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Exact Analytical Bit Error Rates for Multiple Access
Chaos-Based Communication Systems

Wai M. Tam, Francis C. M. Lau, Senior Member, IEEE,, Chi K. Tse, Senior Member, IEEE,, and Anthony J. Lawrance

Abstract—In this paper, exact analytical expressions for the bit
error rates (BERs) in a multiple-access chaos-based digital com-
munication system are derived. Comparisons are made with those
obtained using traditional approximation methods which assume a
Gaussian distribution for the conditional decision parameter. The
obtained results are compared to the results of brute-force (BF) nu-
merical simulations. It is found that the exact analytical BERs are
in perfect agreement with BF simulations and hence provide better
prediction of the BER performance than those given by traditional
Gaussian-approximation-based methods.

Index Terms—Chaos-based communications, exact bit error rate
(BER), multiple access.

I. INTRODUCTION

NE POTENTIAL application of chaos in engineering is

the spreading of spectrum for telecommunications since
chaotic signals are inherently wideband and their generation
is relatively inexpensive. Chaos-based communication systems
in digital forms have been found feasible for practical realiza-
tion, and a number of chaos-based digital communication sys-
tems have been proposed in the past, e.g., the chaos-shift-keying
system [1] and the differential chaos-shift-keying system [2].
Being spread-spectrum systems occupying bandwidths much
wider than what their information contents require, chaos-based
communication systems are expected to provide multiple access
and consequently their performance should be evaluated under
a multiple access environment [3]-[5]. Of particular concern
to communication engineers is the prediction of the bit error
performance of these systems under additive white Gaussian
noise (AWGN) conditions. Traditional methods for calculating
the bit error rate (BER) for a given chaos-based communica-
tion system are based on the assumption of a Gaussian distribu-
tion of the conditional decision parameter concerned [6]. The re-
sulting BERs are inexact and may in some cases deviate signifi-
cantly from the actual BERs computed from brute-force (BF)
numerical simulations. In this paper, we apply an exact ana-
lytical method, which was proposed by Lawrance and Ohama
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[7], to derive expressions for the BERs in a multiple access
chaos-based digital communication system. We compare the re-
sults with those obtained from traditional methods based on the
assumption of Gaussian distributed decision parameter, the con-
trol being provided by BF numerical simulations. The results re-
veal that the exact analysis can provide very accurate prediction
of BERs even for small spreading factors, whereas the tradi-
tional Gaussian-approximation (GA) based method gives only
good approximation when the spreading factor is large.

II. SYSTEM DESCRIPTION

The system under study is an antipodal coherent chaos-shift-
keying (CSK) communication system with N users, and we
consider the discrete-time baseband equivalent model shown in
Fl% 1. Suppose the ith user is transmitting a binary symbol
d;l during the I/th-bit duration, and the symbol dgl) is either
“+1” or “—1,” each with a probability of 1/2. Also, the sym-
bols sent by different users are independent of one another. The
CSK modulation process is applied here to spread the binary
symbol sequences. Essentially, there are N chaos generators
corresponding to the N different users, and the ith chaos gen-
erator produces the chaotic samples {:1:(,1)}, which is used to
spread the binary symbol sequence {dl&)} during the [th bit
duration. We also assume that the chaotic samples {ng)} are
obtained by repeating a truncated, long chaotic signal [8], [9],
which is made known at the receiver side. Let /3 be the spreading
factor, which is simply the number of chaos samples transmitted
in one bit duration. The signal transmitted by user : at time
E=(0-1)+1,(I1-1)8+2,...,10, under the antipodal
CSK scheme, can be written as

s = dD ). (1

Assuming that the users are chip synchronized, the overall trans-
mitted signal of the system at time k is thus given by

]\T
= s\, 2)
=1

We assume that the chaotic sequences are generated inde-
pendently of one another. Also, the mean value of each chaotic
sequence is necessarily zero in order to avoid transmitting any
noninformation-bearing dc components, i.e.,

Ex’l=0, i=12...,N 3)

where F[v] denotes the mean value of .
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Fig. 1. Multiple access chaos-based communication system.

