κ

2
)(t−r) + κε

4(κ−ε)e
( ε
2
−κ

2
)(t−r), t > r,

κε2

2(κ2−ε2) , t = r,
−κε

4(κ+ε)
e(−

ε
2
−κ

2
)(r−t) + κε

4(κ−ε)e
( ε
2
−κ

2
)(r−t), t < r.

(A.4)

Thus, the Wigner spectrum of output covariance function for the DPA is

Sout(t, ω) =

[
Sout,11(t, ω) Sout,12(t, ω)

Sout,21(t, ω) Sout,22(t, ω)

]
, (A.5)

where

Sout,11(t, ω) =
1√
2π
×
{ −κε

4(κ+ ε)(κ
2

+ ε
2
− iω)

e−iωt +
κε

4(κ− ε)(κ
2
− ε

2
− iω)

e−iωt

+
−κε

4(κ+ ε)(κ
2

+ ε
2

+ iω)
e−iωt +

κε

4(κ− ε)(κ
2
− ε

2
+ iω)

e−iωt + e−iωt

+ ξ−out(t)[
(ε2 + κ2 − 4γ2)

√
2γ

(ε+ κ− 2γ)(ε− κ+ 2γ)(γ + iω)
+

κ
√

2γ

(κ+ ε− 2γ)(κ
2

+ ε
2

+ iω)

+
κ
√

2γ

(κ− ε− 2γ)(κ
2
− ε

2
+ iω)

] + ξ+out(t)[
2κε
√

2γ

(ε+ κ− 2γ)(ε− κ+ 2γ)(γ + iω)

− κ
√

2γ

(κ+ ε− 2γ)(κ
2

+ ε
2

+ iω)
+

κ
√

2γ

(κ− ε− 2γ)(κ
2
− ε

2
+ iω)

]
}
,

Sout,12(t, ω) =
1√
2π
×
{ κε

4(κ+ ε)( ε
2

+ κ
2
− iω)

e−iωt +
κε

4(κ− ε)(κ
2
− ε

2
− iω)

e−iωt

+
κε

4(κ+ ε)(κ
2

+ ε
2

+ iω)
e−iωt +

κε

4(κ− ε)(κ
2
− ε

2
+ iω)

e−iωt

+ ξ−out(t)[
2κε
√

2γ

(ε+ κ− 2γ)(ε− κ+ 2γ)(γ + iω)
− κ

√
2γ

(κ+ ε− 2γ)(κ
2

+ ε
2

+ iω)

+
κ
√

2γ

(κ− ε− 2γ)(κ
2
− ε

2
+ iω)

] + ξ+out(t)[
(ε2 + κ2 − 4γ2)

√
2γ

(ε+ κ− 2γ)(ε− κ+ 2γ)(γ + iω)

+
κ
√

2γ

(κ+ ε− 2γ)(κ
2

+ ε
2

+ iω)
+

κ
√

2γ

(κ− ε− 2γ)(κ
2
− ε

2
+ iω)

]
}
,

Sout,21(t, ω) = Sout,12(t, ω), Sout,22(t, ω) = Sout,11(t, ω)− 1√
2π
e−iωt.
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