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A Longer Look at the Asymmetric Dependence
between Hedge Funds and the Equity Market

Byoung Uk Kang, Francis In, Gunky Kim, and Tong Suk Kim∗

Abstract

This paper reexamines, at a range of investment horizons, the asymmetric dependence
between hedge fund returns and market returns. Given the current availability of hedge
fund data, the joint distribution of longer-horizon returns is extracted from the dynamics
of monthly returns using the filtered historical simulation; we then apply the method based
on copula theory to uncover the dependence structure therein. While the direction of asym-
metry remains unchanged, the magnitude of asymmetry is attenuated considerably as the
investment horizon increases. Similar horizon effects also occur on the tail dependence.
Our findings suggest that nonlinearity in hedge fund exposure to market risk is more short
term in nature, and that hedge funds provide higher benefits of diversification, the longer
the horizon.

I. Introduction

Returns on many hedge funds exhibit a nonlinear relationship with market
returns (see, e.g., Fung and Hsieh (2001), Lo (2001), Mitchell and Pulvino (2001),
Agarwal and Naik (2004), and Brown and Spitzer (2006)). This nonlinearity, or
asymmetry, in dependence is often of a form where returns are more strongly
correlated in bear markets than in flat and bull markets.1 The implications of such
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1Agarwal and Naik (2004) conjecture two possible sources of this nonlinearity. First, hedge funds
may employ trading strategies that lose money during market downturns, but whose profits made
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asymmetric dependence are important in portfolio allocation and risk manage-
ment involving hedge funds. A hedge fund investor with some existing exposure
to market risk (e.g., who fails to incorporate such asymmetry in her portfolio deci-
sion) may overstate the diversification benefits offered by hedge funds. The utility
loss from the resulting suboptimal portfolio choice becomes more substantial as
the magnitude of asymmetry increases (see, e.g., Ang and Chen (2002), Patton
(2004), and Hong, Tu, and Zhou (2007)).

Despite the economic significance of its implications, our understanding of
the asymmetric dependence between the market and hedge fund returns arises
largely from previous empirical studies that are based on data reported at a
monthly frequency. In this paper, we attempt to expand the literature by exam-
ining a wider range of horizons. The primary questions we address are: Is the
asymmetric dependence between the market and hedge fund returns still present
at horizons exceeding 1 month? How does lengthening the investment horizon
alter, if at all, the magnitude of asymmetry in the dependence structure? In the
context of hedge funds, a longer-horizon analysis is particularly important be-
cause hedge fund investors are often confronted with liquidity restrictions, such
as a lockup provision or a redemption notice period, and this effectively forces in-
vestors to take a longer-term view; accordingly, learning about the longer-horizon
dependence structure between the market and hedge fund returns is more relevant
to investors’ decision making.2

To date, very little has been said about the implications of investment horizon
on cross-asset dependence, beyond linear correlation. The portfolio choice liter-
ature shows that predictability of asset returns can introduce a wedge between
the correlation structures of short-horizon returns and those of long-horizon as-
set returns (see, e.g., Campbell and Viceira (2005)). Statistical theory suggests
that even when returns are unpredictable, the correlation coefficient can still be
a function of the investment horizon, depending on whether the returns are ad-
ditive or multiplicative (see, e.g., Levy and Schwarz (1997), Levy, Guttman, and
Tkatch (2001)). However, there is no such empirical or theoretical guidance on
the type or degree of asymmetry to expect in longer-horizon dependence, given
a particular type and degree of asymmetry in short-horizon dependence. To our
knowledge, this paper is among the first to consider horizon effects on asymmetric
dependence between asset returns.

A common problem in hedge fund research is that hedge fund return histo-
ries are generally short, rarely extending past 15 years. In this light, we do not

during the market upturns are unrelated to the extent to which the market goes up. Examples include
the risk arbitrage strategy investigated by Mitchell and Pulvino (2001). Second, regardless of trading
strategy, managers could create (either directly or indirectly through dynamic trading) a payoff similar
to that from writing a put option in order to improve their Sharpe ratio or to respond to their incentive
contract.

2There has been recognition in the literature of the need for a better sense of investor returns ac-
counting for lockup and notice periods. The first article to discuss this is Agarwal and Naik (2000),
who argue that investors should have sufficient information about the performance of hedge funds over
a long period before committing money to them. These authors find that persistence in the performance
of hedge funds depends on return horizon, with longer-horizon returns showing less evidence of per-
sistence. According to Getmansky, Lo, and Makarov (2004), a finding of persistence at a short horizon
can be ascribed to the presence of illiquid securities in hedge fund portfolios.
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directly analyze long-horizon returns. Rather the profile, by investment horizon,
of dependence structure is derived from the dynamics of monthly returns. This
approach is in the spirit of the recent long-term asset allocation literature, which
extracts the moments of multiperiod asset returns from the assumed evolution of
single-period returns (see, e.g., Campbell and Viceira (2005), Jurek and Viceira
(2005), and Bansal and Kiku (2007)). Provided that the properties of monthly re-
turns are well preserved, we can consistently estimate the dependence structure
between returns over any desired horizon.

Our empirical analysis proceeds in 2 steps. First, we construct the joint distri-
bution of holding period returns on the market and a given hedge fund, for a series
of investment horizons: To span the various lockup and notice periods, the invest-
ment horizons we consider range from 1 quarter to 5 years. To accomplish this, we
employ the filtered historical simulation (FHS) of Barone-Adesi, Bourgoin, and
Giannopoulos (1998) and Barone-Adesi, Giannopoulos, and Vosper (1999). The
FHS generates correlated pathways for market and hedge fund returns, allows se-
rial correlation and time-varying volatility, and avoids assumptions about the joint
conditional distribution of the market and hedge fund returns. Given that holding
period returns are computed by time aggregating the simulated monthly return
series, and that the simulated monthly returns under FHS preserve cross-asset de-
pendence along with other aspects in the original data, the joint distributions of
holding period returns will contain unbiased information about the longer-horizon
dependence structure between market and hedge fund returns.

The next step is to uncover dependence structures embedded in the simulated
joint distributions of holding period returns for the investment horizons under con-
sideration. To this end, we use the method based on copula theory. A copula-based
approach is natural in situations where the association between the variables is of
primary interest, since the effect of the dependence structure can easily be sep-
arated from that of the marginals (see Sklar (1959)). In addition, copulas permit
an examination of joint behavior at the tails of distribution, because measures of
such tail behavior, known as tail dependence, can be directly expressed in terms
of the copula associated with its joint distribution (see, e.g., Joe (1997)).

We use monthly Standard and Poor’s (S&P) 500 and hedge fund index re-
turns from January 1994 to May 2007 to simulate the joint distributions of hold-
ing period returns. We focus on a list of hedge fund investment strategies or styles
characterized by strong asymmetric dependence on the market. Tail risk borne by
these hedge fund strategies is of recent interest due to its close association with
the concept of contagion. According to Boyson, Stahel, and Stulz (2007), there
is a high probability of contagion among hedge funds, and thus diversification
across strategies does not offer protection against extreme negative return on a
specific strategy. Similarly, Brown and Spitzer (2006) find that forming a port-
folio of hedge funds concentrates rather than dissipates tail risk exposure. While
these authors note the difficulties in the cross-sectional diversification of tail risk,
we ask in this paper whether such risk can nevertheless be diversified over time.
In so doing, we can also address some of the suggestions of Poon, Rockinger, and
Tawn (2004), who propose investigating the time-aggregating properties of ex-
treme values and the effect of investment time horizon on tail dependence, among
other issues.
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Three main results emerge. First, we find that asymmetry in the dependence
between market and hedge fund returns is not confined to a particular time hori-
zon, but evident across all holding periods; hence, for a given horizon, the de-
pendence for downside moves is always greater than for upside moves. Second,
however, the magnitude of asymmetry is not invariant to investment horizon: The
asymmetry is most severe at the quarterly horizons and decreases considerably in
extent as the horizon lengthens to 5 years. Finally, a similar horizon effect occurs
on the lower tail dependence (i.e., the probability of joint negative events), as it
appears inversely related to the length of the investment horizon. In a series of
robustness checks, we verify that our findings are not unduly driven by the choice
of market index, by the weighting method selected to form hedge fund indexes,
or by the choice of simulation methodology.

These results relate to and are consistent with those of Breymann, Dias, and
Embrechts (2003) and Dias and Embrechts (2007) in that the dependence struc-
ture changes as a function of the time horizon. These authors investigate high-
frequency exchange rates at 6 different time horizons and find that the dependence
structure is best described by a t-copula with successively larger degrees of free-
dom as the time horizon increases. Unlike these authors, we focus on a data set
characterized by asymmetric dependence and employ models that accommodate
varying extents of asymmetry therein. Less related to our work is Ang and Chen
(2002), who pioneered the development of a statistic for testing asymmetries in
correlations. In their empirical work using U.S. stock portfolios, the authors ob-
serve no discernable pattern in the degree of correlation asymmetries across daily,
weekly, and monthly frequencies. Conceptually, however, asymmetric correla-
tions between 2 variables do not necessarily indicate the existence of asymmetry
in their association, since asymmetric correlations can be attributable to purely
marginal aspects, such as skewness. Our paper focuses exclusively on the intrinsic
association between assets and asymmetries therein.