As the signal goes through a communication channel, noise
is being added. For an AWGN channel, the received signal is
given by

N
=Y s+ & (4)
i=1

where &, is an AWGN sample with zero mean and variance
No/2. At the receiying side, the repeated, truncated chaotic
spreading signal { m,(j)} is reproduced. Synchronization between
the incoming signal and the local chaotic spreading signal can
then be achieved by using an integrate-and-dump stage and a
threshold detector [8]. As shown in Fig. 1, the receiver basically
employs a direct correlation process for demodulation. For the
7th user, the output of the correlator, denoted by yl(] ), is given
by

18 18 N
yl(]) _ Z Tkl’g) _ Z (Z sg) + £k> x,(j)
k=(1—-1)8+1 k=(1—1)p+1 \i=1
N 18 o 18 _
= Z dl(q’) Z m,(:’):v;j) + Z kagj) 5)
i=1 k=(1-1)8+1 k=(1—1)8+1
The decision parameter is the correlator output yl(j ) and the re-
covered symbol, denoted by d, is given by
d” = sgnly!”)] (6)

where sgn[.] is the sign function. The above decoding rule
simply sa(y_s that for the jth user, the recovered symbol is a
“+17if ?/1]) > 0, and is a “—1” otherwise.

III. PERFORMANCE ANALYSIS

In this section, we present two approaches for calculating the
BERs for the afore-described system. The conventional method
assuming Gaussian distribution of the conditional decision pa-
rameter yl(] ) with its first two moments is first discussed. We
will highlight the main assumption of the method, which may
lead to inaccurate performance prediction for some cases. An
alternative approach which reaches into the dynamics of the de-
cision parameter is then described. This approach gives exact
analytical formulas for the required BERs.

A. Derivation of BERs Based on Gaussian Approximation

With no loss of generality, let us consider the jth user and
derive the probability of error for the first symbol. For brevity,
we omit the subscript [ (which is 1 in this case) in the variables
dl(j ) J§J ) and yl(j ). The decision parameter for the jth user is
given by

N

>

5 .
y@) = ¢ Z(wg)y +
k=1 i=1,i#j

’[3 . . /8 .
d® Z x,(:)ng) + Z ka,?)
k=1 k=1

(N
where the conditioning is only on d) and not the others. With a
Gaussian distribution assumed for the conditional decision pa-
rameter, the BER for user j can then be evaluated by

. 1 . .
BER') = ZProb (y(j) <0]dD = +1)
1 . .
- () () — _
+5Prob (y >0]d9 = 1) 8)

where the two conditional error probabilities are approximated
by

) . E [y@]d0) = 11
Prob(y(J)Smd(]): +1) :lerfc [y +1]
2 \/2var [y(j)|d(j) = -I—l]
9
—ElyDde) = 1
:lerfc [y | ]
2 \/2var [y(J) |d(]) = —1]
(10

Prob (y(j) >0]dD) = —1)

In (9) and (10), var[] represents the variance operator and
erfc(+) denotes the complementary error function defined as

2 oo

= — exp(—t?) dt.
7 ee

erfe(v)) a1

Suppose the jth user is sending a “+1.” The mean value of
y) | dY) = +1 is given by

E [y(j)|d<j) - +1} = BE [(x,(j)ﬂ . (12)
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Also, from the independence of the chaotic sequences, the vari-
ance of y(7) | d) = 41 is readily shown equal to

var [y(j) | dV) = +1}

= [Bvar [( (j) }-{—

(13)

thice t_hat in the derivation of the mean and variance of
y(f ) | d0) = +1, the expectation is taken over both the x’s and
the other d’s except d¥). Now, using

E [yu) | dO) = _1} - _E [ym | d) = +1} (14)

var [y(j)|d<j) = —1} =var [y(j)|d(j) = +1} (15)

it is seen that the two conditional probabilities in (9) and (10)
are equal, and the BER for user j is simplified to

BER® = Prob (y(j) < 0]dD = +1)

1 [y(j) | dG) = +1]
= —erfc
\/2var y@) | dU) = —i—l]

