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Bifurcation Behavior in Parallel-Connected
Buck Converters

H.H.C.luand C. K. Tse

Abstract—This paper describes the bifurcation phenomena of a system
of parallel-connected dc/dc buck converters. The results provide useful in-
formation for the design of stable current sharing in a master—slave config-
uration. Computer simulations are performed to capture the effects of vari-

_
+
ation of some chosen parameters on the qualitative behavior of the system. v
These are summarized in a series of bifurcation diagrams. In particular, it E - R
is found that while variation of the voltage feedback gains leads to standard re

period-doubling bifurcation, variation of the current sharing ratio leads to

border collision bifurcation. Analysis is presented to establish the possi- —
bility of the bifurcation phenomena and to locate the current sharing ratio .
at which border collision occurs. 12

—_—

Index Terms—Bifurcation, buck converter, parallel dc—dc converter.

|. INTRODUCTION

Paralleling power converters allows high current to be delivered to
loads without the need to employ devices of high power rating. The
main design issue in parallel converters is the control of the sharing
of current among the constituent converters. If a dc/dc converter is re-
garded as a voltage regulator that provides very stiff voltage to a load,
then itis theoretically impossible to put two such converters in parallel
feeding the same load and sharing equal current, unless the two con-
verters are perfectly identical. In practice, mandatory control is needed Voffset
to ensure proper current sharing, and many effective control schemes
have been proposed in the past [1]-[4]. One common approach is to &fg- 1. Block diagram of parallel-connected dc/dc converters under a
ploy an active control scheme to force the current in one converterfgster—slave control.
follow that of the other. The essence of this control approach is to mon-
itor the difference of the output currents in two constituent converters
(i.e.,current error) and incorporate this information in the main voltage
control loop. Specifically, for the case of two converters connected in
parallel, one converter simply has a voltage feedback control while the
other has an additional inner current loop that provides the current error
information which is used in turn to “adjust” the voltage feedback loop
to ensure equal sharing of current. Such a scheme is commonly known t
as themaster—slaveurrent-sharing scheme [1], [3].

Nonlinear dynamics and bifurcation behavior are important topics of PWM output
investigation in power electronics [5]-[12]. As parallel converter sys-
tems gain popularity in power electronics applications, there is a strong
motivation for better understanding of their nonlinear dynamics and bi-
furcation behavior. In this paper, we attempt to probe into some non-

linear phenomena of a system of parallel-connected buck convertegg 2. Pulse-width modulation (PWM) showing relationship between the
controlled under a master—slave current-sharing scheme. control voltage and the PWM output.

Il. MASTER-S AVE CONTROLLED PARALLEL -CONNECTEDDC/DC

the load is shared properly between the two buck converters by the
CONVERTERS

action of a master—slave control scheme, as mentioned briefly in the
The system under study consists of two dc/dc converters which greceding section. Fig. 1 shows the block diagram of this master—slave
connected in parallel feeding a common load. The current drawn bgnfiguration.

Denoting the two converters as Converter 1 and Converter 2 as shown
in Fig. 1, the operation of the system can be described as follows. Both
converters are controlled via a simple pulse-width modulation (PWM)
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Converter 1 to as the “master” which operates independently, and Converter 2 the
“slave” which imitates the master’s current value.

I1l. STATE EQUATIONS FORTWO PARALLEL Buck CONVERTERS

The foregoing section defines the essential control scheme that pro-
vides current sharing and output voltage regulation. In this section we
focus on a specific converter type and derive the state equations that
will be needed for subsequent simulation study as well as analysis
of the nonlinear phenomena of parallel-connected converters. Specif-
ically, we will focus on the buck converter which is a second-order
circuit comprising an inductor, a diode, a switch and a load resistance
connected in parallel with a capacitor. Fig. 3 shows two buck converters
connected in parallel. The presence of four switctgs 62, D, and
Fig. 3. Two parallel-connected buck converters. D) allows a total of 16 possible switch states, and in each switch state,

the circuit is a linear third-order circuit.
When the converters are operating in continuous conduction mode,
odeD; is always in complementary state to switgh fori = 1, 2.
ol theThat is, wherb; ison,D; is off, and vice versa. Hence, only four switch

