
Netnomics manuscript No.
(will be inserted by the editor)

A Learning-based Variables Assignment Weighting Scheme
for Heuristic and Exact Searching

Fan Xue · C.Y. Chan · W.H. Ip · C.F. Cheung

Received: date / Accepted: date

Abstract Many search algorithms have been successfully employed in combinato-
rial optimization in logistics practice. This paper presents an attempt to weight the
variables assignments through supervised learning in subproblems. Heuristic and ex-
act searching methods can therefore test promising solutions first. The Euclidean
Traveling Salesman Problem (ETSP) is employed as an example to demonstrate the
presented method. Analysis shows that the rules can be approximately learned from
the training samples from the subproblems and the near optimal tours. Experimental
results on large-scale local search tests and small-scale branch-and-bound tests vali-
date the efficiency and effectiveness of the approach, especially when it is applied to
industrial problems.

Keywords Supervised learning · Metaheuristics · Euclidean traveling salesman
problem · Class association rules · Large-scale optimization

1 Introduction

The search for a “best” configuration of a set of variables to achieve certain goals
plays a pivotal role in many important combinatorial optimization problems in logis-
tics practice, such as vehicle routing, warehouse location decision, production plan-
ning and scheduling.

Many heuristic (including metaheuristic) and exact search algorithms have been
developed, for example Laporte surveyed classes of algorithms for the vehicle rout-
ing problem [1]. Each search algorithm has its own strategy of exploiting the search
space. The strategies can be categorized into different classes, such as random sam-
pling, greedy (e.g., first-come-first-served), metaheuristic update (e.g., neighborhood

F. Xue · C.Y. Chan(†) · W.H. Ip · C.F. Cheung
Department of Industrial and Systems Engineering,
The Hong Kong Polytechnic University,
Hunghom, Kowloon, Hong Kong
Tel: +852 2766 4980
E-mail: mfcychan@inet.polyu.edu.hk

This is the Pre-Published Version.

2 F. Xue et al.

of local search, and mutation and crossover of genetic algorithm), systematic enu-
meration (e.g., branch-and-bound), exhaustive enumeration.

Apart from the algorithms aforementioned, machine learning techniques have re-
ceived increasing attention. The supervised learning, a class of machine learning,
aims at building a concise model of the distribution of class labels in terms of predic-
tor features [2]. Some supervised learning techniques have been successfully adopted
in logistics optimization applications, e.g. in scheduling [3,4,5,6], in production con-
trol [7] and in binpacking [8].

This paper presents a fast supervised-learning-based approach to determine a pri-
ori weights for the assignments of each variable. Based on the weights derived, many
search algorithms can test promising solutions first.

The remainder of this paper is organized as follows. In Section 2, the variables
assignment weighting approach is presented. In Section 3, the Euclidean traveling
salesman problem (ETSP) is introduced as an example. The parameters of learning,
the sizes of subproblems, and the complexity of the approach are discussed in Section
4. Section 5 presents numerical results and analysis of experiments of local search
metaheuristics on large-scale ETSPs and those of branch-and-bound on small-scale
ETSPs. Conclusions are finally given in Section 6.

2 The variables assignment weighting scheme

In the proposed weighting approach, the objective is to advise assignments for all
variables, while the learning is only carried out on a subset of variables in a subprob-
lem. It is assumed that every variable is “homogeneous,” or obeying the same patterns
of decision making. The assumption is naturally held in many optimization problems,
such as vehicle routing and location decision. In fact the assumption may also enable
learning from near optimal solutions, especially if most variable assignments in the
optimal solutions can be found in the near optimal solutions.

The proposed method consists of four phases, as shown in Fig. 1:

1. Start with a problem P,
2. Learn pattern of decision making from a small representative subproblem P∗ and

its solution S∗,
3. Interpret the patterns to weights (or weight-based sorting or interchanges) of pos-

sible assignments of the variables,
4. Reform the assignment process of a heuristic or exact search algorithm h in the

problem P.

The pattern of decision making, the key of this method, can usually be represented
in the forms of rules or statistical values. In this paper, the class association rules
(CARs) [9,10] are employed to represent the pattern. The learning results are there-
fore a set of CARs. Each CAR is in the form of “A ⇒ c,” where c denotes a class
attribute related to the variables assignments, A ⊂ A stands for some decision at-
tributes, and A denotes all decision attributes. There are two typical parameters for
the CAR learning: the minimum confidence and the minimum support. The two pa-
rameters can be easily determined in this paper: they are set to very low, e.g., mini-
mum confidence = 0.01, minimum support = 0.001 for a set of ten thousand training

A Learning-based Variables Assignment Weighting Scheme 3

P S
h

K n o w l e d g e
d i s c o v e r y

M
S e a r c h

res t r i c t i on
r u l e s

P * S *
h *

M

W e i g h t s ,
s o r t i n g s ,

i n t e r c h a n g e s

Fig. 1 The variables assignment weighting scheme

samples. It is because the rules with different confidences and different supports can
be potentially useful to weight and order the assignments.

The learning phase is carried out in a representative subproblem P∗ and its solu-
tion S∗. The representativeness denotes the similarity between the CARs learned from
P∗ and S∗ and those learned from the given problem P. The algorithm h∗ that solves
P∗ can be certain effective exact or heuristic algorithm, such as linear programming.
If the size of P∗ is much smaller than the size of original problem, the time cost of
solving P∗ and learning can usually be very low.

The learned CARs can be interpreted to different forms of weights compatible
with different search algorithm h. Examples are:

– Numeric weights for greedy assignments (see dispatching rules),
– Sorting for tests of a local search heuristic, and
– Grouping for a rank-based constructive heuristic.