The remainder of this paper is organized as follows. Section II discusses
our research design. Section III studies the dependence structure of the market
and hedge fund returns over various holding periods. Section IV provides some
robustness checks of our results. And Section V summarizes and interprets the
results.

II. Research Design

We begin by recalling one of the fundamental results in copula theory, from
Sklar (1959). Sklar’s Theorem states that any joint distribution can be repre-
sented in terms of the marginals and a dependence function, termed the copula.3

While information concerning individual variables (e.g., mean, standard devia-
tion, skewness, and kurtosis) is entirely determined by the marginal distributions,
the dependence relationship between the variables is completely described by the
copula. This allows us to separately treat each variable’s marginal distribution and
the dependence relation that couples the marginals into a joint distribution.

3See, for example, Joe (1997) for such representation of the joint distribution.
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Given this, our research procedure is summarized as follows: First, we con-
struct the joint distribution of s-period returns on the market and a given hedge
fund strategy, which we denote byH(s)(Rm,t0+s,Rh,t0+s), where Ri,t0+s is the return
on the market (i = m) or the hedge fund (i = h) bought at time t0 and held up to
t0 + s.4 By Sklar’s Theorem, we can write the joint distribution as

H(s)(Rm,t0+s,Rh,t0+s) = C(s)(F (s)(Rm,t0+s), G(s)(Rh,t0+s)),(1)

and accordingly, we can separate out C(s), the intrinsic dependence between Rm,t0+s

and Rh,t0+s, from the marginal distributions F (s) and G(s). Our next step is to ex-
plore the profile of dependence structures C(s) across the various horizons. The
specific investment horizons we consider are 1 quarter, 6 months, 1 year, 3 years,
and 5 years; hence, s ∈ {3, 6, 12, 36, 60}. These investment horizons span almost
the entire range of minimum holding periods that could be imposed on a typical
hedge fund investor via a lockup provision and a redemption notice period.5

Note that the subscript on the holding period return incorporates both horizon
and time dimensions. In this paper, we consider only the average market condition
by deriving the unconditional distributions, so that we can isolate the impact of
the horizon. However, by formulating conditional distributions, our procedure
could also be used to examine the effect of time-varying market conditions on
the dependence structure between Rm,t0+s and Rh,t0+s.

A. Simulating a Joint Distribution

We now describe how we construct the (unconditional) joint distribution of
s-period returns,H(s), from the dynamics of single-period returns, rm,t and rh,t. A
main advantage of the FHS algorithm for this purpose is also discussed along the
way. Suppose that rm,t and rh,t evolve, respectively, as

rm,t = μm,t + σm,tεm,t and(2)

rh,t = μh,t + σh,tεh,t,(3)

where the innovations, εm,t and εh,t, are independent and identically distributed
(i.i.d.) with zero mean and unit variance, and their cumulative distribution func-
tions (CDFs) are denoted by F and G, respectively; μi,t and σi,t, for i ∈ {m, h},
are measurable with respect to information about the return process available up
to time t − 1. We assume that the joint distribution of εm,t and εh,t is

(εm,t, εh,t) ∼ H = C(F ,G),(4)

4A single investment period corresponds to 1 month, since the data employed in our empirical
work are sampled at a monthly frequency.

5According to the Lipper TASS hedge fund database, the lockup period ranges up to 7.5 years
but mostly clusters around 1 year; the notice period ranges between 0 and 365 days and exhibits
more variability. In effect, the lockup period could be longer than specified because some funds allow
redemptions only at the end of the calendar year. For example, if the initial investment made in January
2007 is subject to a 1-year lockup, the earliest withdrawal could be made only at December 2008;
hence, the effective lockup is 2 years. The redemption frequency, in a few cases, is as low as biennial
or triennial, thereby making the effective lockup period even longer.
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where C is the copula associated with H, the bivariate CDF of εm,t and εh,t. It is
also assumed that the copula C and the marginals F and G are constant over
time.

Generally,H(s) is not known analytically, even for a known innovation distri-
butionH; hence, we adopt a simulation approach. One commonly used approach
is Monte Carlo simulation. This method generates innovations (εm,t, εh,t) from as-
sumed distributions with estimated parameters (i.e., F̂ , Ĝ, and Ĉ).6 An obvious
concern is that they may carry model misspecification and parameter estimation
errors, which can be nonnegligible, especially given the short history of hedge
fund returns.

The FHS algorithm makes minimal assumptions about underlying innova-
tion distributions and draws the innovations from the empirical distribution of
data. Below we summarize how we generate a path of rm,t and rh,t (with length
equal to s) using the FHS (see Barone-Adesi et al. (1998), (1999) for details):

i) Specify a model for the dynamics of the conditional mean μi,t and volatility
σi,t in each of equations (2) and (3). Estimate equations (2) and (3) separately,
while making no assumptions about F and G and using quasi-maximum
likelihood estimation (QMLE). Recover estimates of past realizations of the
standardized residuals, ε̂m,t and ε̂h,t.

ii) Make s random draws (with replacement) of a past date and use each date’s
realization of the vector (ε̂m,t, ε̂h,t) as a simulated innovation fromH; denote
the jth drawn vector of innovations as (εm,t0+j,εh,t0+j). Obtain (rm,t0+j, rh,t0+j)
by combining the estimated models (2) and (3) with simulated innovations
(εm,t0+j,εh,t0+j), j=1, 2, . . . , s.

Here, the initial values μi,t0+1 and σi,t0+1, for i ∈ {m, h}, are set to their un-
conditional levels to reflect average market conditions. Each simulated path pro-
duces a single pair of s-period returns on the market and the hedge fund, that is,
(
∏s

j=1(1 + rm,t0+j)− 1,
∏s

j=1(1 + rh,t0+j)− 1), and this can be envisaged as an i.i.d.
draw from the density function corresponding to H(s). We simulate 10,000 paths
to create the simulated joint distribution of s-period returns.7

The core of FHS is the resampling of the historical standardized residu-
als, ε̂m,t and ε̂h,t. It can be visualized that under FHS, draws from H are made
by randomly drawing, with replacement, the vector of ε̂m,t and ε̂h,t from the set
of past realizations. Therefore, neither modeling nor parameter estimation is re-
quired for F , G, and C; the unknown true distributions are estimated nonparamet-
rically by using the empirical distribution of (ε̂m,t,ε̂h,t). By resampling the vector
of ε̂m,t and ε̂h,t rather than resampling separately, we ensure that, along with the

6The method first generates independent draws of (Ut,Vt) from the estimated copula, Ĉ, and
then applies the inverse of estimated CDF for each marginal to Ut and Vt (i.e., εm,t = F̂−1(Ut),
εh,t= Ĝ−1(Vt)) to obtain (εm,t, εh,t). See, for example, Cherubini, Luciano, and Vecchiato (2004) for
details.

7Separately,
∏s

j=1(1 + ri,t0+j) − 1 can be viewed as an i.i.d. draw from the univariate density
functions corresponding to F(s) (i=m) or G(s) (i= h). Thus, 10,000 paths also create the simulated
marginal distribution of s-period returns on the market, and of s-period returns on the hedge fund.
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statistical artifacts in marginal distributions, intrinsic association between the 2
marginals is preserved in simulated return pathways.8 Note that we are looking at
the longer-horizon properties of returns imputed from the single-period returns.
Hence, preserving the characteristics of the original monthly returns is important
in consistently estimating the joint distributions of returns over longer holding
periods; the FHS that we use for simulation does exactly that.

B. Identifying Dependence Structures

Sklar’s Theorem indicates that the dependence structure of a joint distribu-
tion can be isolated by transforming the bivariate variable (X,Y) to uniformly
distributed marginals (F(X),G(Y)), where F and G are the marginal CDFs of
X and Y , respectively. Looking at (F(X),G(Y)) instead of (X,Y) reveals the
aspect of dependence exclusively. Accordingly, we extract the effect of the de-
pendence structure, C(s), by transforming the simulated data (Rm,t0+s,Rh,t0+s) into
(F (s)(Rm,t0+s),G(s)(Rh,t0+s)), for a given s ∈ {3, 6, 12, 36, 60}. For quantitative
description of the nature of the dependence, we apply a broad class of parametric
copula functions to the transformed data. As such, the type of dependence struc-
ture between market and hedge fund returns and the magnitude of asymmetry
therein will be established for the various investment horizons.