Converter 2

whereV,, andV,, are the lower and upper voltage limits of the rampy;
and7 is the switching period. The PWM output is “high”

control voltage is greater thaay, and_ls IO\.N otherwise. tates are possible during a switching cycle. These ar&i Bnd S,

For Converter 1, the control voltage is derived from a voltage feeafe on: 2)S, is on andSs is off; 3) S, is off andS. is on; and 4)S,
back loop, i.e., andS: are off. The state equations corresponding to these switch states

are generally given by
Veonl = Voffset — Iful('” - ‘;cf) (2)
i =Aix+ B1FE, for S; andS; on

where & =Axx + B2 F, for S; on andS: off

Vemset  dc Offset voltage that gives the steady-state duty cycle; i = Aza + B3 E, for S, off and S, on

Viet reference voltage; . ’

T z=A4x + B4 FE, f 5 off 4
Ko voltage feedback gain for Converter 1. ¢ =Aar + Dal, or 51 ands o “)

For Converter 2, an additional current error signal, which is propor-h Eisthe | is th defined
tional to the weighted difference of the output currents of the two colfnereL is the input voltager Is the state vector defined as
verters, determines the control voltage. Specifically we write the con- o

- PR
trol voltage for Converter 2 as v=[v i1 i] (5)

and theds andBs for the case of two buck converters are given by (6)

Veonz = Vottset = Koz (v = Vier) = Ki(iz = mi1) ®)  and (7) as shown at the bottom of the page.
It is worth noting that the sequence of switch states, in general, takes
where the order as written in (4), i.e., starting wit;' andS; on” and ending
K,» voltage feedback gain of Converter 2; with “.S; and.S2 off” in a switching cycle. However, eitherS; on S»
K; current feedback gain; off” or “ .Sy off S2 on” (not both) goes in the middle, depending upon
m current weighting factor. the duty cycles of5; and.S-. In the case wher$; has a larger duty

Under this scheme, the output current of Converter 2 will follow that afycle, we should omit the third equation in (4), and likewise for the
Converter 1 ataratio of: to 1, wheren > 0. Whenm = 1, we expect case wheré, has a larger duty cycle. This should be taken care of in
equal current sharing. In much of the literature, Converter 1 is referrdge simulation and analysis.

1 R L R ]
C(R+rco) C(R+7rc) C(R+rc)
. R 1 rcRR ) 1 roR
Ai=d=b=4="Tho L <R—|—rc * ’“) Ly <R—|— rc> ©)
_L _i< rol? ) _i( rolt +7r )
L " Ly (R+rc) Ly \R+rc Ly \R+rc )]
0
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Bi=|L, B, = I, B; = (1) By= 10 )
1 0 I 0
Ly ’
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TABLE | sk ' ! ' ' ]
COMPONENTVALUES AND STEADY-STATE VOLTAGES USED IN SIMULATION
242 | .
Circuit Components Values 2 | e
Switching Period T 400 o ]
Input Voltage F 48V 26 | |
Output Voltage v 24V b i
Offset Voltage Voiset 5V :
Inductance Ly, ESR rz; | 0.02H, 0.050 B2y ]
Inductance Ly, ESR rr, | 0.04H, 0.202 B s 4 s 6 7 & 9
Capacitance C, ESR r¢ | 47uF, 0.010 K.,
Load Resistance R 109 Fig. 5. Bifurcation diagram withi ., as bifurcation parametef(,; = 4,

K; = 5 andm = 1), first period-doubling occurs wheli,, = 4.85.

24.4
242
24

23.8

23.6

234

23.2

5 6
Kvla Kv2

Fig. 4. Bifurcation diagram withfy',; as bifurcation parametef{(,. = 4,
K,; =5 andm = 1), first period-doubling occurs whefli ,; = 4.47. Fig. 6. Bifurcation diagram with/{,; and K ,, as bifurcation parameters
varying simultaneously/(; = 5, m = 1).

IV. SELECTED BIFURCATION PHENOMENA
BY COMPUTER SIMULATIONS keepK ,; constant and var¥ ... The bifurcation diagram, as shown

. . C . . . . in Fig. 5, again manifests a period-doubling bifurcation. Finally, we
We now begin our investigation with computer simulations. Sincewe " B . . .