In the first example of interpretations, the top weighted possible assignment of
each variable can be chosen greedily. It is very close to learning dispatching rules, see
[3,4,5,6]. Weights in some other cases, e.g. the the second example, can be involved
in more sophisticated search algorithms.

Besides the idea of weighting assignments, other researchers have proposed dif-
ferent cooperation plans between learning and search algorithms, e.g. a general frame-
work of guiding constructive search with learning [11], employing genetic procedures
to control neighborhood functions1, and the adaptive combinatorial search for com-
plex problems2.

3 The Euclidean traveling salesman problem

The traveling salesman problem (TSP) aims at finding the shortest possible tour in
which each given city is visited exactly once. This problem is one of the most com-
prehensively studied problems in operational research, theoretical computer science,
and industrial engineering. The Euclidean TSP (ETSP), in which the distance be-
tween two cities is the Euclidean distance, is the most common form of the TSP.

1 See http://www.info.univangers.fr/pub/saubion/PHD/PHddetails.htm.
2 See http://www.msr-inria.inria.fr/Projects/adaptive-comb-search.

4 F. Xue et al.

The industrial applications of the ETSP include vehicle routing, electric power cable
networks, and VLSI (Very-Large-Scale Integration) chip fabrication. [12,13].

The ETSP is known in N P-complete (Non-deterministic Polynomial time com-
plete) class [14]. Nevertheless, as a result of decades of research, the ETSP, can be
viewed as well-handled in practice. On one hand, codes that find provably optimal
tours are now capable of handling relatively large instances, e.g., the Concorde code
solved the 85,900 cities in 136 CPU-years using 2.4 Ghz processors [13]. On the
other hand, fast heuristics typically can quickly find tours within a few percent of op-
timal on real-world instances [15], and more sophisticated heuristics can get within
1% of optima in reasonable amounts of time [16,17].

It is believed that one of the major reasons for the efficiencies of the heuristics,
especially local search, is the high effectiveness of the edge candidate set structures.
The main concern of the candidate set is that it is not possible for most of very long
edges to appear in optimal tours. So a candidate set usually suggests a limited number
of promising edges for each city according to the geometry. Popular candidate sets
includes the Nearest-neighbor-first [18], the Delaunay [19], the k-quadrant [20], and
the α-nearness [16].

The following show how the presented variables assignment weighting scheme
can be employed in the ETSP.

3.1 Learning from subproblems

According to experiences and tests, the representativeness of a subproblem P∗ is
highly associated with its density of cities. The density of the subproblem should
be close to that of the given ETSP in order to find the closet rules. It is not difficult
to find such a subproblem with a known density from a given ETSP. Linear time
algorithms for finding such subproblems can be easily developed.

The size (number of cities) of the subproblem is another parameter to determine.
In this paper the size is set to 3,000 (cities) according tests, see Subsection 4.2 for
details.

When the subproblem is determined, it can be solved by effective algorithms.
In this paper the algorithm is the Bentley’s Greedy heuristic tour construction [21]
followed by a 5-Opt local search by the LKH3 [16] over an α-nearness candidate set.
The parameters of the local search are set to the suggested values in literature [16,
22]. The trials of the local search is set to 300 and the number of runs is set to 1. The
solution S∗ can be typically found in tens of seconds for a 3,000 ETSP and the tour
quality is typically within 1% over the optimum.

Decisions of assigning variables in the ETSP can be viewed as: “what kind of
(short) edges can outperform other competitors departing from one city.” Fourteen
prima-facie geometric decision attributes and one label are selected for the CAR
learning, as listed in Table 1. Without loss of generality, all the edge candidates de-
parting from a city ci are put in an ordered set:

Nci =
{
⟨ci,n1⟩,⟨ci,n2⟩, . . . ,⟨ci,nki⟩

}
, (1)

3 Available at:http://www.akira.ruc.dk/~keld/research/LKH/, Version 2.0.3.

A Learning-based Variables Assignment Weighting Scheme 5

where the distances obey d(ci,n1)≤ d(ci,n2)≤ ·· ·≤ d(ci,nki). The asymmetry should
be noted: an edge ⟨ci,c j⟩ may be contained in Nci and out of Nc j .

Table 1 Definitions of attributes and label for the edge-selection function for edge ⟨ci,n j⟩

Id Type Definition Remarks

G1 Boolean G1 = 1, iff. ∀
cx∈C

∀
cy∈C−{cx}

d(ci,n j)≤ d(cx,cy) Globally nearest

G1 = 0, otherwise
R1 Integer R1 = LenIdx(ci,n j ,n1)

† Length index against n1 for ci
R2 Integer R2 = LenIdx(ci,n j ,n2) Length index against n2 for ci
R3 Integer R3 = LenIdx(ci,n j ,n3) Length index against n3 for ci
S1 Boolean S1 = 1, iff. d(ci,n1)≤ d(ci,n2)/2 n1 is significant closer than n2 for ci

S1 = 0, otherwise
S2 Boolean S2 = 1, iff. d(ci,n2)≤ d(ci,n3)/2 n2 is significant closer than n3 for ci

S2 = 0, otherwise
P1 Integer P1 = LenIdx(n j ,ci,m1), iff. ci ∈ Nn j Length index against m1 for n j

P1 =−1, otherwise
P2 Integer P2 = LenIdx(n j ,ci,m2), iff. ci ∈ Nn j Length index against m2 for n j

P1 =−1, otherwise
P3 Integer P3 = LenIdx(n j ,ci,m3), iff. ci ∈ Nn j Length index against m3 for n j