(16)

Clearly, the accuracy of the above formulas is subject to the va-
lidity of the Gaussian distribution assumption and its moments
capturing the exact probabilities. Notice that only low-order mo-
ments of the chaotic spreading sequences have been considered,
which are not enough to characterize them. Thus, the formulas
could give identical results for quite distinct chaotic spreading.
This is the case for Chebyshev spreading with different orders,
as will be demonstrated in Section I'V. When the spreading factor
is sufficiently large, it gives reasonably good estimates of the
BERs, but when the spreading factor is small and the distribu-
tion of the conditional decision parameter deviates significantly
from the Gaussian, the above formulas give rather disappointing
results.

Application Example: Suppose the Chebyshev map is used
to generate the chaotic signals [10]. In order to provide each
user a different chaotic signal, we may either use one Cheby-
shev map with N different initial conditions or use N Cheby-
shev maps of different degrees. In either case, the second and
fourth terms in (13) can be eliminated since the chaotic signals
generated by Chebyshev maps satisfy the following conditions
(see Appendix):

k#m (17)

k # m. (18)
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Also E [(:vg))z} = P; for all 4, indicating that all users are
transmitting with the same average power. The variance of
y(@) | d) = 41 can then be shown equal to

—1—1} = [var [( (j)) ]
N —-1)pP% + %ﬂNOPS.
(19)

var [y(j) |d(1

+(

Writing
var [(:1:,(:))2] var [(3722))2}

ar .T(N)2

Py Py Py
(20)
we have the BER for user j given by
—11-1/2
BER(Y) = %erfc % + LNﬂ_ D <%>
21

where Fj, denotes the average bit energy and equals 3 P;.

B. Derivation of Exact BERs

In this section, we apply the approach of Lawrance and
Ohama [7], which gave exact BERs for single-user CSK
systems to derive exact analytical results for BERs in mul-
tiple-access CSK systems. This approach enables full dynamics
of the chaotic spreading to be utilized and not just low order
moments of the spreading. First, an exact Gaussian mean
and variance result is available for BERY) when considered
conditionally on the spreading and on the bits of the other
users; this follows only from the Gaussian distribution of the
noise. Secondly, the full dynamics of the spreading are used to
uncondition the result and hence obtain the fully exact BERU );
this is explicitly obtained as an [V -dimensional integral over the
independent invariant distributions of the chaotic spreading.

To simplify the notations, we denote the vector of the symbols
sentby Users 1,2,...,5—1,7+1,...,N by d and the initial
conditions of the unmodulated cha0t1c 51gnals by the vector X,
ie.,

d=[dV d®
X= [ o

dG-1  gG+1)
T
z]

dMT (22)

(23)
Given the vectors d and X , the value of y<j ) in (7), which is now
conditioned on all spreading and transmissions of all other users,

has a Gaussian distribution exactly. The mean of the conditional
decision parameter, y) | (d),d, X) can be written as

E[y9] (a9, d x)]
B

dD S (@) + Z d<>z D20 (24)

k=1 i=1,i#j

Also, because the chaotic sequences are independent, the vari-
ance of the decision parameter is readily shown equal to

var[ D|(d9) d X)} — var [Z Ekx(J)] 5 Z( (J))

k=1
(25)
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Since d(* and x,(:) are independent for all 7, the BER for the jth
user, BERU ), can be written as (26) at the bottom of the page,
where h(X) denotes the joint probability density function of X.
Using
E@U”(J”Z—LﬂiXﬂZ—E@N)HJ”Z%LiXﬂ
(27
and

var [y(j) | (dY9) = —L—J,X)}
= var [y(j) | (dD = +1,d, X)} (28)

the BERY) given in (26) can be simplified to (29) at the bottom
of the page. Since xgl)’s are independent variables, h(X) is
equal to

h(X) = hy(2$) x ha (@) -+ x by (2)  (30)

where hi(a:gl)) represents the natural invariant probability den-
sity function of :cgl). Thus, the desired exact result equals (31) at
the bottom of the page. This result consists of 2V~ N-dimen-
sional integrals which are numerically explicit, although they
may not be computationally practical for large N (how large

being dependent on the numerical software used). The result
could also be used to enable the lower limits of accuracy of the
moment-based analytical results to be ascertained by compar-
ison.