L A A . . . vary K., and K ,» simultaneously, and the corresponding bifurcation
are primarily concerned with system stability in conjunction with th

feedback design, we will focus our attention on the effects of varyirEq?sg;\l/rgdls shown in Fig. 6. Again, period-doubling bifurcations are

the various gains on the bifurcation behavior of the system. In partIC_Remarks: The occurrence of period-doubling bifurcations gener-

ular, the gaing(,,1, K2, K; andm present themselves as design pa- . : - .

: . ally agrees with previous findings for the buck converter. Intuitively

rameters that can be changed at will. We will henceforth focus on vari-" = =~ . ;

) speaking, if the two converters were identical, the system would reduce
ation of these parameters.

Our simulation is based on the exact state equations derivedto 2 buck converter feeding a load. Thus, we may expect period-dou-

b'l?ng to occur in the parallel system when the voltage feedback gain is

Section lIl. Essentially, for each set of parameter values, time-domain . . SN .
: -varied, as it would occur likewise in a buck converter [7], [10]. We will

cycle-by-cycle waveforms are generated by solving the appropriate . o .

; L : . . prfesent detailed analysis in Section V.

linear equation in any sub-interval of time, according to the states'o

the switches which are determined from values of the control voltaggs

Veon1 @Ndwveon2. Sampled data are then collectedtat= »T" in the )

steady state. With sufficient number of sets of steady-state data, we calm studying the bifurcation behavior in respect of current gain vari-

construct the bifurcation diagrams as required. Our computer progration, we keepn, K .1 and K,» constant, and vary’;. It is found

automatically organizes bifurcation diagrams from time-domaifat the system remains in stable period-1 operation irrespective of the

waveforms. The circuit parameters used in our simulations are sho@foice of I;. Basically I; only determines how close the slave fol-

in Table I. lows the master. The largé¥; is, the closer the slave’s output current

A large number of bifurcation diagrams have been obtained. In tf&eto the master’s.
following, only representative bifurcation diagrams are shown, which

serve to exemplify the main findings concerning the bifurcation bé&. Current-Sharing Ratio as Bifurcation Parameter

havior of a system of parallel buck converters under a master—slavey ; ina| computer investigation is performed for variation of the

sharing scheme. current sharing ratie:. This time, we fixI{(,,1, K2 andK; at suitable
values such that the system is in stable operation. Werwvaagd collect
bifurcation diagrams which look typically like the one shown in Fig. 7.
We first keepk,,» constant and vari',;. The bifurcation diagram,  In this type of bifurcation, the stable operation suddenly gives way
as shown in Fig. 4, shows repeated period-doublings to chaos. Next,teeehaos. The origin of such a bifurcation is the nonsmooth operation

Current Gain as Bifurcation Parameter

A. Voltage Feedback Gains as Bifurcation Parameters
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3.5 T T T T

The state equations are given in (4) for different switch states. The
3b 4 order in which the system toggles between the switch states depends
ond; andd-. We will study periodic orbits for whicls, ,, > d ., for

= 1 all » as this allows a convenient derivation of the discrete-time model.
a2 In particular, the assumptiofy > d; is consistent with our simulation
3 s study since';,; has a lower value thar ». Note that such an assump-

R tion loses no generality.
1F - Recall that ifds > d4, the state $7 on andS:> off” should be
omitted. Hence, we have three switch states. These are as follows.

1) FornT <t < nT 4+ dy,,,T, bothS; andS, are turned on.
0 275 ; 3?5 ; s 2) FornT +di nT <t < nT +dy T, S is turned off ands;
m remains on.

3) FornT 4+ d», T < t < (n+ 1)T, bothS; andS; are off.
In each switch state, the describing state equatigrgsA;« + B; E,
wherej = 1, 3, 4. (Note thatj = 2 does not appear here.) For each
state equation, we can derive the solution, and by stacking up the solu-
of the system near the bifurcation point, which has been studied &jons, .1 can be expressed in terms®f, d1,, andds ., i.e.,
tensively by Nusse, Ott and Yorke [13] who coined such bifurcation as
border collisionbifurcation, and also by Banerjet al.[11], [14]. To
probe further into this bifurcation, we examine the time-domain wave-

05 -

Fig. 7. Bifurcation diagram with current sharing ratio as bifurcation
parameterk,; = 3.5, K. = 3.5, K; = 5).