P1 =−1, otherwise
Q1 Boolean Q1 = 1, iff. d(n j ,m1)≤ d(n j ,m2)/2 m1 is significant closer than m2 for n j

Q1 = 0, otherwise
Q2 Boolean Q2 = 1, iff. d(n j ,m2)≤ d(n j ,m3)/2 m2 is significant closer than m3 for n j

Q2 = 0, otherwise
Ag Integer Ag = round(MinDirGap(ci,Nci)×15/π) ‡ Minimal angular gap around ci
Ah Integer Ah = round(MaxDirGap(ci,Nci)×15/π) Maximal angular gap around ci
An Integer An = NumO f Dir(ci,Nci)

∗ Number of directions around ci
Opt Boolean Opt = 1, iff. ⟨ci,n j⟩ is in the given tour Appearing in the training sample

Opt = 0, otherwise
† : LenIdx(cx,cy,cz) = min(⌊d(cx,cy)/d(cx,cz)×3⌋,10), returns an index of relative length,
‡ : MinDirGap (MaxDirGap) returns the minimal (maximal) gap of included angles among the

edges candidates, in a resolution of π/15;
∗ : NumO f Dir returns how many directions (in a resolution of π/15) the edges distribute, if they

are considered as vectors from ci.

Seven attributes (G1, R1, R2, R3, P1, P2, P3) are length indices which denote the
competitiveness on distance. The rest decision attributes stand for some geometric
features of the departure city and destination city, for example Ah = π means the
departure city is on some side of the map. The label Opt stands for whether the edge
is a part of the tour S∗ or not. The attributes are applicable for all the ETSPs, and
some of them are compatible to general TSPs. However it should be noted that they
may not always maintain the best distinguishability in every problem. For example
in printed circuit problems, attributes such as the “same y coordinate” might be an
optional attribute.

Supervised training examples can be populated according to the attributes and the
subproblem. Apriori [9,23], a well known CAR learning algorithm, can obtain rules
from the training examples. The Apriori in this paper is partially based on imple-
mentation by Borgelt4 [24]. The CARs in the form of “A ⇒ Opt=1” are employed
to represent the pattern. The CARs implying “Opt=0” are omitted, because they are
complementary. A few types of redundancy reductions were implemented, for exam-
ple, if a rule is “A,B ⇒ Opt=1” and another rule is “A ⇒ Opt=1,” and the confidence

4 Available at http://www.borgelt.net/apriori.html, version 5.8.

6 F. Xue et al.

of the first rule is equal or less than that of the latter; the first rule will be omitted as
a useless (dominated) rule in this paper. The size of the body (left part of a rule) is
also limited to a constant |A|max, so a CAR “A ⇒ c” will be omitted if the cardinality
|A|> |A|max. More tests and analysis of |A|max can be found in Subsection 4.1.

Table 2 shows a set of examples of the discovered CARs. For instance, the No. 30
rule in Table 2 stands for: “globally shortest edges should be in the optimal tour(s)”
and it has a confidence of 0.913. This is what the Greedy heuristic follows first. In
fact more rules relevant to conventional heuristics can be found in the full version of
such a table.

Table 2 Samples of discovered CARs

Id Rule Support Confidence

1 R1=3,S1=1,Q1=1 ⇒ Opt=1 0.013 1.000
2 P1=3,S1=1,Q1=1 ⇒ Opt=1 0.013 1.000
3 R1=3,S1=1,Q2=0 ⇒ Opt=1 0.012 1.000
...

...
...

...
30 G1=1 ⇒ Opt=1 0.022 0.913

...
...

...
...

983 R3=8 ⇒ Opt=1 0.048 0.010

3.2 Interpreting the learning results

Each learned CAR carries a confidence and covers certain edge candidates. For each
edge candidate ⟨ci,c j⟩, a promising possibility p̃i j can be set to the highest confidence
from the rules covering the edge. The probabilities of the excluded edges are set to
0. It should be noted that the possibilities are asymmetric, e.g., a promising possi-
bility judged on behalf of ⟨ci,c j⟩ does not necessarily the same as that of ⟨c j,ci⟩. In
practice, the promising possibility can be set to the greater one between the two for
convenience.

For each city, only two edges can be chosen out of a set of edge candidates.
However there usually are a lot of non-zero possibilities. It means every edge with
a non-zero probability has a chance to be a part of the optimal tour(s), while every
edge with a less-than-one probability has a chance to fail.

The conventional tour construction methods for the ETSP hardly make use of
probability. So one way of taking advantage of the probabilities is to transform them
into different weights, such as:

– Setting the weight to the promising possibility,
– Weighted distance (WD) = Euclidean distance × (1− promising possibility), and
– Ranking candidates to Level A, B, and C.

In this paper, the WD is studied. The WD can be a substitution of the Euclidean
distance in many heuristic construction and test procedures. Some search algorithms,
such as the nearest-neighbor insertion and the shortest fragment merge, could directly

A Learning-based Variables Assignment Weighting Scheme 7

work on the WD; while others such as the local search could indirectly be benefited,
e.g., from a reformed testing neighborhood by the WD. There are some search tech-
niques that are not directly based on the Euclidean distance, such as the α-nearness
candidate set which is based on the α-nearness values. Pseudo-distances can be in-
troduced in such cases to facilitate the presented method, for example a transform for
the non-negative α-values:

pseudo distance = ln(α-value+1). (2)

4 Parameters and time cost analysis

The parameters of the presented method were tested and discussed in this section.
Two indicators are used to measure the capability of the ordered edge candidates
in including the optimal tour’s edges (OEs). The minimal population of candidates
(Candmin) stands for the least number of edge candidates to fully cover the 2N OEs.
The average index of OEs (IOEavg) denotes the average position of the OEs. The two
indicators are not independent, but the first one emphasizes the range of coverage,
and the second stresses average depth. Smaller values stand for better capability for
both indicators. Their lower bounds can easily be obtained as 2N and 1.5 respectively.