Our estimation procedure of the parametric copulas is essentially the semi-
parametric approach proposed by Genest, Ghoudi, and Rivest (1995): We do not
specify functional forms for marginal distribution functions but use the simulated
marginals, F (s) and G(s), to map the data into the uniform space. Once the trans-
formed data are plugged into a parametric copula function, the dependence pa-
rameters are estimated via the maximization of a pseudo log-likelihood function
(see, e.g., Kim, Silvapulle, and Silvapulle (2007) for details of this approach and
comparison of different methods). For statistical inference about the estimates of
dependence parameters, we rely on the asymptotic distributions derived in Genest
et al., which is valid for i.i.d. data. Recalling that our simulated data can be viewed
as a set of i.i.d. observations drawn from H(s), the asymptotic theory given in
Genest et al. is directly applicable without time filtering.9

Besides a separate treatment of dependence and marginal aspects, copulas
contain information about the joint behavior in the tails of distributions, namely
tail dependence. Tail dependence measures the dependence between variables
during extreme events and is defined as the probability of an extremely low (high)
value of one variable, given that an extremely low (high) value of the other is

8This statement is true only to the extent that there is no time variation in correlation or, more
generally, copula between ε̂m,t and ε̂h,t . We thank the referee for this important insight. In Section
III.B, we address this issue by performing tests for constant correlation between ε̂m,t and ε̂h,t .

9For time-series data, many previous authors apply autoregressive (AR) or generalized autore-
gressive conditional heteroskedasticity (GARCH) filters before pursuing the semiparametric approach
of Genest et al. (1995). This common practice in the literature is justified theoretically by the recent
works of Chen and Fan (2006) and Kim, Silvapulle, and Silvapulle (2008).
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observed, or vice versa. Clearly, as below, this definition of tail dependence can
be equivalently expressed in terms of the copula

λL ≡ lim
ε→0

Pr[F(X) ≤ ε|G(Y) ≤ ε] = lim
ε→0

Pr[G(Y) ≤ ε|F(X) ≤ ε]

= lim
ε→0

C(ε, ε)
ε
,

provided that the limit exists.10 A bivariate copula C is said to have lower tail de-
pendence if λL ∈ (0, 1], and no lower tail dependence if λL=0. In our application,
the value of tail dependence implied from C(s) is an indication of the likelihood
that both the market and the fund simultaneously exhibit extreme returns over a
holding horizon of s months. By estimating the tail dependence corresponding to
C(s) for each s ∈ {3, 6, 12, 36, 60}, we will be able to document the impact of
investment time horizon on tail dependence.

We use 2 complementary methods to estimate tail dependence. First, we esti-
mate tail dependence parametrically by imputing from the estimated dependence
parameters given the assumed functional form of parametric copula (see, e.g.,
Breymann et al. (2003)). Second, we use the nonparametric estimation proce-
dure, whereby the tail dependence is computed based directly on the extreme ob-
servations (see, e.g., Schmidt and Stadtmüller (2006)). Generally, the parametric
estimates are reliable only if the underlying model is correctly specified. In this
regard, the nonparametric estimates have the benefits of imposing no structure on
the data. However, as pointed out by Pritsker (2006), implementing FHS with a
short historical sample could increase variability and skewness, especially in the
tails of the simulated distributions; the parametric estimates, which are based on
the entire set of simulation outcomes, may be less subject to such a problem. In
light of these 2 issues, we conduct both parametric and nonparametric estimations
of tail dependence.

It is also important to note that the copula captures features of the joint
distribution that are invariant under monotonic transformations of the marginal
variables. Consequently, the results are unaffected by whether we use log returns
(i.e., additive) or simple returns (i.e., multiplicative), or by whether we annualize
returns or not.

III. Empirical Analysis

Section III.A describes our data. Section III.B implements the FHS. Section
III.C, the heart of this paper, examines various aspects of the dependence of hedge
funds on the market index.

A. Data

We use data provided by the TASS database as our hedge fund sample. As of
July 2007, the TASS database includes 7,761 individual hedge funds, a majority

10The upper tail dependence, λU , can be defined in a similar fashion (see, e.g., Joe (1997)).
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of which report returns net of all fees on a monthly basis. For each fund, TASS
provides an array of additional information, including investment strategy, assets
under management (AUM), and redemption information. As a market index, we
use the S&P 500 for our discussion of the main results and employ the Morgan
Stanley Capital International (MSCI) World Index in Section IV to check the
robustness of our findings.

In this paper, we concentrate on the following 5 hedge fund strategies: con-
vertible arbitrage (CA), emerging market (EM), event driven (EVD), fund of
funds (FOF), and long/short equity (LSE).11 As of July 2007, these strategies
encompass 71.6% of all hedge funds contained in the TASS database. We focus
on these particular strategies because of their strong asymmetric dependence on
the market (see, e.g., Mitchell and Pulvino (2001), Agarwal and Naik (2004), and
Brown and Spitzer (2006)). As will be shown later, other common hedge fund
strategies seem better described as having either symmetric dependence on or in-
dependence from the market and are thus excluded from further analysis. After
all, our goal is to examine how the asymmetric dependence established at short
(i.e., monthly) horizons alters as investment horizon lengthens; in this respect, it
is natural as well as necessary that we choose these 5 styles for our analysis.

For tractability, we construct indexes of individual funds within each of the
5 style categories. To be included in the index, funds must report returns net of
fees, and they must report returns on a monthly basis. Funds should also have
more than $5 million of time-averaged AUM. This is to reduce any bias that
might be caused by very small funds. Funds that report returns denominated in
currencies other than U.S. dollars or funds with no AUM information are also
excluded. The remaining sample includes 4,527 funds, of which 160 are CA, 304
are EM, 449 are EVD, 1,017 are FOF, and 1,378 are LSE. We base our discussion
of the main results on equal-weighted indexes of hedge funds, and in Section IV
we check the robustness of our findings using value-weighted indexes.

Our sample period used to estimate the dynamics of single-period returns in
equations (2) and (3) covers January 1994–May 2007. We choose January 1994
as the starting date because hedge fund data are thin prior to the 1990s. In results
available from the authors, however, we show that our main results do not change
greatly when an extended historical sample from January 1990 is used instead.

B. GARCH Estimates

Implementation of the FHS begins with fitting a conditional volatility model,
μi,t and σi,t, for i ∈ {m, h}, in equations (2) and (3), to historical return data.
Importantly, the selected model should remove serial correlation and volatility
clustering from the return series and thus produce i.i.d. standardized residuals.
Ensuring i.i.d. here is an important criterion in the model specification because
the standardized residuals will form a set of innovations in the FHS (see Barone-
Adesi et al. (1998), (1999)). For the dynamics of monthly market returns, we
specify a GARCH(1,1) process, since returns are serially uncorrelated at this

11See http://www.hedgeindex.com for descriptions of each investment style.
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frequency but show strong GARCH effects; hence, μm,t = μm and σ2
m,t = ωm +

amε
2
m,t−1 + bmσ

2
m,t−1. While there are many conditional volatility models in the lit-

erature, the GARCH(1,1) process is the most widely used to capture heteroskedas-
ticity, due to its tractability.

It is now well recognized that hedge fund returns exhibit strong positive
serial correlation (see, e.g., Asness, Krail, and Liew (2001), Getmansky et al.
(2004)). Thus, for the dynamics of hedge fund returns, we specify a moving aver-
age (MA) model to filter the serial correlation. We apply different orders of MA
terms to each hedge fund style and settle on a model that produces i.i.d. (stan-
dardized) residuals in the most parsimonious way. The selected orders are mostly
1 or 2 (i.e., μh,t=μh +θ1εh,t−1 or μh,t=μh +θ1εh,t−1 +θ2εh,t−2). Unlike serial cor-
relation, heteroskedasticity is not present in all fund styles. For those that exhibit
volatility dynamics, GARCH(1,1) models are specified (i.e., σ2

h,t=ωh + ahε
2
h,t−1 +

bhσ
2
h,t−1). Specification for each strategy is indicated in Table 1.

TABLE 1

Parameters for Filtered Historical Simulations

Table 1 reports the estimates of models for single-period (i.e., monthly) return dynamics using data from January 1994
through May 2007. The estimated model for the S&P 500 Index returns has the form rm,t =μm +σm,tεm,t , σ2

m,t =ωm +
amε

2
m,t−1 + bmσ

2
m,t−1, and the estimated models for the hedge fund returns, while different across the strategies, are

nested within the following specification: rh,t =μh +θ1εh,t−1 +θ2εh,t−2 +σh,tεh,t , σ2
h,t =ωh + ahε

2
h,t−1 + bhσ

2
h,t−1.

The precise specification for each strategy is indicated in the table. The abbreviations for different hedge fund strategies
are convertible arbitrage (CA), emerging market (EM), event driven (EVD), fund of funds (FOF), and long/short equity
(LSE). All parameters except for those of CA and EVD are estimated using the QMLE procedure, and parameters of CA
and EVD are estimated by the ordinary least squares (OLS) method. The corresponding standard errors are provided in
parentheses. LB(15), LB2(15), and LBx(15) are the Ljung-Box (1978) test statistics for up to 15th-order serial correlation
in the (standardized) residuals, the squared (standardized) residuals, and the cross product with the market residual,
respectively. Theχ2 value is the Engle and Sheppard (2001) statistic with 5 lags for the null of constant correlation between
the market’s and fund’s residuals against an alternative of dynamic conditional correlation. The corresponding p-values
are provided in square brackets.