Lnt+1 = @4((1 - d2, n)T)cI)S((dZ,n - d‘l,n)T)Ql(dl, nT)ilfn

forms of the control voltages..n1 andwv.on2 and see how they cross F C4((1 = d2,n)T) 23 ((d2,n — d1,n)T)
the ramp in the process of generating the PWM signals. (®1(d1, nT) = 1)A; "B1E 4 ®4((1 = do, n)T)
In normal operationycon1 andvconz hitthe ramp once per switching (®3((d2n —d1,n)T) —1)A; 'BsE

cycle as shown in Fig. 8(a), and the corresponding inductor waveforms
are shown in Fig. 8(b). Now, if we increase and take a close look

at the waveform, we observe the following qualitative change near the
point of border collision bifurcation. wherel is the unit matrix, andP; (&) is the transition matrix corre-
sponding taA4; and is given by

+ (®4((1 = d2,,)T) —1)A;'B4E )

 Before border collision—When...- is slightly larger thari’z,,
normal operation is maintained, as shown in Fig. 9(a).
« After border collision—When.. falls belowV, , it fails to hit Ag G .
the ramp. Stable operation is lost and the system bifurcates to(I)j(O = =14 Z E 458 forj=1,2,3 4 (10)
chaos. Fig. 9(b) shows the waveform just after the bifurcation. =t
The above bifurcation, which has not been observed previously for PR, parallel-connected buck converters, welet A,
allel converter systems, indicates that stable operation of such systgmsa '
require keepingn below a certain value. In Section VI, we will ana-p. v
lyze the condition under which this bifurcation occurs.

nd®(&) = ®1(€) = P2(€) = P3(&) = Pa(€). Hence, (9) can
ritten as

Tpp1 =T, + S(TY)A™'BiE+ (1 —dy ) T)A™"
“(Bs = BI)E+ ®((1 = d2,,)T)A™" (B4 — By)
-E— A"'B,E. (1)

V. ANALYSIS OF PERIOD-DOUBLING BIFURCATION

From the foregoing simulation study, we have identified pe-
riod-doubling bifurcation in a system of parallel buck converters
when the voltage feedback gains are varied. We have also seen how
stability suddenly gives way to chaos when the current sharing ratio isOur next step is to find the feedback relations that connect the duty
increased. In this and the next sections we analyze these bifurcatiopsles and the state variables. The control voltages andvconz, as
in terms of a suitable discrete-time model [12]. We will first derivayiven before by (2) and (3), can be rewritten as
the model, and examine the Jacobian matrix and the way the system
loses stability. veoms = U1 + KT (12)
A. Derivation of the Discrete-Time Map Veonz = Us + Ky @ (13)

Our purpose in this subsection is to derive a discrete-time map that
describes the dynamics of a system of two buck converters conneatgterel’; andU» are constants, and the gain vectersandx- are
in parallel, as defined earlier in Section Il (see Fig. 3), in the neigh-
borhood of theél'-periodic steady state. We letbe the state variables

T - r - - -
o =[-K, 0 0 and ky = [ —K,: IK; -I;].
as defined previously, and further lét andd, be the duty cycle of ri=[=Ka ] w2 ==K Kim il

Converter 1 (master) and Converter 2 (slave), respectively. The dis- (14)
crete-time map that we aim to find takes the following form:
The ramp function can also be rewritten simply as
Tpt+l = f(Tna dl,ns dZ,n) (8)
Vramp = @ + 3(t mod T') (15)

where subscript denotes the value at the beginning of ttth cycle,
i.e.,x» = x(nT). For the closed-loop system, we need also to find thehere « and 3 are constants. To find the defining equations for
feedback equations that relate ., andds , t0 . the duty cycles, we first note that the switches are turned off when
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t
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237

Fig. 8. Stable period-1 operation. (a) Control voltages and ramp; (b) inductor currents.

12 ; . .
Uramp ——
Vconl

10 + con
Veon2
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(b)

Fig. 9. Control voltage waveforms (a) just before border collision bifurcatier= 3); and (b) just after border collision bifurcatiom(= 3.5).