4.1 Parameters of CAR learning

The CAR learning in this paper involves three parameters: the maximal cardinality
of condition attributes (|A|max for CARs in form of A ⇒ c), the minimum support
(σ), and the minimum confidence (γ). The |A|max is relatively independent, whereas
σ and γ are correlated.

The maximal cardinality of condition attributes |A|max was tested on two bench-
mark problems E10k.0 and xmc10150. The first problem, from the DIMACS TSP
Challenge benchmark data sets5, consists of 10,000 random cities; the second one
comes from the VLSI data set6 and contains 10,150 cities. In the tests, σ was tem-
porarily set to 0.001 and γ was temporarily set to 0.01. The sizes of the subproblems
were set to the same sizes as the given problems. The input tours were two near op-
timal tours with lengths of 71,867,264 (0.002% excess best known) and 28,387 (best
known) respectively. The learning were based on 50 quadrant edge candidates (50-
Quad). Four indicators, including the number of discovered CARs, learning time,
IOEavg and Candmin, were considered to determine an appropriate cardinality for
large-scale ETSPs, as shown in Figure 2.

Figure 2 seems to suggest |A|max=5 as an appropriate value. When |A|max > 5,
despite the increasing amount of the learning time, the rest indicators seem not to be
significantly changed. It could be hoped that if the learning time is sufficient, |A|max=6
can also be a possible alternative.

5 Available at: http://www.research.att.com/~dsj/chtsp/.
6 Available at: http://www.tsp.gatech.edu/vlsi/.

8 F. Xue et al.

1 2 3 4 5 6 7 8 9

|A|max

0

1000

2000

3000

4000

N
u
m

b
e
r

o
f
C

A
R

s
d
is

c
o
v
e
r
e
d

xmc10150

E10k.0

1 2 3 4 5 6 7 8 9

|A|max

0

20

40

60

80

100

120

140

160

180

200

C
A

R
s

le
a
r
n
in

g
t
im

e
(
s
) xmc10150

E10k.0

1 2 3 4 5 6 7 8 9

|A|max

2.1

2.15

2.2

2.25

I
O

E
a
v
g

xmc10150

E10k

xmc10150 without learning

E10k.0 without learning

1 2 3 4 5 6 7 8 9

|A|max

15

20

25

30

35

C
a
n
d

m
i
n
/
N

xmc10150

E10k.0

Fig. 2 Trends of the indicators against the maximal cardinality of condition attributes (|A|max)

Thresholds σ and γ were also tested on the same base candidate sets on the two
problems, where |A|max=5. The main objective of the CAR learning is to harbor more
CARs and cover more OEs. So the main performance indicator of the CARs was the
coverage of OEs. The percentage trends of the covered OEs can be seen in Figure 3
against the combination of the values of σ and γ .

Figure 3 shows that σ should be less than 0.05 to approximately fully cover the
OEs in the two problems. Further when σ ≤ 0.01, the majority (about 80%) of OEs
can be covered by the rules with high confidence (approximately 0.7), as shown as
the area between the 0% coverage curve and the 80% coverage curve in Figure 3. So
0.01 seemed an upper limit for σ in practice. However, a too small value of σ may
bring overfitting of the CARs. So another lower bound N−1 is suggested for σ , where
N is the number of the cities. In practice, σ can be set to 0.001 if N ≥ 1,000, or to
N−1 if N < 1,000.

The minimum confidence γ is easier to determine. According to Figure 3, γ should
be no more than about 0.07 to cover all the OEs. In practice, it is suggested to be 0.01.

4.2 Sizes of subproblems

The sizes of the subproblems were tested on the E10k.0 and the xmc10150. The
possible edge candidates are set to the 50 quadrant candidates. Figure 4 shows the
changes of the indicators when different sizes (N′) of subproblems were selected.

It can be determined that the CARs were not abundantly discovered when N′ <
1,000, where N′ was the number of cities in a subproblem. It is mainly because of

A Learning-based Variables Assignment Weighting Scheme 9

10−4 10−3 10−2 10−1 100

σ

0

0.2

0.4

0.6

0.8

1

γ

0% OEs covered

80% OEs covered

95% OEs covered

99% OEs covered

99.5% OEs covered

100% OEs covered

(a) E10k.0

10−4 10−3 10−2 10−1 100

σ

0

0.2

0.4

0.6

0.8

1

γ

0% OEs covered

80% OEs covered

95% OEs covered

99% OEs covered

99.5% OEs covered

100% OEs covered

(b) xmc10150

Fig. 3 OEs covered in combinations of different σ and γ

the increasing threshold N′−1 when N′ decreases from 1,000. In general, the overall
time cost increases steadily when N′ increases. According to experience, the time for
finding a near optimal tour usually took an increasingly large share of the overall time
cost.

The charts also show that IOEavg and Candmin curves gradually become flat when
N′ increases. It means the WD obtained from the middle sizes of subproblems are
not much different from those from the complete problems. Therefore it is feasible
to find discover the patterns of large-scale ETSPs from their subproblems, without
significant losses of effectiveness. The two indicators IOEavg and Candmin seems not
much affected by the size of the subproblem when N′ > 100.