Coefficient S&P 500 CA EM EVD FOF LSE

μi 1.040 0.795 1.517 1.027 0.629 1.130
(0.273) (0.143) (0.351) (0.136) (0.117) (0.190)

θ1 0.529 0.298 0.406 0.302 0.265
(0.077) (0.080) (0.077) (0.081) (0.085)

θ2 0.244 0.176
(0.077) (0.078)

ωi 0.265 0.337 0.052 0.164
(0.340) (0.358) (0.059) (0.158)

ai 0.130 0.129 0.124 0.124
(0.040) (0.146) (0.050) (0.056)

bi 0.859 0.855 0.851 0.853
(0.052) (0.105) (0.071) (0.051)

LB(15) 9.166 10.249 13.677 7.618 15.083 17.390
[0.869] [0.673] [0.474] [0.868] [0.373] [0.236]

LB2(15) 6.025 3.624 22.800 2.445 13.416 15.945
[0.979] [0.995] [0.064] [0.999] [0.494] [0.317]

LBx(15) 2.662 6.907 2.498 8.749 8.655
[0.999] [0.960] [0.999] [0.890] [0.895]

χ2 value 5.052 4.522 3.364 9.691 11.070
[0.537] [0.606] [0.762] [0.138] [0.086]

As mentioned earlier, we estimate the parameters of the specified models
using QMLE. The QMLE method treats εi,t, i ∈ {m, h} as if it is normally
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distributed, that is, F ,G = Φ, where Φ is the standard univariate normal dis-
tribution function. Although this amounts to estimating a model using a dis-
tributional assumption that is not necessarily true, QMLE delivers a consistent
and asymptotically normal estimator (Bollerslev and Wooldridge (1992)). Hence,
the parameters and the conditional volatilities, σ̂i,t, obtained from the estima-
tion recover estimates of standardized residuals, ε̂i, for i ∈ {m, h}, at each past
date. The coefficient estimates and their standard errors are reported in Table 1.
Diagnostics confirm that residuals are without any dependency in the 1st or 2nd
moments.

Table 1 also presents the results of 2 tests for the null of constant correlation
between the residuals ε̂m,t and ε̂h,t: a Ljung-Box (LB) (1978) test on the cross
products of the residuals, and the test of Engle and Sheppard (2001) against an
alternative of dynamic conditional correlation. The results show no evidence of
violation of the assumption underlying the FHS, that is, the assumption of con-
stant correlation or, more generally, constant copula between the residuals.12 In
the general implementation of the FHS, however, this assumption should not be
taken for granted and should be tested in each individual case to ensure the va-
lidity of subsequent analyses. Indeed, given the dynamic nature of hedge fund
strategies, it is quite possible that the correlation constancy may be overturned in
a future study when a longer time series is available.13 One possible refinement
of the FHS method in this regard would be to estimate a multivariate volatility
model (e.g., Engle (2002)) to capture time-varying correlations. One could then
resample the jointly standardized residuals, which may reasonably be assumed to
have constant correlation over time.14

At this stage, it is instructive to take a look at dependence structure in his-
torical standardized residuals, (ε̂m,t, ε̂h,t), although we do not attempt to model it
for simulation purpose. In Figure 1, we plot F̂(ε̂m,t) against Ĝ(ε̂h,t), where F̂ and
Ĝ are the empirical CDFs of the 2 residuals; this plot is more helpful than a plot
of ε̂m,t against ε̂h,t because this transformation removes the influence of marginal
aspects. For the purpose of comparison, the figure also presents analogous scatter-
plots for several other investment styles regularly featured in hedge fund research.
Figure 1 reveals that for the 5 styles considered, the points tend to concentrate
near the vertex (0, 0) in the unit square, implying greater dependence for joint
negative events than for joint positive events, and also that such asymmetry seems
less prevalent, if present at all, in other common hedge fund styles. These ob-
servations are consistent with the literature that has indicated the existence or
nonexistence of asymmetry in a variety of contexts, such as beta asymmetries in
up and down markets (Lo (2001)), nonlinear option-like payoffs (Mitchell and
Pulvino (2001), Agarwal and Naik (2004)), and tail nonneutrality of hedge funds
(Brown and Spitzer (2006)). Recall that (ε̂m,t, ε̂h,t) defines the background driving
process for the dynamics of single-period returns in our simulation. Thus, it is

12We find that these results are robust to the choice of lag length.
13In addition, the assumption of constant correlation becomes less appropriate, the longer the

sample (Pritsker (2006)).
14We thank the referee for this important suggestion on possible refinement of the FHS method

under time-varying correlation.
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FIGURE 1

Scatter Plots of Transformed Residuals

Figure 1 shows the scatter plots of transformed residuals of market returns, F̂(ε̂m,t ), versus transformed residuals of hedge
fund returns, Ĝ(ε̂h,t ). The transformed residuals of market returns are shown on the horizontal axis, and the transformed
residuals of hedge fund returns are shown on the vertical axis.

expected that the dependence we observe here will exert the most direct influence
on the dependence structure between 1-month holding period returns; but, how
this dependence changes with the investment horizon remains to be seen.15

15In effect, the dependence structure between the simulated 1-month holding period returns is
identical to that between the historical standardized residuals. Recall that in our simulation, the initial
values, μi,t and σi,t , for i ∈ {m, h} are set to predetermined levels. This means that first month
returns (i.e., 1-month holding period returns) are monotonic transformations of historical standardized
residuals. As noted in Section II.B, dependence is invariant under monotonic transformations of the
marginal variables.
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C. Dependence Structure at Different Investment Horizons

We now present the main results of this paper: the estimation results for
the dependence models. Before formally specifying alternative copula functions,
we first provide a visual overview of C(s) across investment horizons. To do so,
we use the measures of exceedance correlations presented in Longin and Solnik
(2001), Ang and Chen (2002), and Hong et al. (2007). An exceedance correlation
at a threshold level is defined as the correlation between 2 variables given that
both variables exceed that threshold. We follow Patton (2004) and transform the
data before subjecting them to the computation, such that

ρs(q) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

corr[F (s)(Rm,t0+s),G(s)(Rh,t0+s)|F (s)(Rm,t0+s) ≤ q,

G(s)(Rh,t0+s) ≤ q], if q ≤ 0.5,

corr[F (s)(Rm,t0+s),G(s)(Rh,t0+s)|F (s)(Rm,t0+s) ≥ q,

G(s)(Rh,t0+s) ≥ q], if q ≥ 0.5.

By construction, the shape of this exceedance correlation plot, as a function of
threshold quantile q, will directly depend on the underlying copula, having re-
moved the influence of marginal distributions. Figure 2 shows the exceedance
correlations for CA with the market at the 5 different time horizons.16

From Figure 2, we can already see some implications of the time horizon.
First, we observe that the exceedance correlations for q ≤ 0.5 are always greater
than the exceedance correlations for q ≥ 0.5, indicating that the dependence
between market and hedge fund returns maintains the same form of asymmetry
across all horizons. Second, however, we find that the distance between the ex-
ceedance correlations for the qth and the (1− q)th quantiles tends to decrease as
we move to longer horizons, suggesting that the magnitude of the asymmetry in
the dependence may be inversely related to the length of the investment horizon.

Along with the exceedance correlations implied from C(s), Figure 2 also
plots the exceedance correlations suggested under assumption of the following
4 alternative parametric copulas: the normal, rotated Gumbel, Clayton, and sym-
metrized Joe-Clayton (SJC) copulas. The normal (or Gaussian) copula is often
taken as the benchmark copula in the literature, and the rotated (or survival)
Gumbel, Clayton, and SJC copulas are among the few reported in the literature
that are capable of matching the form of asymmetry indicated in Figure 2. As will
be shown, none of these basic models, taken alone, adequately explains the data,
but they provide useful guidance as to the class of parametric copula families we
can build upon when formulating a more flexible model. The dependence param-
eters used for generating the plots are obtained by fitting each model to the trans-
formed data. The functional forms of these copulas are given in the Appendix.

Clearly, the normal copula, which implies a symmetric dependence struc-
ture, fails to capture larger exceedance correlations for downside moves (q ≤ 0.5)
than for upside moves (q ≥ 0.5). The failure of the normal copula model is
more marked at shorter horizons, but considerably less so at longer horizons.

16Plots for other hedge fund styles are qualitatively similar and are omitted for the sake of brevity.
However, they are available from the authors.
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FIGURE 2

Exceedance Correlations between Transformed Returns

Figure 2 plots the exceedance correlations between transformed holding period returns, F(s)(Rm,t0+s ) and
G(s)(Rh,t0+s ), at horizons of 3, 6, 12, 36, and 60 months. The horizontal axis shows the threshold quantile, and the vertical
axis shows the correlation between convertible arbitrage and the market return given that both exceed that quantile.

The rotated Gumbel and Clayton copulas, which impose asymmetric dependence,
do produce asymmetries between upside and downside exceedance correlations
but tend to overstate their extent, especially at longer horizons. Finally, the SJC
copula, which allows for but does not impose asymmetric dependence, also pro-
duces larger exceedance correlations for downside moves than for upside moves,
but unlike the rotated Gumbel and Clayton copulas, its upside exceedance cor-
relations do not decay as q goes to 1. This is due to the fact that the estimated
dependence parameters of the SJC copula induce nonzero upper tail dependence.
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Given that the exceedance correlations implied from C(s) taper off to 0 at a similar
rate to those implied from the other copulas that impose upper tail independence
(i.e., λU = 0), there seems no need for modeling upper tail dependence for our
simulated returns.