Veonl = Uramp and“ronZ = Uramp- NOW, deﬁne51 (»rne d],n) and
52(3:1“ dl,rn dZ,IL) as

s51(n, di,n)
def

= Vconl — Uramp
=U + hfI(d1 , nT) - (a + Ady ’ nT)
= 171 + "{T [(P(d‘l‘nT)l‘n + ((I)(dlvnT) - I)A_]B] E]

— (a4 8di ,T) (16)
SZ(mn-,\ dl, ns dZ,n)
def
= Vcon2 — Uramp
=Us + ks a(da, o T) — (o + Bdz, nT)
=Us + 5 [®(dz, o T)xn + (d2, s T)A™'BLE
+ ®((d2,n — d1,»)T)A™" (Bs — B1)E
—AT'B3E] — (o + Bdy, ). (17)
Thus,S; andS- are turned off, respectively, when
81([677,./ d]yn) :0 (18)
SQ(IH, d1‘n, d27n) :0 (19)

Solving (18) and (19)¢d:,. andd2, , can be obtained. Combining
with (11), we have the discrete-time iterative map for the closed-loop
system.

B. Derivation of the Jacobian Matrix

The Jacobian matrix plays an important role in the study of dynam-
ical systems [15]. The essence of using a Jacobian matrix in the analysis
of dynamical systems lies in the capture of the dynamics in the small
neighborhood of an equilibrium point or orbit (stable or unstable). We
will make use of this conventional method to examine the bifurcation
phenomenain Section V-C. But before we move on, we need to find the
necessary expressions that enable the Jacobian matrix to be computed.

Suppose the equilibrium point is given bynT) = X¢. The Jaco-
bian of the discrete time map evaluated at the equilibrium point can be
written as follows:

_ . af  of B
T(Xe) T Oxn,  Odin <3611,n>
(0si )\ af [ 9sa \7'
(an (9(]_,)77; 0(12,71
. 5o 4 052 ds1 \ ' [ 9s
Oan (9(11771 (9(11777 Oxn
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where
ofi  Of ofi
a'l}n 87.'1, n aiQ, n
of | 0f2 Ofs 0 fa
awn N a'vn 8i],n 8i2,77,
Afs dfs Jf3
07'71 ail,n a7:2,77,
ad],n - adl,n adl,n adl,n
J0s1 [5‘31 sy sy ]
axn - a'l,)n 07"1,71 8i2,71
of _[ oh ofs Ofs ]T
adz,n o 8d2,n adz,n adz,n
sy [832 059 059 ]
axn - 81’71 ail,n aiZ,n ’

(21)

(22)

(23)

(24)

(25)

Finally, we need to gels. /dd., » andds, /ddy, ». From (17) we have

852 . a@((lg,nT) ) 1 8@(d2,nT)f171B1

= “n Ve E
ad2,n 2 8d'2,n ‘ " 8d2’n
a2 n

= k3 (AT®(dy, n Tt + ra (&(dy, , T)B, T)E
+ kg ®((dy, » — dy,)T)(Bs — By)TE — 3T
=Tr2®(d2,nT)(Axn + BLE)
+ Thy ®((da,n — di,,)T)(Bs — B))E - T (32)
Osa _R,ya(b((dz,n —dy, ) TVA (B3 — B))E
adi,. ady,
= —Th;(b((dzn - d],n)T)(Bf% - B1 )E (33)

Now, putting all the derivatives into (20) gives (34) as shown at the
bottom of the next page. Numerical algorithms can now be developed
for computingJ (X ¢ ) and hence the characteristic multipliers, as will

Using (16), (17) and (11), we can find all the derivatives in (20). Firs’P,e shown in the next subsection.

df/dz, can be found from (11), i.e.,

of
Oxn

= o(T).

Also, direct differentiation give8f/dd:,, as

O — _T%((1-d\ .)T)(Bs - BE.

8d1,n

Likewise, we ge¥f/dd., , as

or _ —T®((1 = d2,n)T)(Bs — Bs)E.

6d2,n

From (16), we obtaids; /dz, readily as

831

Ln

Again, by direct differentiation, we get

91 _ 1 0%(draT)

8d1,n = ad],n oo

= ky ®(dy T).