Based on (24), (25), and (31), it can be seen that to
minimize the BER of the jth user, the chaotic sequences
{(a:,(:))}t = 1,2,..., N, should be chosen such that the cor-
relation between any two different chaotic segments of length
B, ie., Zzl:nf_l x,(;):v,(j) with arbitrary m and for i # j, is
very low. Ideally, the two chaotic segments are orthogonal, i.e.,

mAA=1 03 0) — 0 for i # j. Under such circumstances,

k=m

(24) is simplified to
’[3 .
E [ym | (d9D, d, X)} ) Z(xij))2~ 32)
k=1
In consequence, (31) becomes (33) shown at the bottom of the
next page. For a particular initial condition of the chaotic signal
ng )ina bit, the corresponding bit energy equals
B
B, =Y (a)2

k=1

(34)

BERW) = / / / Z [Prob (y(j) <0 (dY = +1,d, X)) x Prob(d?) = 41) x Prob(

+ Prob(y(j) >0 (d9 = —1,d, X)) x Prob(d¥) = —1) x Prob(

(%

) X h(X)

v,

) x h(X)] dzVdz? - .. dz(™

_ / / / 3 [Prob (49 < 0] (49 = +1.d. X)) x Prob(d9) = +1) x Prob(d) x h(X)

+ Prob(y(j) >0](d9 = 1, -d, X)) x Prob(d¥) = —1) x Prob(—d) x h(X)] dzVdz? ... dz™

_ /w /w /°° 2LNZ [Prob (49 <01 (@9 = 41,4, X)) + Prob (4 > 0] (@D = ~1,-d. X))
T R

x W(X)da\Vdz{? .- dz (™

(26)

) 1 (%) oo oo . . v 1 2 N

BERO) = /_OO /_w,../_wzpmb (491 (@9 = +1.d, X)) x h(X)da dof? - da™)

d
o . E [y | (@9 = +1,d, X)
1 1 Y —
T N1 / / / derfc [ } X h(X)d:vgl) da?§2) "'degN) (29)
N \/Qvar [y | (49 = +1,d, X)]

BERV) =

X hl(xgl)) X }L2($§2))' X hN(ng))dxgl)dxgz)- : -dng)

s oo oo E lyD|(dD = +1,d, X
QLN/ / / Zerfc [y . )}

2var [y(j)|(d(j) =+1,d, X)}

(3D
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Since :EEC] ) s,k =2,3,...,0, are derived from the iterations of

:cg ), the bit energy depends only on and varies with mgj ) Define
the average bit energy among all bits as

) hj(a:gj))dazgj).

B

B=[ Z <Z<x§:’>>2

k=1

(35)

For a given average bit energy Ej, it can be shown that the en-
erggl of each bit, given in (34), should be kept independent of

in order to optimize the BER in (33). In other words, the bit
energy should be kept constant Sup ose the energy is the same
for all bits and we denote Z o ( by FE. Then, (33) re-
duces to

L1 @ E j j
BERY) = 3 / erfc ( N—Cs> hj(xgj))dxgj)

Ecb
No

1
= Eerfc <

which is the optimum BER. In conclusion, to optimize the BER,
the following are required.

(36)

1) The chaotic sequences for different users should have very
low correlations even for a finite length; and
2) The bit energy should be kept constant for each user.

Application Example: We consider again the use of the
Chebychev map for generating chaotic sequences for all users.
To provide each user a different chaotic signal, we may either
use one Chebyshev map with IV different initial conditions or
use N Chebyshev maps of different degrees.