1. Mixture Copulas

Our observations thus far compel us to be more flexible in specifying a model
of the dependence structure between market and hedge fund returns. The above
models, although capturing the direction of asymmetry, are far from satisfactory
for our data in terms of the magnitude of asymmetry. That is, for a given model,
the variation in dependence parameter(s), when fitted to different data sets, tells
us virtually nothing about differences in the magnitude of asymmetry across the
data sets (see, e.g., Figure 2).

With the aim of gaining flexibility, we follow Hu (2006), Hong et al. (2007),
and Rodriguez (2007), among others, in specifying a mixture of copulas. By
mixing (i.e., weighted averaging) carefully chosen component copulas, we can
capture dependence structures that do not belong to any individual copula. Mix-
ture copulas considered in the literature are often formed by mixing a symmetric
copula (often, an elliptical model) and an asymmetric Archimedean copula.17

In our application, we choose the rotated Gumbel or Clayton copulas for the
asymmetric component, and the normal copula for the symmetric component in
the mixture. The choice of the asymmetric component is straightforward given
the observed form of asymmetry in our simulated data; the choice of the sym-
metric component is motivated by traditional approaches based on the Gaussian
assumption. Hong et al. argue for the inclusion of the normal copula in the mix-
ture on the basis that the normality assumption is widely used in both theoretical
and empirical studies, hence it might be extreme to rule it out entirely. Hu notes
that the estimated weight on the normal copula is informative about the role of
the Gaussian dependence structure between financial markets.

Thus, the final 2 alternative models considered are a mixture of the normal
copula and the rotated Gumbel copula (MIX1), specified as

CMIX1(u, v ; w, ρ, δ) = w · CN(u, v ; ρ) + (1− w) · CRG(u, v ; δ),

and a mixture of the normal copula and the Clayton copula (MIX2), specified as

CMIX2(u, v ; w, ρ, θ) = w · CN(u, v ; ρ) + (1− w) · CC(u, v ; θ),

where w ∈ [0, 1] is the weight on the normal copula, and ρ, δ, and θ are depen-
dence parameters of the normal (denoted by CN), rotated Gumbel (denoted by
CRG), and Clayton (denoted by CC) copulas, respectively.

The shape of the exceedance correlation plot in Figure 2 lends support to
these specifications, following the observations that the exceedance correlations

17Some authors specify mixtures that include 2 asymmetric Archimedean copulas as their com-
ponents, where one generates lower tail dependence and the other generates upper tail dependence.
We opt not to consider these specifications, due to the seemingly absent upper tail dependence in our
simulated data.
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from C(s) wander between those implied from the normal copula and those from
the Clayton or rotated Gumbel copulas, both of which the mixture copulas nest
as special cases. While any positive w would correspondingly attenuate the over-
stated degree of asymmetry associated with the rotated Gumbel or Clayton copu-
las, the above specifications let the data determine w, which thereby summarizes
the degree of asymmetry in the data. According to Hong et al. (2007), w is the
key parameter of the mixture models that controls the degree of asymmetry in the
dependence structure.

Figure 3 highlights that the flexibility gained by specifying mixture copulas
justifies the extra complexity. Similar to Breymann et al. (2003), we plot, for each
model and for each investment horizon, the deviation of the Bayesian information
criterion (BIC) of the model from that of the MIX1 copula.18 By inspection, the
mixture models stand out as clearly preferable to all other alternative copulas;
only a small difference is observed between the MIX1 and MIX2 copulas. Hence,
we focus our discussion of the dependence parameter estimates on these 2 mixture
models.

2. Estimation Results

Tables 2 and 3 present estimation results for the MIX1 and MIX2 copu-
las, respectively; tables detailing all the models are available from the authors.
Throughout, results are estimated with great precision, due to the large size of
our simulated data; hence, all estimates presented below are significantly differ-
ent from 0 or are significantly different from that implying independence, unless
otherwise stated.19

The message from the dependence parameter estimates is clear. The weight
parameter, w, increases monotonically with the length of the investment horizon,
confirming that dependence structures at longer horizons are more symmetric (or
less asymmetric) than at shorter horizons; in all cases (even at the 5-year hori-
zon), w stays significantly below unity, indicating that the asymmetry continues
to exist in the longer-horizon dependence structure, although to a decreasing ex-
tent. Taking as an example the dependence between the market and the CA index
(Panel A of Table 2), the MIX1 copula assigns about 21% of the weight to the
normal copula at the quarterly horizon. The weight tends to increase as we move
to longer horizons, and by the 5-year horizon, about 67% of the weight is as-
signed to the normal copula. Similarly, in the case of MIX2 copula (Panel A of
Table 3), about 39% of the weight is assigned to the normal copula at the quarterly
horizon, and it gradually increases to 73% by the 5-year horizon. In any case, no
discernable pattern obtains for the other dependence parameters. To ensure that
our evidence is sound, we also apply the Jρ statistic of Hong et al. (2007) to our
(transformed) data and draw very similar implications (not reported): We find

18Note that the BIC puts a heavier penalty on the number of model parameters than the Akaike
information criterion employed in Breymann et al. (2003).

19We could estimate with even greater precision by simply simulating more draws. These results,
however, should be interpreted keeping in mind that the standard errors reported here condition on
simulated distribution functions. Interpreting such distributions themselves as approximations of the
true distributions would mean increasing the standard errors nontrivially. We thank the referee for
bringing this to our attention.
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FIGURE 3

Comparison of the Bayesian Information Criterion Values across Alternative Copula Models

Figure 3 compares the Bayesian information criterion (BIC) values of alternative copula models across different holding
periods. The quantity plotted on the vertical axis is the BIC of the MIX1 copula minus the BIC of the model (i.e., BIC(MIX1)−
BIC(model)).

that, across all horizons and strategies, the null hypothesis of symmetric cor-
relation is strongly rejected, which is consistent with the significant weight on
the asymmetric component. More importantly, we also find that the obtained Jρ
statistic tends to decline as the investment horizon increases.

Notice as an aside that the estimated value of the weight parameter assigned
by the MIX2 copula is always greater than that in the MIX1 copula. This is per-
haps due to the fact that the asymmetry predicted from the Clayton copula is more
severe than in the rotated Gumbel copula, even when they are fitted to the same
data (see, e.g., Figure 2); consequently, the MIX2 copula, which employs the
Clayton copula as its asymmetric component, puts more weight on the normal
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TABLE 2

Estimation of the MIX1 Copula Model

The first 6 columns of Table 2 report the estimates of the parameters in the MIX1 copula using the semiparametric approach
proposed by Genest et al. (1995). The MIX1 copula is specified as CMIX1(u, v;w, ρ, δ)=w·CN(u, v;ρ)+(1−w)·CRG(u, v;
δ), where w ∈ [0, 1] is the weight on the normal copula, and ρ and δ are dependence parameters of the normal (denoted
by CN) and rotated Gumbel (denoted by CRG) copulas, respectively. The 7th column of the table reports the resultant lower
tail dependence estimates, which is related to the estimated dependence parameters by λL (ϑ̂) = (2 − 21/δ)(1 − w)
under the specification of MIX1 copula. Given that the semiparametric estimates are asymptotically normally distributed,
and that λL is a suitably smooth function of the estimates, the standard errors are approximated by the δ method and are
given in the 8th column of the table. The last 2 columns of the table report the 1%-quantile dependence estimates, λ̂1% ,
and the corresponding standard errors. The 1%-quantile dependence is calculated as λ̂1%=C(s)(0.01, 0.01)/0.01, and
the standard errors are computed by jackknife procedure. Est. and Std. stand for estimate and standard error, respectively.

w ρ δ λL (ϑ̂) λ̂1%

Est. Std. Est. Std. Est. Std. Est. Std. Est. Std.

