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Abstract: This paper is about yard management in container ports. As a tactical level 

decision-making tool in a port, a yard template determines the assignment of spaces (subblocks) 

in a yard for arriving vessels, which visit the port periodically. The objective of yard template 

planning is to minimize the transportation cost of moving containers around the yard. To handle 

yard template planning, a mixed integer programming model is proposed that also takes into 

account traffic congestion in the yard. A further complication is that the cycle time of the vessels‟ 

periodicities is not uniform and varies among them, perhaps being one week, ten days, or two 

weeks, etc. However, this multiple cycle time of the periodicities of vessel arrival patterns, which 

complicates the yard template decision, is also considered in the model. Moreover, a local 

branching based solution method and a Particle Swarm Optimization based solution method are 

developed for solving the model. Numerical experiments are also conducted to validate the 

effectiveness of the proposed model, which can save around 24% of the transportation costs of 

yard trucks when compared with the commonly used First-Come-First-Served decision rule. 

Moreover, the proposed solution methods can not only solve the proposed model within a 

reasonable time, but also obtain near-optimal results with about 0.1~2% relative gap. 

Keywords: Maritime logistics; Port operation; Yard template; Container terminals; Congestion. 

1. Introduction 

Since the 1990s, world container traffic has been growing at almost three times the world‟s 

GDP growth, due to the offshoring of manufacturing operations in Asia, in particular China 

(Meng et al., 2014). Port throughputs have increased even faster, because an increasing number 

of containers are transshipped (Fransoo and Lee, 2012). Efficient port operations that maximize 

the throughput (with ports being paid by a handling charge per container) are essential for port 

operators‟ profits.  
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With the advancement of quay side equipment and technologies (e.g., twin 40-ft quay cranes, 

indented berths), the bottleneck in port operations has moved from quay side to yard side 

(Stahlbock and Voß, 2008). The yard management of a port plays a significant part in its 

competitiveness within the global shipping network. For some large container transshipment 

ports such as the Port of Singapore, the yard management is significantly important because of 

its land scarcity, which results in a highly concentrated storage situation within the storage yard 

(Jin et al., 2014). The yard template is a concept applied in container ports, especially 

transshipment hubs, that utilizes consignment strategy. This strategy stores export and 

transshipped containers, which will be loaded onto the same departing vessel, at the same 

assigned storage locations. Yard template planning is concerned with the assignment to vessels 

of storage locations (subblocks) in the yard, with certain dedicated subblocks being reserved for 

each vessel. Yard template planning aims to minimize the transportation cost for moving 

containers from their incoming berths to the storage subblocks in the yard and then to their 

outgoing berths. Besides the yard template based consignment strategy, housekeeping strategy is 

also a commonly used yard management strategy in ports (Giallombardo et al., 2010). The 

housekeeping strategy is to retrieve the containers that will be loaded onto a vessel, move and 

store them in some areas near to the berthing position of the vessel before it arrives at the port. 

This strategy can also reduce the turnaround time of vessels but may need reshuffling when 

retrieving containers as well as additional movement of containers before the vessel arrives at the 

port. However, the yard template based consignment strategy can avoid the container reshuffling 

activities. This study will be based on this yard management strategy. 

Traffic congestion is the most significant issue that constrains the efficiency of yard side 

processes (Lee et al., 2006; Han et al., 2008), and is a phenomenon that prevents yard trucks 

from traveling freely (Zhang et al., 2009). Typical events observed in this phenomenon are that a 

lot of yard trucks may crowd around certain small areas for loading (or unloading) containers 

from (or to) yard storage locations (i.e., subblocks), or a lot of yard trucks may travel along a 

particular passing lane simultaneously, which makes them have to slow down during travel. 

Without taking into account these traffic congestion issues, a single-period yard template 

planning decision is just a generalized assignment problem that is only concerned with decisions 

on a spatial dimension. However, the traffic issue brings about constraints on a temporal 

dimension, such that neighboring subblocks should not have heavy loading and unloading 
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activities occurring at the same time, and that each passing lane should not have significant 

traffic flows at the same time. These two phenomena are affected by the yard template planning 

decisions. 

Moreover, vessels (shipping liners) usually visit the port periodically, and have different cycle 

times. For example, some vessels have a weekly arrival pattern, but some may have ten-day or 

biweekly patterns (Moorthy and Teo, 2006). Nowadays, Daily Maersk even has a daily arrival 

pattern at each port of call, and many feeder services have twice-weekly (APL, 2015a) or 

thrice-weekly services (APL, 2015b). Moreover, even if a service is weekly, the ships that visit 

the port each week may be of different size. For the example of Columbus Loop in CMA-CGM 

shipping company, the ship size varies from 8197 TEUs to 9034 TEUs (CMA-CGM, 2015). In 

reality, the weekly pattern is the most common in actual practice. If all the vessels had a uniform 

cycle time, there would be no multi-period decision problem for the yard template planning. 