Since the initial values a:gz) ’s lie between —1 and +1, to sim-
plify the mathematics, we substitute xgl) = cos qﬁ(i) into (31),
where 0 < ¢ < 7 and ¢(™) £ ¢ for m # n. We write
o™ g T

¢=1[oM (37)

477

for notational clarity. Now, the conditional mean and variance
of y(9) can be rewritten as (see Appendix)

E [y(j) 1dD = 41,4, 4,} — 4 zﬂ: (COS ((M(j))k¢(j)))z

k=1
+ ZN: dt) ZCOS ( M)k )cos ((M(J)) qﬁ(j))
i=1,i#j

(38)

and
8

2

% 3 (COS((M<j))k¢(j)))
k=1

(39)
where M) is an integer larger than two and it represents the
degree of the Chebyshev map used by the :th user. In general,
M@ can be different for different users. For the case where only
one Chebyshev map is used and each user is assigned with a dif-
ferent initial condition, we have the same M () value for all 4.
In either case, BER ") is given by (40) at the bottom of the next
page. The final result thus consists of 2V ~! N-dimensional in-
tegrals which we evaluate by the software MATLAB, as implied
by the following results.

var [y<j) 1 dD=+1,d, ¢] _

IV. RESULTS AND EVALUATION

In this section, we evaluate the two aforementioned methods
of computing BERSs. In particular, we study the following as-
pects of performance evaluation:

1) BER of single-user system;

2) BERSs of multiuser system with chaotic sequences gener-
ated by one Chebychev map with different initial condi-
tions;

3) BER of multiuser system with chaotic sequences gener-
ated by Chebychev maps of different degrees;

4) effect of the number of users on the BER calculations.

X }Ll(

MY x ha(22) -+ x by (2N)dz( dz® - datY

/ By 1 (59D dgi D

hov(a§™)) da™)

oo
.x/
— 00

(33)
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Fig. 2. BERs from the GA-based method, exact analytical method, and BF
simulation for a single-user system, with 3 = 1 to 5. The optimum BER is
plotted as a thick solid curve. (a) Chebyshev map of degree 2 is used as the
chaos generator. (b) Chebyshev map of degree 3 is used as the chaos generator.

In each of the first three cases, we compare BERs calculated
from the GA-based method and the exact analytical method,
with the control data provided by BF numerical simulations.
Also, the optimum BER obtained in (36) is plotted for reference.
For the last case, we only show the results found from the GA
method and BF simulations.

Fig. 2 compares the BERs found from the GA method, the
exact method and BF simulations for the single-user CSK

1LOE+00 ¢
—a—
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o
o
m
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Fig. 3. BERs from the GA-based method, exact analytical method, and BF

simulation for a two-user system using one chaos generator with different initial
conditions, with 3 = 1 to 5. The optimum BER is plotted as a thick solid curve.
(a) Chebyshev map of degree 2 is used as the chaos generator. (b) Chebyshev
map of degree 3 is used as the chaos generator.

system. Spreading factors varying from 1 to 5 are used, and
Chebyshev maps of degrees 2 and 3 are employed as chaos
generator (in two separate studies). It is found, because of
reliance on low order moments which are the same for all
Chebychev orders, that the BERs obtained by the GA method
are the same for both generators, whereas the BERs found from
the exact method fully employing the map dynamics show

E [ym | (dD = +1,d, ¢)] ) 1

_ 1 0 g0 0
BERY) :2—N/ / / Zerfc
™ ™ J T dv

1

\/2var [y(j) |(d) = —I-l,ti, ¢)}

msin(p(M) * T sin(¢(®)

o (—sin(¢<1>)) (_Sin(¢(2>)) (—sin(¢<N>)) AV dp® ... dp™

7sin(p@V))

E [y | (0 = +1.4d,
[y | ( )} dp® dp® ... dp™)

:ﬁ/gﬂ/oﬂ.../oﬂ%erfc
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Fig. 4. BERs from the GA-based method, exact analytical method, and BF
simulation for a three-user system using one chaos generator with different
initial conditions, with 3 = 1 to 5. The optimum BER is plotted as a thick

solid curve. (a) Chebyshev map of degree 2 is used as the chaos generator. (b)
Chebyshev map of degree 3 is used as the chaos generator.

significant difference for the two different chaos generators.
Furthermore, the exact method is in perfect agreement with
the BF simulations for all cases, whereas the GA method
gives deviating results especially for the case where the chaos
generator is the Chebychev map of degree 2.