Panel A. Convertible Arbitrage

s = 3 0.207 0.083 0.473 0.134 1.410 0.051 0.290 0.027 0.440 0.075
s = 6 0.252 0.072 0.501 0.099 1.441 0.052 0.286 0.026 0.400 0.063
s = 12 0.429 0.059 0.533 0.045 1.427 0.051 0.214 0.025 0.290 0.054
s = 36 0.550 0.056 0.528 0.032 1.378 0.053 0.156 0.025 0.220 0.047
s = 60 0.674 0.060 0.497 0.032 1.415 0.095 0.120 0.025 0.230 0.048

Panel B. Emerging Market

s = 3 0.486 0.059 0.628 0.034 1.670 0.075 0.250 0.028 0.490 0.071
s = 6 0.569 0.053 0.651 0.026 1.686 0.084 0.212 0.027 0.390 0.062
s = 12 0.606 0.051 0.652 0.021 1.657 0.076 0.189 0.029 0.340 0.058
s = 36 0.585 0.050 0.639 0.020 1.666 0.068 0.201 0.028 0.320 0.082
s = 60 0.593 0.050 0.639 0.020 1.610 0.063 0.188 0.028 0.280 0.053

Panel C. Event Driven

s = 3 0.276 0.049 0.704 0.035 1.783 0.044 0.380 0.030 0.500 0.071
s = 6 0.393 0.050 0.719 0.024 1.780 0.051 0.318 0.031 0.430 0.065
s = 12 0.429 0.047 0.694 0.024 1.843 0.058 0.310 0.028 0.410 0.064
s = 36 0.545 0.047 0.716 0.016 1.746 0.059 0.233 0.028 0.410 0.077
s = 60 0.499 0.048 0.707 0.018 1.781 0.055 0.262 0.029 0.420 0.065

Panel D. Fund of Funds

s = 3 0.460 0.050 0.661 0.025 1.561 0.048 0.238 0.028 0.380 0.062
s = 6 0.502 0.053 0.637 0.026 1.586 0.058 0.225 0.029 0.330 0.057
s = 12 0.505 0.053 0.630 0.027 1.587 0.060 0.224 0.029 0.340 0.058
s = 36 0.519 0.049 0.650 0.021 1.565 0.048 0.213 0.027 0.270 0.052
s = 60 0.503 0.050 0.623 0.024 1.553 0.050 0.217 0.028 0.330 0.057

Panel E. Long/Short Equity

s = 3 0.234 0.044 0.851 0.017 2.083 0.041 0.463 0.031 0.540 0.068
s = 6 0.294 0.045 0.815 0.019 2.115 0.050 0.432 0.031 0.450 0.067
s = 12 0.323 0.042 0.804 0.019 2.080 0.049 0.409 0.028 0.460 0.068
s = 36 0.377 0.044 0.781 0.018 1.992 0.050 0.364 0.029 0.450 0.067
s = 60 0.401 0.044 0.772 0.016 1.961 0.047 0.345 0.029 0.440 0.066

copula than the MIX1 copula to generate a similar degree of asymmetry. It is
also interesting to find that the estimated value of correlation, ρ, in the mixtures
is greater than that in the normal copula. This finding is consistent with Hong
et al. (2007), who note that controlling asymmetry in the sample increases the
correlation of the rest of the sample.

Turning to tail dependence, we first look at tail dependence estimates im-
puted from the estimated dependence parameters, λ(ϑ̂). The 4th column of
Tables 2 and 3 presents results for lower tail dependence estimates, λL(ϑ̂); results
for upper tail counterparts are omitted, since both mixture copulas imply no upper
tail dependence. From the tables, we see a clear horizon effect similar to that ob-
served with the degree of asymmetry in the overall dependence. Specifically, we
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TABLE 3

Estimation of the MIX2 Copula Model

The first 6 columns of Table 3 report the estimates of the parameters in the MIX2 copula using the semiparametric approach
proposed by Genest et al. (1995). The MIX2 copula is specified as CMIX2(u, v ; w, ρ, θ) = w · CN(u, v ; ρ) + (1− w) ·
CC(u, v ;θ), where w ∈ [0, 1] is the weight on the normal copula, and ρ and δ are dependence parameters of the normal
(denoted by CN) and Clayton (denoted by CC) copulas, respectively. The 7th column of the table reports the resultant
lower tail dependence estimates, which are related to the estimated dependence parameters by λL (ϑ̂)= 2−1/θ(1−w)
under the specification of MIX2 copula. Given that the semiparametric estimates are asymptotically normally distributed,
and that λL is a suitably smooth function of the estimates, the standard errors are approximated by the delta method and
are given in the 8th column of the table. Est. and Std. stand for estimate and standard error, respectively.

w ρ θ λL (ϑ̂)

Est. Std. Est. Std. Est. Std. Est. Std.

Panel A. Convertible Arbitrage

s = 3 0.389 0.058 0.484 0.044 0.782 0.071 0.252 0.021
s = 6 0.438 0.052 0.519 0.037 0.805 0.074 0.238 0.021
s = 12 0.556 0.045 0.544 0.026 0.747 0.075 0.176 0.020
s = 36 0.642 0.044 0.540 0.022 0.624 0.076 0.118 0.019
s = 60 0.729 0.047 0.507 0.022 0.727 0.130 0.105 0.019

Panel B. Emerging Market

s = 3 0.648 0.040 0.637 0.017 1.197 0.115 0.197 0.020
s = 6 0.713 0.036 0.655 0.015 1.209 0.138 0.162 0.019
s = 12 0.747 0.033 0.654 0.013 1.135 0.126 0.137 0.019
s = 36 0.750 0.032 0.639 0.012 1.195 0.126 0.140 0.019
s = 60 0.748 0.032 0.637 0.012 1.064 0.108 0.131 0.019

Panel C. Event Driven

s = 3 0.556 0.030 0.699 0.013 1.407 0.079 0.271 0.019
s = 6 0.628 0.031 0.720 0.012 1.291 0.086 0.217 0.020
s = 12 0.666 0.029 0.696 0.011 1.536 0.105 0.213 0.019
s = 36 0.721 0.029 0.715 0.010 1.228 0.100 0.159 0.019
s = 60 0.692 0.029 0.709 0.010 1.316 0.094 0.182 0.019

Panel D. Fund of Funds

s = 3 0.616 0.035 0.664 0.016 0.922 0.073 0.181 0.019
s = 6 0.662 0.036 0.641 0.015 0.991 0.092 0.168 0.020
s = 12 0.675 0.036 0.634 0.015 0.987 0.097 0.161 0.020
s = 36 0.677 0.032 0.649 0.013 0.936 0.078 0.154 0.019
s = 60 0.670 0.033 0.626 0.014 0.920 0.080 0.155 0.019

Panel E. Long/Short Equity

s = 3 0.539 0.024 0.823 0.007 1.823 0.070 0.315 0.018
s = 6 0.602 0.025 0.795 0.008 2.026 0.097 0.282 0.018
s = 12 0.606 0.025 0.794 0.008 1.897 0.087 0.274 0.018
s = 36 0.638 0.025 0.769 0.008 1.795 0.097 0.246 0.018
s = 60 0.649 0.025 0.760 0.007 1.747 0.082 0.236 0.018

find that, across all considered hedge fund styles, λL(ϑ̂) exhibits a monotonically
decreasing pattern as investment horizon increases. For example, the λL of the
market and the CA index implied from the MIX1 copula is 29% at the quarterly
horizon, but only 12% at the 5-year horizon. The corresponding numbers for the
MIX2 copula are 25% and 11% at horizons of 1 quarter and 5 years, respectively.
Recalling that λL estimates the probability that both the market and the hedge
fund simultaneously experience an extremely low return, our findings mean that
such risk of a joint crash can be reduced by more than 50%. However, this is
not surprising given the fact that λL is related to the dependence parameters by
λL(ϑ)= (2− 21/δ)(1−w) under the MIX1 copula, and by λL(ϑ)= 2−1/θ(1−w)
under the MIX2 copula; the greater weight on the normal copula corresponds to
lower value of λL. Hence, this finding is largely attributable to the behavior of the
weight parameter, w, within the parametrization of the mixture models.
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To supplement our evidence, we also compute nonparametric estimates of
tail dependence based on several predetermined threshold levels.20 The threshold
levels we consider are the 1%–5% quantiles of distributions F (s) and G(s), which
correspond to 100–500 observations in the left tail of each distribution. Having
been based on a finite threshold, the nonparametric estimates will generally be
different from the parametric estimates that correspond to the asymptotic case
where the threshold goes to 0%. In our application, for example, we find that non-
parametric estimates are greater than their parametric counterparts, and in many
cases the difference becomes larger as the cutoff quantile moves from 1% to 5%.
Nonetheless, we find the cross-horizon pattern in nonparametric estimates to be
similar, regardless of the level of threshold used, and more importantly, it is con-
sistent with that in the parametric estimates, λL(ϑ̂). Here, for brevity, we report
results corresponding to a threshold of a 1% quantile in the last column of Table 2.
Overall, our evidence suggests that the estimation method of tail dependence may
affect the specific values of the estimates but it does not affect the horizon pattern
of tail dependence.

We also compute the nonparametric estimates for upper tail dependence,
using 100–500 observations in the right tail of each distribution (not reported).
Similar to Longin and Solnik (2001), we compare, for a given threshold value,
nonparametric estimates with those suggested under the assumption of the normal
copula. We find the nonparametric estimates to be always lower than the theoret-
ical values derived from the normal copula, confirming no upper tail dependence
across all horizons and strategies.

3. Goodness-of-Fit Test

To evaluate the copula models, we follow Junker and May (2005) in formu-
lating a bivariate χ2 test.21 We divide each axis into r = 9, 11, or 13 equidistant
intervals, so we test over r2 = 81, 121, or 169 cells. The choice is due to Moore
(1986), who suggests that a reasonable number of equiprobable cells falls be-
tween 2L2/5 and double that value. Notice that, as pointed out by Klugman and
Parsa (1999), the standard asymptotic theory of the test is not valid, since we
do not know exact functional forms for marginal distributions, but use the sim-
ulated marginals F (s) and G(s) to map the data into the uniform space. In this
light, we use the modified χ2 test suggested by Dobrić and Schmid (2005), which
is designed to account for use of the empirical marginal distributions. The criti-
cal value of the modified test is determined as the (1 − α)th quantile of the χ2

20We also estimate the optimal threshold level, for each horizon, via a simple plateau-finding al-
gorithm, but differences in the resulting levels of optimal threshold do not help direct comparison
across horizons. See Schmidt and Stadtmüller (2006) for asymptotic properties of the nonparametric
estimator.