10 F. Xue et al.

0 5000 1×104

N
′

0

1000

2000

3000

4000

N
u
m

b
e
r

o
f
C

A
R

s
d
is

c
o
v
e
r
e
d

xmc10150

E10k.0

0 5000 1×104

N
′

0

100

200

300

400

O
v
e
r
a
ll

t
im

e
(
s
)

xmc10150

E10k.0

0 5000 1×104

N
′

2.1

2.15

2.2

2.25

I
O

E
a
v
g

xmc10150

E10k

xmc10150 without learning

E10k.0 without learning

0 5000 1×104

N
′

15

20

25

30

35

C
a
n
d

m
i
n
/
N

xmc10150

E10k.0

Fig. 4 Trends of indicators against the size of the subproblem (N′)

Experience shows the trends are general in large-scale ETSPs and almost inde-
pendent from the size N of the original problems. So an appropriate constant, e.g.
N′ = 3,000, can be determined as a general size for subproblems when solving large-
scale ETSPs. Therefore one can solve a constant size of a subproblem to provide
metric weights for a given large-scale ETSP.

4.3 Expected time cost

If the size of the subproblem is a constant, the time cost of the presented method can
be bounded in time O(Nkmax logkmax), where N is the size of the given ETSP, and
kmax is the max number of edge candidates for one city. The upper bounds of the
running time of the sub procedures are listed in Table 3 in detail. The most expensive
sub procedure in this approach is weighting and reordering the edge candidate sets.

5 Experimental results

Several popular Euclidean data sets were selected as the sources of the test problems,
including the VLSI industrial data sets, the Euclidean random (E) data sets from the
DIMACS TSP Challenge, and the TSPLIB data sets7 from various industries and
geographic maps. A number of ETSPs from the data sets were selected and clustered

7 Available at: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

A Learning-based Variables Assignment Weighting Scheme 11

Table 3 Upper bounds of the running time of the sub procedures if the size of the subproblem is a constant

No Procedure Upper bound of time

1 Finding a subproblem O(N)
2 Solving the subproblem O(1)
3 Generating training examples O(1)
4 Learning CARs O(1)
5 Examining promising probabilities O(Nkmax)
6 Weighting and reordering edge candidates O(Nkmax logkmax)
7 Reducing the sizes of the edge candidates (optional) O(N)

Overall O(Nkmax logkmax)

by their size into different categories: 3k, 10k, . . ., 1M, as shown in Table 4. The
“BKS” stands for the best known solution. Some BKSs of the E problems came from
Helsgaun’s results8. Using BKSs instead of Held-Karp lower bounds in this paper
mainly aims at a comparable metric of heuristics improvement over different data
sets.

Table 4 The selected large-scale ETSPs for experiments

Category VLSI (BKS) E (BKS) TSPLIB (Optimum)

3k lsn3119 (9114∗) E3k.0 (40634081∗) E3k.1 (40315287∗) pr2392 (378032)
lta3140 (9517∗) E3k.2 (40303394∗) E3k.3 (40589659∗) pcb3038 (137694)
fdp3256 (10008∗) E3k.4 (40757209) fnl4461 (182566)

10k dga9698 (27724) E10k.0 (71865826) E10k.1 (72031630) pla7397 (23260728)
xmc10150 (28387) E10k.2 (71822483) brd14051 (469385)

31k pbh30440 (88328) E31k.0 (71865826) pla33810 (66048945)
xib32892 (96757) E31k.1 (72031630)

100k sra104815 (251433) E100k.0 (225787421)E100k.1 (225659006) pla85900 (142382641)
316k ara238025 (578775) E316k.0 (401307462) —

lra498378 (2168067)
1M lrb744710 (1612132) E1M.0 (713189834) —

∗: Also proved optimal.

The tests were conducted on an Intel Core2 Duo E6750 (2.66GHz) CPU on a
Ubuntu Linux 8.04.1 (Kernel 2.6.24-19, 64-bit) with 4 Gbytes of memory. A method
of normalization of running time was described by Johnson, et al.[17], so that results
on any machine could be compared with other published results. A set of tests of
the CPU speed were carried out, in comparison to a 500 MHz EV6 Compaq Alpha
processor, as shown in Table 5. In the following, all the running time are normalized
to a 500 MHz Alpha.

Table 5 Results of running time (in seconds) of the Greedy [17] heuristic on different CPUs

CPU 3k×316 10k×100 31k×32 100k×10 316k×3 1M×1

Intel Core2 Duo E6750 (2.66GHz) 2.735 2.809 3.330 5.466 8.187 11.247
Compaq ES40 Alpha (500 MHz) 14 16 23 36 55 88

8 Available at: http://www.akira.ruc.dk/~keld/research/LKH/DIMACS_results.html.

12 F. Xue et al.

The tests were conducted on different candidate sets: 5 nearest neighbors (5-NN),
5 quadrant nearest candidates (5-Quad), 5 α-nearest candidates (5-α), and edge can-
didates by weighted distances 5-WDNN, 5-WDQ, and 5-WDα . The later three candi-
date sets were weighted, reordered and trimmed by the presented approach on some
larger candidate sets in the subproblems, i.e. the 50-NN, the 50-Quad, and the 50-
α candidate sets, respectively. In the learning and reordering phases, the parameters
were: N′ = 3,000, |A|max=5, σ=0.001, γ=0.01.

The normalized running time of the preparations of edge candidates on different
categories of E problems are shown in Figure 5. because the curves were very close to
other data sets. It can be observed that the time cost increased as expected. The faction
of the presented approach kept decreasing when the size of the problem increased,
especially for the α-nearness candidate set.