Fig. 3 compares the BERs found from the GA method, the
exact method, and BF simulations for the multiuser CSK system
employing one chaos generator. Here, we show results for a
two-user system for simplicity. Again, spreading factors varying
from 1 to 5 are used, and Chebyshev maps of degrees 2 and 3
are employed as chaos generator (in two separate studies). Since
one chaos generator is used for the system, two different initial
conditions are used to generate chaotic sequences for the two
users. Similar observations can be made here. The exact method
matches the BF simulations perfectly, whereas the GA methods
give deviating results.

When the number of users increases, the approximation by
the GA method tends to improve, as shown in Fig. 4 which
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Fig. 5. BERs from the GA-based method, exact analytical method, and BF

simulation for a two-user system using two chaos generators for different users,
with 3 = 1 to 5. The optimum BER is plotted as a thick solid curve. (a) User
1 is using Chebyshev map of degree 2. (b) User 2 is using Chebyshev map of
degree 3.

compares the GA method, the exact method and the BF sim-
ulations for a three-user system employing one chaos generator.
The chaotic sequences for the three users are generated with dif-
ferent initial conditions.

Next, we study the multiuser CSK system employing multiple
chaos generators. Here, we show results for a two-user system,
in which the Chebychev maps of degrees 2 and 3 are used, re-
spectively, to generate the chaotic sequences for Users 1 and 2.
Again, spreading factors of 1 to 5 are used. Fig. 5 compares the
results obtained from the GA method, the exact method and the
BF simulations. In this case, we observe from the BF simula-
tions that the BERs for the two users are different, due to the
use of different chaos generators. The exact method tells this
difference, whereas the GA method gives identical results for
the two users.

Finally, to show the effect of the number of users on the
BER calculations, we plot the BERs against the number of users
N for the multiuser system employing one chaos generator.
The chaotic sequences for the users are generated with different
initial conditions. Fig. 6 shows only the results from the GA
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Fig. 6. BERs versus the number of users N from the GA-based method and
BF simulation for multiuser system using one chaos generator (Chebyshev map
of degree 2) with different initial conditions, at E, /No = 10dB and 3 = 5.

method and the BF simulations for E, /Ny = 10 dB and 3 = 5.
Here, the chaos generator is the Chebyshev map of degree 2.
It is found that the GA method gives better approximation as
the number of users increases. Note that the exact BERs are not
plotted in this case. As can be judged from (40), the compu-
tational intensity required by the exact method increases expo-
nentially with the number of users N as well as the spreading
factor 3. Thus, when the number of users or the spreading factor
is large, the computational requirement may become too exces-
sive to be feasible; fortunately, this is when the exact results are
not required because the GA approximation is sufficiently ac-
curate.

V. CONCLUSION

The process of chaos generation is deterministic. This prop-
erty allows the prediction of the performance of a chaos-based
communication system to be done in an exact manner. In this
paper, we have derived an exact analytical expression for a mul-
tiuser chaos-shift-keying communication system. Based on the
exact analytical expression, it is found that to optimize the BER,
the chaotic sequences for different users should have very low
correlations even for a finite length, and the bit energy should
be kept constant for each user. Because the analytical expres-
sion makes no approximating assumption on the distribution
of the decision parameter, but note that it is conditionally ex-
actly Gaussian, the exact approach gives totally accurate results
compared to the conventional approach of performance evalua-
tion which assumes a Gaussian distributed decision parameter.
The exact method will therefore be useful to engineers or re-
searchers, especially those who may not be too familiar with
computer simulations, to evaluate and compare the performance
of chaos-based communication systems. In this paper, we have
shown the application of the method to a particular system. The
basic principle is equally applicable to other types of chaos-
based communication systems for more performance evalua-
tion. A possible drawback of the exact BER method is that the
computational intensity required increases exponentially with
the number of users as well as the spreading factor. On the other
hand, the work here has verified that this corresponds to in-
creasing accuracy of the GA method.