21This procedure, based on Rosenblatt’s (1952) transformation, proves convenient because within
the (auxiliary) null hypothesis of the test, the expected number of realizations in each cell is directly
proportional to its area; hence, the test space [0, 1]2 can be easily separated into rectangles of equal
area without having to merge cells with small expected frequency as in Genest and Rivest (1993) and
others.
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distribution with degree of freedom of (r− 1)(r− 1)−m, where m is the number
of dependence parameters.22

In Table 4, we present p-values from the bivariate χ2 test for the null hypoth-
esis that the copula model is correctly specified.23 We report only the results for
the mixture copulas and for the case of r = 11, for brevity; tables with details for
all models are available from the authors. Overall, the performance of the mixture
copulas seems impressive given the substantial volume of data. In many cases,
the mixture copulas pass the χ2 test with p-values of more than 10%. By com-
parison, other alternative copulas are rejected soundly by the data, with p-values
of virtually 0%, irrespective of horizon and fund style. For some cases, however,
the situation is not as satisfactory. For example, the mixture models fail all 3 χ2

tests at the quarterly horizon, regardless of fund style. For LSE, the mixture mod-
els are rejected at several other horizons as well. Nevertheless, the results here
should be interpreted keeping in mind that, with 10,000 observations, it is not
surprising to see fairly intricate models rejected. The graphical displays similar to
Figure 2 indicate that the fits are actually quite good; to highlight this, we provide
in Figure 4 the exceedance correlation plots for the quarterly horizon, where the
mixture models exhibit the worst fit.

IV. Robustness Checks

This section performs robustness checks of the main results. First, we con-
sider an alternative market index, the MSCI World Index. We next consider using
value-weighted hedge fund indexes. Finally, we conduct the analysis based on
an alternative bootstrapping methodology. For the sake of parsimony, we only
present the robustness checks for EVD and LSE funds; the results for other styles
are very similar.24

Panel A of Table 5 presents results when returns on the MSCI World Index
are used as market returns. As in the other panels of the table, the first 3 columns
for each style report dependence parameter estimates for the MIX1 copula, the
4th column presents lower tail dependence estimates implied from the estimated
dependence parameters, and the last column reports 1%-quantile dependence es-
timates. By inspection, we find no substantial difference in the horizon pattern of
the estimates of interest from those obtained using the S&P 500: As the horizon
increases, the weight parameter, w, continues to rise and the lower tail depen-
dence, λL(ϑ̂) and λ̂1%, keeps on falling.

In the hedge fund industry, fewer than 25% of hedge funds manage more
than 75% of the industry’s capital (Fung and Hsieh (2004)). Given that an equal-
weighting scheme may bias the index toward small-cap funds, we recompute all

22In Dobrić and Schmid (2007), the property of related goodness-of-fit test, proposed in Breymann
et al. (2003), is also investigated for the case where marginal distributions are estimated by their
empirical counterparts.

23The results reported here are subject to the same note of caution given in footnote 19.
24The choice of funds is motivated by their status. EVD funds are those, in the first place, respon-

sible for making the asymmetric nature of hedge fund returns part of our wisdom since Mitchell and
Pulvino (2001) and Agarwal and Naik (2004). The LSE style represents the single largest strategy,
according to TASS.
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TABLE 4

Goodness-of-Fit Tests

Table 4 reports the results of the bivariate χ2 test proposed by Junker and May (2005). Panel A presents the results for
the test that C(s) is the realization of the MIX1 copula, while Panel B presents the results for the test that C(s) is the
realization of the MIX2 copula. Each axis of the test space [0, 1]2 is divided into r = 11 equidistant intervals. Following
Dobrić and Schmid (2005), the corresponding p-values, given in parentheses in percentage form, are adjusted for the
use of the empirical marginal distributions. The abbreviations for different hedge fund strategies are convertible arbitrage
(CA), emerging market (EM), event driven (EVD), fund of funds (FOF), and long/short equity (LSE).

Strategy s = 3 s = 6 s = 12 s = 36 s = 60

Panel A. MIX1 Copula

CA 181.18 125.38 118.21 107.47 93.92
(0.00) (2.78) (7.06) (21.96) (56.97)

EM 201.29 187.38 116.11 107.88 109.74
(0.00) (0.00) (9.04) (21.15) (17.75)

EVD 192.53 107.59 95.78 173.51 132.88
(0.00) (21.72) (51.60) (0.00) (0.91)

FOF 199.72 128.96 98.37 110.76 116.62
(0.00) (1.66) (44.21) (16.06) (8.53)

LSE 199.31 165.94 149.43 173.99 192.82
(0.00) (0.00) (0.05) (0.00) (0.00)

Panel B. MIX2 Copula

CA 139.51 116.16 112.04 106.84 87.75
(0.31) (8.99) (14.10) (23.23) (73.84)

EM 174.58 177.14 106.21 111.46 109.55
(0.00) (0.00) (24.54) (14.96) (18.08)

EVD 178.83 96.46 91.25 155.46 128.60
(0.00) (49.64) (64.53) (0.02) (1.76)

FOF 185.27 123.83 88.50 117.80 116.93
(0.00) (3.44) (71.94) (7.42) (8.22)

LSE 188.93 166.78 141.45 166.32 191.73
(0.00) (0.00) (0.22) (0.00) (0.00)

the results based on value-weighted hedge fund indexes using the S&P 500 as the
market index. However, using AUM as weights in a hedge fund index has its own
problems, including the frequent occurrence of discontinuities in the historical
series of AUM (see Fung and Hsieh (2004) for other issues). Similar to Aragon
(2007), we calculate value-weighted returns for a given month t based on funds’
returns in month t and funds’ asset size available at the nearest past month within
the 12 months preceding month t. We drop 19,428 (8.56%) of the observations
due to missing AUM data. The results are presented in Panel B of Table 5 and are
similar to those obtained using equal-weighted hedge fund indexes.

The results thus far have relied on the FHS method to generate the samples
of pairs of returns. This method, as described in Section II.A, is based on para-
metric mean and variance models with nonparametric innovation distribution. An
alternative approach would be to use a purely nonparametric simulation method,
such as a block bootstrap; the “block” part maintains (asymptotically) any time-
series dependence in the data, without the need for specifying parametric models.
In Panel C of Table 5, we present the results obtained using the stationary boot-
strap of Politis and Romano (1994).25 The results are overall robust to the choice

25We thank the referee for suggesting this additional robustness check. In implementing the sta-
tionary bootstrap, the average block length is determined by using the algorithm of Politis and White
(2004). Specifically, for the market and the fund, we apply this algorithm to the return, the squared
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FIGURE 4

The Implied Exceedance Correlations from the Mixture Copulas

Figure 4 plots the exceedance correlations between transformed holding period returns, F(s)(Rm,t0+s ) and
G(s)(Rh,t0+s ), for the quarterly horizon, where the mixture models exhibit the worst fit. The horizontal axis shows the
threshold quantile, and the vertical axis shows the correlation between a given hedge fund style and the market return
given that both exceed that quantile.

of simulation method, but it is observed that the cross-horizon pattern in the quan-
tile dependence estimates becomes less clear as the cutoff quantile moves from
5% to 1%. This is not very surprising because this unfiltered historical simulation
reduces the range of simulation outcomes,26 and is thereby less effective than the

return, and the cross product of the returns. Then we use the largest of these lengths as the average
block length.

26Applying the FHS over an s-month horizon using our data set of 161 monthly returns, the number
of possible pathways is 161s; applying a block bootstrap with a fixed block length l, it reduces to
161�s/l�, where �s/l� denotes the nearest integer larger than or equal to s/l. A similar point can be
made for the stationary bootstrap, where the block lengths are random.
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TABLE 5

Results from Robustness Checks

Table 5 reports the estimates of the parameters in the MIX1 copula, the resultant lower tail dependence estimates, and the
1%-quantile dependence estimates, using variations on the original data set. Panel A presents results when returns on the
MSCI World Index are used for the market returns instead of returns on the S&P 500 Index. Panel B considers an alternative
choice of index weight, the asset under management. Similar to Aragon (2007), value-weighted returns for a given month
t are calculated based on funds’ returns in month t and funds’ asset size available at the nearest past month within the
12 months preceding the month t. Panel C conducts the analysis based on the stationary bootstrap of Politis and Romano
(1994). The nonparametric estimates of tail dependence in this panel are computed using 5% as a cutoff quantile.