104 105 106

N

100

101

10
2

103

104

105

N
o
r
m

a
li
z
e
d

t
im

e
(
s
)

5-NN

5-WDNN

5-Quad

5-WDQ

5-α

5-WD
α

Fig. 5 Typical normalized running time of the presented approach and well known candidate sets

Two local search algorithms were employed to examine the presented method.
One algorithm was the Bentley’s Greedy heuristic tour construction followed by a 5-
Opt local search of LKH, Greedy+5-Opt in short. The other was the Greedy followed
by a 2-Opt (Greedy+2-Opt), a simplified version. Each algorithm ran 100 times in-
dependently for each problem. The average tour qualities and the running time of the
algorithms are grouped by the categories, as shown in Tables 6, 7, 8, and 9 respec-
tively. The “Imp” columns in the tables stand for the significance (in percentage) of
the tour length (or time) improvements.

It can be seen from Table 6 and Table 7 that the industrial ETSPs benefit more
from the metric weights, and the Greedy+5-Opt benefit more that Greedy+2-Opt from
the metric weights, except for those on the nearest neighbor candidate sets. A pos-
sible reason could be that more nontrivial information can be found in the industrial
problems than in random problems. Another possible reason can be that the redressed
and reordered edge candidates are more compatible with stronger search algorithms.

A Learning-based Variables Assignment Weighting Scheme 13

Table 6 Results of average tour qualities of the Greedy+5-Opt algorithm on different candidate sets (100
runs)

Data set Category Average percentage excess over BKS or optimum

5-NN 5-WDNN Imp (%) 5-Quad 5-WDQ Imp (%) 5-α 5-WDα Imp (%)

VLSI 3k 3.889 2.663 31.5 0.695 0.649 6.7 0.361 0.327 9.3
10k 4.236 3.300 22.1 0.863 0.693 19.7 0.526 0.503 4.5
31k 4.169 2.913 30.1 0.814 0.642 21.2 0.454 0.437 3.7

100k 6.657 6.467 2.9 0.842 0.752 10.7 0.339 0.328 3.2
316k 9.959 7.950 20.2 1.183 0.917 22.5 - - -

1M 4.682 4.385 6.3 0.857 0.762 11.1 - - -
E 3k 0.703 0.487 30.7 0.346 0.338 2.3 0.156 0.156 0.3

10k 0.862 0.490 43.1 0.375 0.370 1.4 0.179 0.178 0.2
31k 1.262 0.659 47.8 0.527 0.526 0.2 0.343 0.341 0.6

100k 1.851 0.646 65.1 0.438 0.434 0.9 0.252 0.250 0.8
316k 1.660 0.679 59.1 0.43 0.422 1.9 - - -

1M 1.176 0.911 22.5 0.381 0.379 0.5 - - -
TSPLIB 3k 0.456 0.358 21.4 0.34 0.321 5.4 0.143 0.134 6.5

10k 2.878 2.234 22.4 0.427 0.395 7.6 0.253 0.278 -10.1
31k 2.297 1.677 27.0 0.913 0.517 43.4 0.560 0.617 -10.2

100k 2.065 1.476 28.5 0.761 0.445 41.5 0.932 0.978 -4.9

Table 7 Results of average tour qualities of the Greedy+2-Opt algorithm on different candidate sets (100
runs)

Data set Category Average percentage excess over BKS or optimum

5-NN 5-WDNN Imp (%) 5-Quad 5-WDQ Imp (%) 5-α 5-WDα Imp (%)

VLSI 3k 5.196 4.234 18.5 2.177 2.019 7.3 1.376 1.625 -18.1
10k 5.949 4.943 16.9 2.716 2.144 21.1 2.101 1.956 6.9
31k 5.660 4.221 25.4 2.421 2.162 10.7 1.675 2.052 -22.5

100k 8.101 7.945 1.9 2.472 2.344 5.2 1.244 2.006 -61.3
316k 11.503 4.942 57.0 3.004 2.746 8.6 - - -

1M 6.125 5.710 6.8 2.505 2.380 5.0 - - -
E 3k 2.250 1.616 28.2 1.412 1.645 -16.5 0.791 0.996 -25.8

10k 1.849 1.575 14.8 1.439 1.495 -3.8 0.756 1.113 -47.3
31k 2.007 1.648 17.9 1.604 1.678 -4.6 0.881 1.314 -49.1

100k 2.320 1.611 30.6 1.553 1.550 0.2 0.791 1.237 -56.5
316k 2.764 2.370 14.3 2.154 2.179 -1.2 - - -

1M 2.235 1.884 15.7 1.452 1.460 -0.6 - - -
TSPLIB 3k 1.735 1.470 15.3 1.554 1.433 7.8 0.793 0.751 5.3

10k 3.832 3.371 12.0 1.817 2.040 -12.3 1.177 1.485 -26.1
31k 3.176 2.610 17.8 2.469 2.232 9.6 1.694 1.914 -13.0

100k 3.017 2.591 14.1 2.211 2.022 8.5 1.589 1.978 -24.5

It can be observed that the presented approach was very competitive in the 316k and
1M groups of problems, where the α-nearness candidate set cost too much time.

According to Table 8, the running time of the Greedy+5-Opt algorithm on the
5-WDQ candidate sets was significantly shorter in industrial problems than those on
the 5-Quad, as well as those on the 5-α , while the 5-WDQ and the 5-Quad seemed
not have significant differences in the random problems. However the same running
time of the Greedy+2-Opt algorithm seemed not so competitive.

Another algorithm tested was a simple exact branch-and-bound search. In this
algorithm, a string of cities were gradually tested and appended. Iterated minimum
spanning 1 trees were examined at each branch to obtain a lower bound of the tours
that contains the string. If the lower bound was no less than the best tour length which
had been obtained, the branch would not be expanded for further search.