APPENDIX
STATISTICAL PROPERTIES OF CHAOTIC SEQUENCES GENERATED
BY CHEBYSHEV MAP

All symbols are defined as in Section III-A. Consider the
Chebyshev map of degree M, defined as [10]

g () = cos (M cos™(z)) , -1<z<1. 41)

For M = 2 and 3, respectively, we have
ga(r) =222 — 1 (42)
g3(x) = 42> — 3z, (43)

The invariant probability density function of z;, denoted by p(z),
is [10]

1 .
o(x) = { e el <1 (44)
0, otherwise.
Define
957 (@) = gar (901 (x))
9\ () = gur (95\? (x))
o @) =gur (457 (@)). 45)

Putting & = cos ¢ in (45), we get, for the case M = 2

go(cos p) =2cos’ p — 1 = cos 2¢
95” (cos §) = g (g2(c0s $)) = ga(cos 2¢)
=2cos?(2¢) — 1 = cos(2%¢)
95" (cos §) = g2(g5” (cos $)) = ga(cos(2°¢))
=2c0s?(22¢) — 1 = cos(23¢)

98 (cos ¢) = g2(95" " (cos ¢)) = ga(cos(25 1))

=2cos?(2871¢) — 1 = cos(2¥¢). (46)

Likewise, we have, for M = 3

g3(cos ) =4cos® p — 3cosp = cos 3¢
95" (cos ¢) = g(gs(cos §)) = ga(cos 3¢)
=4c0s*(3¢) — 3cos(3p) = cos(3%¢)
95” (cos #) = ga(g5” (cos #)) = ga(cos(379))
=4c0s*(3%¢) — 3cos(3%p) = cos(3%¢)

95" (cos ¢) = ga(g§* "V (cos §)) = ga(cos(3°¢))
=4 cos3(3k_1(]§) -3 COS(3k_1§b)

= cos(3"¢) (47)

and, in general, we can show that for the Chebyshev map of
degree M

gg\/’})(cos $) = cos(M* ). (48)
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0 2
Elz222, —/ cos? ¢ (gM)(cos¢>)) 7rsiln¢(_ sin ¢) d¢
1 /™ 2
:;/0 cos? ¢ (gM (cos¢>)) do

1 /7T cos? ¢ cos?(M™¢) de
T Jo

1 (™ (1+cos2¢ 1+ cos(2M™¢)
() () w

1 1 . 1 n
= [qﬁ—}— 5511124)—1— S sin(2M" ¢) +

1
4

1
4(Mm + 1
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L /7r <1 + cos 2¢ + cos(2M™" ¢p) + lcos(Q(Mn +1)¢) + lcos(Q(M” - 1)¢)> deo
ir ), 2 2

Moreover, the invariant probability density function of cos(¢)
can be shown equal to

—L__ if0<¢<
pleos()) = § momimr MOSOST g
0, otherwise.
A. Derivation of cov [x%, xfn]
First observe that the autovariance of {z7% } is
cov[zi, x| = E[ziz?] — E[z}]E[2]. (50)

We consider the case where k& # m. Without loss of generality,
we assume m = k + n for some positive integer . Then

| # (45 @) )i

P (e L
——dx.
'/_1 (!]M( )) N a——1
Using (48) and (49), and = = cos ¢, (51) can be written as (52)
shown at the top of the page. Also,

(51

o 1
Combining (50), (52) and (53), we get
cov[zy,z2] =0, k # m. (54

B. Derivation of E [x1Zm]

The autocorrelation of {zy} is denoted by E[zyzy,]. Con-
sider the case where &k # m and if we assume m = k + n for
some positive integer n, we have

Elzgpw,)
| sl @ptais

1 /7r cos ¢ gg\?)(cos ¢)do
0

™

%/Ow cos ¢ cos(M™p)dep
1 /Oﬂ <%cos((Mn +1)¢) + %cos((M” - 1)¢)> d¢p

™
1 1
— | ———sin((M"™ + 1
s |3 (1" + 1)
1 _ N "
+ WSIH((M 1)(;5) .
—0. (55)
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