Event Driven Long/Short Equity

w ρ δ λL (ϑ̂) λ̂1% w ρ δ λL (ϑ̂) λ̂1%

Panel A. MSCI World

s = 3 0.498 0.689 1.834 0.271 0.510 0.513 0.796 2.166 0.303 0.510
s = 6 0.518 0.694 1.836 0.261 0.460 0.560 0.785 2.212 0.278 0.460
s = 12 0.548 0.698 1.899 0.253 0.440 0.616 0.785 2.182 0.241 0.430
s = 36 0.583 0.698 1.816 0.223 0.400 0.582 0.786 1.970 0.242 0.430
s = 60 0.658 0.686 1.793 0.180 0.370 0.632 0.794 1.805 0.196 0.370

Panel B. Value-Weighted Hedge Fund Indexes

s = 3 0.293 0.655 1.731 0.359 0.470 0.266 0.854 1.929 0.417 0.540
s = 6 0.363 0.652 1.744 0.326 0.450 0.333 0.831 1.843 0.362 0.500
s = 12 0.437 0.663 1.752 0.290 0.400 0.362 0.785 1.855 0.349 0.470
s = 36 0.504 0.695 1.681 0.243 0.340 0.290 0.788 1.850 0.387 0.460
s = 60 0.433 0.697 1.703 0.282 0.430 0.369 0.776 1.755 0.325 0.350

Panel C. Unfiltered Historical Simulation

s = 3 0.379 0.771 1.622 0.290 0.560 0.291 0.850 2.014 0.418 0.642
s = 6 0.454 0.730 1.708 0.273 0.438 0.302 0.836 2.014 0.411 0.518
s = 12 0.629 0.652 1.954 0.213 0.384 0.208 0.830 2.018 0.467 0.536
s = 36 0.752 0.638 2.088 0.150 0.370 0.381 0.747 1.961 0.357 0.530
s = 60 0.880 0.679 1.582 0.054 0.350 0.576 0.727 1.892 0.237 0.490

FHS in generating tail events beyond the historical record. Nonetheless, using less
extreme thresholds (e.g., the 5% quantile) whereby such a problem is less acute,
we obtain a similar horizon pattern of the estimates as in the benchmark case; the
5%-quantile dependence estimates are shown instead in this panel.

V. Conclusion

Perhaps due to the paucity of hedge fund data, studies to date have been
largely restricted to short-horizon returns. This is despite the fact that, given
lockups and other restrictions on liquidity, the most relevant horizon for an in-
dividual’s investment decision can be substantially longer. This paper expands
our understanding of hedge funds’ exposure to market risk by investigating the
dependence structure of market and hedge fund returns over various holding pe-
riods. By examining a wider range of horizons, we uncover the impact of invest-
ment horizon on several aspects of the funds’ dependence structure. First, we find
that the asymmetry in their dependence is not confined to a particular time horizon
but is evident at all holding periods that span various lockup and notice periods.
Second, unlike the form of asymmetry, the magnitude of asymmetry is not invari-
ant to investment horizon and decreases considerably in extent as holding period
lengthens. Finally, we find that a similar horizon effect occurs on the lower tail
dependence, as it appears inversely related to the length of the investment horizon;
the upper tail counterpart remains independent across all horizons.
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There are currently enough data to analyze monthly or quarterly returns, but
insufficient information to afford 1-year or longer holding periods as the basic unit
of time. Perhaps it is commonplace for investors who make decisions that will
lock up their investments for several quarters to come to rely on short-horizon
returns for inference. Our results suggest that these investors should be aware
that the downside exposure of their hedge fund investment to the market is not
as large as it appears; if any nonlinear or tail risk exposure is found, then its
magnitude may be thought of as an upper bound for the possible magnitude using
longer, more relevant horizons. Indeed, at the horizon over which their investment
is made, hedge funds are able to provide much higher benefits of diversification
than at shorter horizons.

Of course, when more data become available, a converse situation might
arise where an investor who plans to hold a position in a fund for s months ar-
bitrarily chooses to use longer-horizon returns. In such cases, the investor faces
2 biases that may seriously underestimate the downside risk associated with her
investment. For example, in testing for the null hypothesis of zero tail depen-
dence, which has been the subject of recent papers by Brown and Spitzer (2006),
Boyson et al. (2007), and Patton (2009), the measured tail dependence is closer
to 0 than the s-month estimates, and the number of observations employed in the
test decreases. These 2 factors decrease the power of the test and may mislead the
investor into inferring “tail neutrality.”

Appendix

This appendix provides the functional forms of the dependence functions used in
this paper, and those of related copulas. Also provided are the parameter space(s) and
the implied tail dependence coefficients (see, e.g., Joe (1997) for further details on these
copulas, and see Patton (2006) for details on the symmetrized Joe-Clayton copula).

Normal copula Gumbel copula

CN(u, v ; ρ) = Φρ(Φ
−1
(u), Φ−1

(v)), CG(u, v ; δ) = exp
{− ((− log u)δ + (− log v)δ)1/δ

}
,

ρ ∈ (−1, 1), δ ∈ [1,∞),
λL = 0, λU = 0. λL = 0, λU = 2− 21/δ

.

Clayton copula Rotated Gumbel copula

CC(u, v ; θ) = (u−θ + v−θ − 1)−1/θ
, CRG(u, v ; δ) = u + v− 1 + CG(1− u, 1− v ; δ),

θ ∈ [−1,∞)\{0}, δ ∈ [1,∞),
λL = 2−1/θ

, λU = 0. λL = 2− 21/δ
, λU = 0.

Joe-Clayton copula

CJC(u, v ; λU , λL) = 1− (1− {[1− (1− u)κ]−γ + [1− (1− v)κ]−γ − 1}−1/γ
)

1/κ
,

where κ= 1/ log2(2− λU
), γ =−1/ log2(λ

L
),

λL ∈ (0, 1), λU ∈ (0, 1),
λL = 2−1/γ

, λU = 2− 21/κ
.



788 Journal of Financial and Quantitative Analysis

Symmetrized Joe-Clayton copula

CSJC(u, v ; λU , λL) = 0.5
(

CJC(u, v ; λU, λL) + CJC(1− u, 1− v ; λL, λU) + u + v− 1
)
,

λL ∈ (0, 1), λU ∈ (0, 1),
λL = 2−1/γ

, λU = 2− 21/κ
.

References
Agarwal, V., and N. Y. Naik. “Multi-Period Performance Persistence Analysis of Hedge Funds.”

Journal of Financial and Quantitative Analysis, 35 (2000), 327–342.
Agarwal, V., and N. Y. Naik. “Risks and Portfolio Decisions Involving Hedge Funds.” Review of

Financial Studies, 17 (2004), 63–98.
Ang, A., and J. Chen. “Asymmetric Correlations of Equity Portfolios.” Journal of Financial

Economics, 63 (2002), 443–494.
Aragon, G. O. “Share Restrictions and Asset Pricing: Evidence from the Hedge Fund Industry.”

Journal of Financial Economics, 83 (2007), 33–58.
Asness, C.; R. Krail; and J. Liew. “Do Hedge Funds Hedge?” Journal of Portfolio Management, 28

(2001), 6–19.
Bansal, R., and D. Kiku. “Cointegration and Long-Run Asset Allocation.” Working Paper, Duke

University (2007).
Barone-Adesi, G.; F. Bourgoin; and K. Giannopoulos. “Don’t Look Back.” Risk, 11 (1998), 100–104.
Barone-Adesi, G.; K. Giannopoulos; and L. Vosper. “VaR without Correlations for Portfolios of

Derivative Securities.” Journal of Futures Markets, 19 (1999), 583–602.
Bollerslev, T., and J. M. Wooldridge. “Quasi-Maximum Likelihood Estimation and Inference in

Dynamic Models with Time-Varying Covariances.” Econometric Reviews, 11 (1992), 143–172.
Boyson, N. M.; C. W. Stahel; and R. M. Stulz. “Is There Hedge Fund Contagion?” Working Paper,

NBER (2007).
Breymann, W.; A. Dias; and P. Embrechts. “Dependence Structures for Multivariate High-Frequency

Data in Finance.” Quantitative Finance, 3 (2003), 1–14.
Brown, S. J., and J. F. Spitzer. “Caught by the Tail: Tail Risk Neutrality and Hedge Fund Returns.”

Working Paper, New York University (2006).
Campbell, J. Y., and L. M. Viceira. “The Term Structure of the Risk–Return Trade-Off.” Financial

Analysts Journal, 61 (2005), 34–44.
Chen, X., and Y. Fan. “Estimation and Model Selection of Semiparametric Copula-Based Multivariate

Dynamic Models under Copula Misspecification.” Journal of Econometrics, 135 (2006), 125–154.
Cherubini, U.; E. Luciano; and W. Vecchiato. Copula Methods in Finance. Chichester, UK: John

Wiley & Sons Ltd. (2004).
Dias, A., and P. Embrechts. “Modeling Exchange Rate Dependence at Different Time Horizons.”

Working Paper, University of Warwick (2007).
Dobrić, J., and F. Schmid. “Testing Goodness of Fit for Parametric Families of Copulas–Application

to Financial Data.” Communications in Statistics–Simulation and Computation, 34 (2005), 1053–
1068.
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