14 F. Xue et al.

Table 8 Average normalized time cost of the Greedy+5-Opt on different candidate sets (100 runs)

Data set Category Average normalized time cost (s)

5-NN 5-WDNN Imp (%) 5-Quad 5-WDQ Imp (%) 5-α 5-WDα Imp (%)

VLSI 3k 2.20 2.27 -3.1 1.93 1.48 23.0 2.32 2.21 4.6
10k 8.09 7.84 3.2 8.72 6.64 23.9 10.32 9.69 6.1
31k 33.20 31.79 4.3 37.66 29.40 21.9 42.88 46.18 -7.7

100k 88.57 86.00 2.9 147.62 133.05 9.9 158.95 169.7 -6.8
316k 479.84 421.65 12.1 675.39 649.52 3.8 - - -

1M 1123.66 949.97 15.5 1665.11 1500.81 9.9 - - -
E 3k 2.60 2.47 5.1 1.68 1.87 -11.6 1.98 2.08 -5.3

10k 9.86 10.28 -4.2 7.94 7.56 4.8 8.91 8.56 3.9
31k 41.81 45.40 -8.6 37.18 36.69 1.3 47.20 43.73 7.4

100k 140.30 156.68 -11.7 141.62 139.84 1.3 161.85 167.15 -3.3
316k 503.66 568.11 -12.8 601.57 596.53 0.8 - - -

1M 2141.66 2432.96 -13.6 2986.15 3033.61 -1.6 - - -
TSPLIB 3k 2.71 2.68 1.3 2.18 1.84 15.6 1.88 4.07 -116.7

10k 12.88 13.57 -5.3 12.60 11.17 11.3 13.40 13.57 -1.3
31k 97.50 97.02 0.5 81.40 65.16 19.9 84.44 97.27 -15.2

100k 149.99 159.61 -6.4 174.31 166.20 4.7 134.96 150.73 -11.7

Table 9 Average normalized time cost of the Greedy+2-Opt on different candidate sets (100 runs)

Data set Category Average normalized time cost (s)

5-NN 5-WDNN Imp (%) 5-Quad 5-WDQ Imp (%) 5-α 5-WDα Imp (%)

VLSI 3k 0.30 0.30 0 0.28 0.30 -7.1 0.24 0.30 -25.0
10k 1.42 1.36 4.1 1.16 1.33 -15.0 1.10 1.27 -15.8
31k 9.21 7.33 20.4 6.97 7.37 -5.7 6.21 4.27 31.3

100k 32.23 31.02 3.8 26.58 26.58 0 22.74 28.06 -23.4
316k 170.32 156.59 8.1 137.81 148.35 -7.6 - - -

1M 460.39 341.91 25.7 275.1 297.95 -8.3 - - -
E 3k 0.48 0.57 -20.0 0.53 0.72 -36.4 0.31 0.35 -11.5

10k 2.53 2.72 -7.6 2.70 2.91 -7.9 1.72 2.08 -21.3
31k 12.20 12.38 -1.5 11.73 13.90 -18.5 8.34 10.25 -22.9

100k 48.62 54.44 -12.0 50.53 51.11 -1.1 33.61 48.62 -44.6
316k 205.92 212.52 -3.2 222.06 232.22 -4.6 - - -

1M 914.88 932.81 -2.0 1175.30 1141.33 2.9 - - -
TSPLIB 3k 0.36 0.4 -11.1 0.36 0.40 -11.1 0.24 0.30 -25.0

10k 1.56 1.76 -13.0 1.62 1.94 -19.6 1.22 1.59 -31.0
31k 7.00 5.85 16.5 4.91 5.20 -5.9 4.41 5.34 -21.3

100k 15.27 15.01 1.8 13.39 16.15 -20.6 13.79 16.55 -20.0

The branch-and-bound algorithm can not solve large-scale ETSPs as the previous
local search algorithms. It can typically return the optimum of an ETSP with 30 cities
around 10 normalized seconds, but unable to find the optimum of an ETSP with 40
cities in thousands of normalized seconds. Therefore some small-scale problems were
generated, as listed in Table 10. The group of Euclidean random instances (E) were
conducted by the DIMACS TSP Euclidean random generator. The group of VLSI
problems were selected as subproblems from the VLSI industrial data sets.

The algorithm was tested with two orders of edge candidates. The first was the
ascending order of Euclidean distance. The other was the ascending order of the
weighted distance. The parameters of learning the weights were set as follows. The
sizes of the subproblems were set to 15 (a half size of the given problems). |A|max
was set to 5. The minimum confidence and the minimum support were set to 0.01
and 0.05 (around 15−1) respectively.

A Learning-based Variables Assignment Weighting Scheme 15

Table 10 The selected small-scale ETSPs for experiments

Category VLSI (source) E (source)

30 xqf30 (xqf131) E30.0 (generator)
xqg30 (xqg237) E30.1 (generator)
pma30 (pma343) E30.2 (generator)
pka30 (pka379) E30.3 (generator)
bcl30 (bcl380) E30.3 (generator)

The results of the tests can be shown in Table 11. The algorithm guarantees op-
tima, so the number of expanded branches is the main indicator for comparison. The
time cost however is a less accurate indicator than the number of branches.

Table 11 Number of branches and time cost comparison of the branch-and-bound algorithm

Data set Problem Optimum Expanded branches Time

BnB BnB-WD Imp (%) Imp (%)

Random E30.0 4620393 957 287 70.01 61.46
E30.1 4539405 1370 1135 17.15 31.84
E30.2 4778537 327 141 56.88 37.50
E30.3 4779040 835 61201* -7329.46 -80.92
E30.4 4739803 610 976 -60.00 -84.87

VLSI xqf30 128 258 214 17.05 5.19
xqg30 158 379 143 62.27 36.90
pma30 195 866 645 25.52 15.33
pka30 184 563 547 2.84 8.35
bcl30 149 46 45 2.17 4.23

*: Extraordinarily large.