(26)

27)

(28)

(29)

= x| (AT®(dy, . T))xn + k1 (®(d1,,T)B,T)E — 5T

=Tr{®(dy oT)(Awn + BLE) — 3T

and, from (17), we get

832
Oxn

= kg ®(ds, nT).

(30)

(1)

C. Characteristic Multipliers and Period-Doubling Bifurcation

The Jacobian derived in the foregoing subsection provides a means
to evaluate the dynamics of the system. We will, in particular, study
the loci of the characteristic multipliers (also called eigenvalues), the
aim being to find out possible bifurcation scenarios as the voltage feed-
back gains are varied. To find the characteristic multipliers, we solve
the following polynomial equation in, whose roots actually give the
characteristic multipliers

det[M — J(Xg)] =0 (35)

where J(X ) is the Jacobian matrix found previously. We will pay
attention to the movement of the characteristic multiplier&as and
K.» are varied. Any crossing from the interior of the unit circle to
the exterior indicates a bifurcation. In particular, if a real characteristic
multiplier goes through-1 as it moves out of the unit circle, a period-
doubling occurs.

Using (34), we can generate loci of characteristic multipliers numer-
ically. Since we are interested here in varyiig, and K>, we keep
m = 1, thereby ensuring that the system is remote from any border
collision due possibly to large:, as we have seen previously in the
simulation. The parameter values of the system are the same in Tables |
and Il and in Figs. 4 and 5. To maintain conciseness, we exemplify here
the typical loci in Tables Il and Ill, which are graphically illustrated in
Figs. 10 and 11. Both loci indicate a period-doubling bifurcatioR’as
and K ,,» vary. This agrees with our simulation results in Section IV.

VI. ANALYSIS OF BORDER COLLISION BIFURCATION WITH RESPECT
TO VARIATION OF CURRENT- SHARING RATIO

As observed in the simulation, a border collision bifurcation occurs
whenm increases beyond a certain limit. In this section, we attempt
to analyze this border collision and specifically to find the limitof
below which the system maintains stable operation. In the following
study, we assume thd,; and K',» are kept within the stable range
so that the system is remote from any period-doubling bifurcation due
possibly to largelt’,; and K,».
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TABLE I 1 T T L T ST T
CHARACTERISTIC MULTIPLIERS FORDIFFERENTVALUES OF K1 e .
075 | ’ . -
Ky Char. Mult. Remarks g
3.00 | -0.542+ 50.363, 0.998 Stable 1T T
3.50 | -0.608% 50.236, 0.998 Stable 1T '-.F
3.80 | -0.643% 50.106, 0.998 Stable 1T 4‘.
3.85 | -0.649, -0.649, 0.998 Stable 1T | O E-SBEFEEER e s ST s e e e R |
4.00 | -0.801, -0.531, 0.998 Stable 1T 4
4.20 | -0.903, -0.471, 0.998 Stable 1T
4.40 | -0.981, -0.433, 0.998 Stable 1T -
4.47 | -1.000, -0.425, 0.998 | Period-doubling g
-6.75 | -
TABLE il 1 T T T RO S S
CHARACTERISTIC MULTIPLIERS FORDIFFERENTVALUES OF K 5 -l 075 05 -0.25 0 025 0S5 075 1
Ky Char. Mulst. Remarks Fig. 10. Locus of characteristic multipliers &S,; varies. Arrows indicate
increasing/{, ;.
3.00 | -0.604+ 70.246, 0.998 Stable 1T
3.40 | -0.631+ 50.166, 0.998 Stable 1T )
3.60 | -0.643+ 50.109, 0.998 Stable 1T ' S '
3.70 | -0.649, -0.649, 0.998 Stable 1T 0.75 F 4
4.00 | -0.801, -0.531, 0.998 Stable 1T R
4.20 | -0.856, -0.497, 0.998 Stable 1T 05 F .
4.50 | -0.921, -0.461, 0.998 Stable 1T
4.85 | -1.000, -0.426, 0.998 | Period-doubling

Inspection of the locus of the characteristic multipliers reveals that a

sudden “jump” occurs as increases, which is typical of border colli-
sion bifurcation [11], [13]. Such a bifurcation arises whef1 Or vcon2
begins to pass over or under the ramp without hitting it during the whole
switching period. This situation isillustrated in Fig. 12./4dncreases,

the system traverses from one situation wherg: anduvc.n2 both hit

the ramp, to anotherwhere,,, orveon2 missesthe ramp. Suchatransi-
tion isnonsmoottat the pointwhere o, 1 0rveons just misses the ramp,

1

i

i

-1

-0.75

-0.5

-0.25

0

025 05 075

1

and at this point, border collision bifurcation occurs.