It can be observed from Table 11 that the branch-and-bound can significantly
benefit from the learned weights, but risks might be there especially when problem is
small and the subproblem is even smaller. Similarly to the results in the large-scale
tests, the average improvements in the industrial instances are more significant than
those in the random instance.

In conclusion, the results show that the presented method is effective and efficient
in learning and reforming the ETSP variables assignments. Both heuristic and exact
search algorithms can benefit from the results. The industrial problems can typically
benefit more than random problems. The presented method can also provide compet-
itive results in large-scale problems where the α-nearness candidate set may take too
much time to set up.

6 Conclusion

This paper presents an attempt to incorporate a supervised learning technique, CAR
learning, into searching heuristics in the ETSP. The results obtained suggests that the
presented approach can provide nontrivial information to determine some weights
for variable assignments, if appropriate decision attributes can be defined. The de-
termined weights can help heuristic and exact search algorithms in certain forms.

16 F. Xue et al.

It is hoped that the presented research has made a preliminary contribution to take
advantage of the power of machine learning in combinatorial optimization.

One of the significant results obtained is that rules can be approximately learned
from subproblems and near optimal tours. This finding successfully restricts the ex-
pense of the auxiliary learning in large-scale problems.

It would be interesting to discover new decision attributes and learning procedures
that can be applied to other combinatorial problems. Perhaps future studies can also
be conducted for determining domain-specified (or even company-specific) decision
attributes in practical industrial problems.

Acknowledgements The work described in this paper was fully supported by a grant from the Department
of Industrial and Systems Engineering of The Hong Kong Polytechnic University (No. RP1Z).

References

1. Laporte, G.: Fifty years of vehicle routing. Transportation Science 43(4), 408–416 (2009)
2. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. Informatica 31,

249–268 (2007)
3. Koonce, D.A., Tsai, S.C.: Using data mining to find patterns in genetic algorithm solutions to a job

shop schedule. Comput. Ind. Eng. 38(3), 361–374 (2000)
4. Li, X., Olafsson, S.: Discovering dispatching rules using data mining. Journal of Scheduling 8(6), 515–

527 (2005)
5. Sha, D.Y., Liu, C.H.: Using data mining for due date assignment in a dynamic job shop environment.

The International Journal of Advanced Manufacturing Technology 25(11), 1164–1174 (2005)
6. Olafsson, S., Li, X.: Learning effective new single machine dispatching rules from optimal scheduling

data. International Journal of Production Economics 128(1), 118–126 (2010)
7. Kwak, C., Yih, Y.: Data-mining approach to production control in the computer-integrated testing cell.

IEEE Transactions on Robotics And Automation 20(1), 107–116 (2004)
8. Boyan, J., Moore, A.: STAGE learning for local search. Neural computing surveys 3, 35–38 (2000),

available at: http://ftp.icsi.berkeley.edu/ftp/pub/ai/jagota/vol3_1.pdf
9. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large

databases. In: SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international conference on Man-
agement of data. pp. 207–216. ACM, New York, NY, USA (1993)

10. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of the
Fourth International Conference on Knowledge Discovery and Data Mining (KDD). pp. 80–86 (1998)

11. Telelis, O., Stamatopoulos, P.: Guiding constructive search with statistical instance-based learning.
International Journal on Artificial Intelligence Tools 11(2), 247–266 (2002)

12. Punnen, A.P.: The traveling salesman problem: Applications, formulations and variations. In: Gutin,
G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Variations, chap. 1, pp. 1–28. Kluwer
Academic Publishers, Netherland (2002)

13. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The traveling salesman problem : a compu-
tational study. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, N.J.
(2006)

14. Papadimitriou, C.H.: The euclidean traveling salesman problem is NP-complete. Theor. Comput. Sci.
4(3), 237–244 (1977)

15. Johnson, D.S., McGeoch, L.A.: Local search in combinatorial optimization, chap. Traveling Salesman
Problem: A Case Study in Local Optimization, pp. 215–310. John Wiley and Sons, Ltd. (1997)

16. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Euro-
pean Journal of Operational Research 126(1), 106–130 (oct 2000)

17. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem and Its Variations, Combinatorial
Optimization, vol. 12, chap. Experimental analysis of heuristics for the STSP, pp. 369–444. Kluwer,
Netherlands (2002)

18. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling-salesman problem. Oper-
ations Research 21, 498–516 (1973)

A Learning-based Variables Assignment Weighting Scheme 17

19. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications, Lecture Notes
in Computer Science, vol. 840. Springer-Verlag, New York (1994)

20. Miller, D.L., Pekny, J.F.: A staged primal-dual algorithm for perfect b-matching with edge capacities.
ORSA Journal on Computing 7, 298–320 (1995)

21. Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA Journal on Comput-
ing 4, 387–411 (1992)

22. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical Program-
ming Computation 1(2), 119–163 (2009)

23. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms for discovering association
rules. In: Fayyad, U.M., Uthurusamy, R. (eds.) AAAI Workshop on Knowledge Discovery
in Databases (KDD-94). pp. 181–192. AAAI Press, Seattle, Washington (1994), available at:
http://citeseer.ist.psu.edu/mannila94efficient.html

24. Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. In: Proceedings of the
15th Conference on Computational Statistics. pp. 395–400. Physica Verlag, Berlin, Germany (2002),
available at: http://www.borgelt.net/papers/cstat_02.pdf