By studying the expressions 0f,n1, vcon2 andv,.mp, We can es- Fig. 11.  Locus of characteristic multipliers &S,. varies. Arrows indicate
timate the critical value ofn, at which border collision takes place.increasingi,».
Ignoring the ripple, we have = V;. in the steady state. Thus, (2) and

(3) can be approximated by SinceVi, et IS always set betweevi, andVi, veon1 Will always hit

the ramp during a switching cycle. We therefore need only to focus on
veon2(nT'). As mentioned before, we assume that> d; in the

neighborhood of7 periodic s tate. Also, neglecting the middle
period (d2 ., —di,»)T in the T periodic state and assuming

(36)

Uconl (t) ~ "/;ﬁ'sot

Veon2 (1) & Vosiset — Wi[ia(t) — miy ()] (37)

—®((1 —dy, ,)T)(Bs — B))Ex{ ®&(dy, ., T)

T(Xe) =o(T) - wI®(dy nT)(Awn + B1E) — 3

lf;@((dz,n - Cll,n)T)(B;s - Bl)EK?Q(dL nT)
K’{é(dl,nT)(A.’l?n =+ BlE) —_ Kj)
KE®(do, nT)(Axp + B1E) + 5T ®((do,n — d1,n)T)(Bs — B1)E — 3

—®((1 = da, ,)T)( By — B3)E |kl ®(ds, o T) + —

(34)
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Vo YUramp Vcon Vi Vramp [2]
Vi Vi Bl
L L Ucon
(a) (b) [4]
Fig. 12. The two possible border collision scenarios.
(5]

ia(dv,»T) = mii(di »T), and neglecting equivalent-series resistance

(ESR) of inductors, we may expreggnT’) andi2(n1') as 6]
i (nT) =i1(dy, o T) — Lq—)(l—dl,n)T (38) 7]
1
, , R v [8]
Zz(n/T) :I,z((ll)nT)— f(l_dl,7z)T- (39)
2
[9]
Putting (38) and (39) in (37), we get
[10]
m 1

Veons 1) = ’/; se _I’iz'l—l nT _ = — .

s 00) = Vi = Koo = 107 (= ). @0 "
Now, we may substitute eith@ton2(nT) = Vi Or veon2(nT) = Vi [12]
in (40) to obtain the critical value ofr. In particular, putting
veon2(nT') = V7, in (40) gives 3]

’/:)ﬂ'sel - ‘fL 1
Mepis = | ——20 72 4~ 14
Merit <K,~v(1 4 )T T L2> L SO
[15]

wherem.; is the critical value ofn at whichve.n2 just hitsVz at

t = nT. Furthermorep..n2(nT) = Vi gives a negative value for
m, which is not possible, thus ruling out the possibility of a border
collision with vcon2 hitting Vir.

Using the same set of parameter values and voltages as in Sec-
tion IV-C, we find thatmi: = 3.0 which agrees very well with the
bifurcation diagram shown in Fig. 7.

The above result clearly illustrates that the current-sharingwatio
a master—slave controlled parallel converter system must be kept below
a certain value in order to ensure stable operation.

VII. CONCLUSION

Despite the popularity of parallel converter systems in power
electronics applications, their bifurcation phenomena are rarely
studied. This paper reports some selected bifurcation phenomena in
a parallel system of two buck converters which share current under
a master—slave control scheme. The study of stability is a complex
issue in this type of system [2], [3]. This paper focuses on the effects
of variation of some voltage feedback gains and current sharing
ratio. It has been found that period-doubling bifurcations are possible
when voltage feedback gains are varied, and that a border collision
bifurcation is also possible when the current-sharing ratio is varied.
These results are useful for practical design of parallel converter
systems to ensure stable period-one operation in the expected stable
region.
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