However, this paper studies the multi-period yard template planning problem by also considering 

the heterogeneous periodicities of vessels. It should be noted that the subblock assignment for 

each vessel can also vary in its periods, so a subblock needs to not be assigned to one vessel for 

the whole planning horizon. This dynamic nature of the subblock assignment within each 

vessel‟s multiple periods further complicates the aforementioned decisions problem involved 

with yard template planning. Moreover, an even more common situation is that only about half 

of container vessels arrive at ports on their planned day (in other words, about half of container 

vessels are delayed at least one day). Consequently, even if all ships are weekly pattern, port 

operators still have to adjust the yard templates every day, which further validates the necessity 

of considering the heterogeneous periodicities of vessels in the yard template decision. 

This paper makes an explorative study of yard template planning in container transshipment 

hubs, considering both the yard traffic congestion and the multiple cycle time of the periodicities 

of vessel arrival patterns. This study proposes a model for multi-period yard template planning 

with traffic congestion constraints. A local branching based solution method and a Particle 

Swarm Optimization (PSO) based solution method are developed for solving the proposed model. 

Numerical experiments using real world like instances are conducted to validate the effectiveness 

of the proposed model and the efficiency of the proposed solution method. 

The remainder of this paper is organized as follows: Section 2 reviews the related works. 

Section 3 elaborates on the background to the problem; a mathematical model is formulated in 
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Section 4; and two solution methods are developed in Section 5. Results of the numerical 

experiments are addressed in Section 6, and closing remarks are then outlined in the last section. 

2. Literature review 

For an introduction to general port operations, we refer readers to the review works given by 

Vis and de Koster (2003), Steenken et al. (2004), and Stahlbock and Voß (2008). This paper is 

related to strategies used in allocating storage space in a yard to arriving containers. Plenty of 

studies have been performed on related problems. For example, Kim and Kim (1999) proposed a 

segregation strategy to allocate storage space for import containers. Kim et al. (2000) designed a 

methodology to determine the storage location of arriving export containers by considering their 

weight. Zhang et al. (2003) studied a storage allocation problem using a rolling horizon approach. 

Kozan and Preston (2006) proposed an iterative search algorithm for an integrated container 

transfer and allocation model to determine the optimal storage strategy. Caserta et al. (2011) 

defined a two-dimensional „corridor‟, and developed a corridor method inspired algorithm for a 

blocks relocation problem in yard stacking systems. Jin et al. (2014) proposed the concept of 

„yard crane profile‟, and used it in an integrated optimization model on yard storage management 

and yard crane deployment decisions. Different from the above studies, the yard management in 

this paper is based on a consignment strategy that was studied by Chen et al. (1995) and Dekker 

et al. (2006). This strategy attempts to store containers for the same destination vessel together in 

a particular dedicated storage area. 

Transshipment is becoming more and more popular and important in ports around the world. 

This trend will continue to exist, because ocean liners are using larger vessels and visiting fewer 

ports (Fransoo and Lee, 2012). The papers mentioned in the previous paragraph do not 

sufficiently address the particular needs of transshipment hubs, in which most activities involve 

transshipping containers among visiting vessels. In recent years, more and more studies on 

managing transshipment activities have emerged. Cordeau et al. (2007) studied a service 

allocation problem that is a tactical problem arising in the yard management of a transshipment 

terminal. The objective is the minimization of container rehandling operations inside the yard. 

Moccia et al. (2009) studied a generalized assignment problem for allocating container groups 

within transshipment hubs, and a column generation heuristic was designed for solving this 

problem. Nishimura et al. (2009) proposed a decision model on storage allocation in 
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transshipment hubs. The objective of the model is to minimize both the time for transshipping 

containers and the feeders‟ waiting time. Bell et al. (2013) and Wang et al. (2015) studied 

cost-based and profit-based container assignment problems under maritime liner shipping 

networks, respectively. 

The yard template is related to the above mentioned transshipment activities, but is mainly 

concerned with the assignment to arriving vessels of storage areas in the yard of a transshipment 

hub. The concept of a yard template was first mentioned in a paper by Moorthy and Teo (2006), 

but their study focused mainly on berth allocation planning. Zhen et al. (2011) extended the 

above work, and developed an integrated model for berth allocation planning and yard template 

planning. They also developed a solution method for solving the problem. Lee et al. (2006) 

investigated a storage allocation problem in the yards of transshipment hubs that use the yard 

template. For mitigating the traffic congestion of yard trucks, the study by Lee et al. (2006) 

considered a storage policy known as the „high-low workload balancing protocol‟. An extended 

work was also conducted by Han et al. (2008) for simultaneously optimizing both the yard 

storage allocation decision and the yard template decision. They then also proposed a two-space 

sharing method to improve the space utilization of a yard template when facing uncertainty 

(Jiang et al., 2012). Zhen (2013) designed a stochastic programming model for robust yard 

template planning under uncertain berthing positions and times of vessels.  

Although some studies have been conducted on yard template planning, few of them have 

considered the heterogeneous periodical patterns of arriving vessels by realistically taking into 

account their actual requirements, which is an important feature of making tactical level 

decisions in port operations. In addition, a lot of yard management related studies ignore the yard 

traffic congestion issues, which have become the bottleneck that limits a port‟s efficiency. 

Without considering these traffic congestion issues, the yard template planning decision is just a 

generalized assignment problem. This paper therefore takes account of both the heterogeneous 

periodicities of vessels and the yard traffic congestion issues in yard template planning. To the 

best of our knowledge, few scholars have proposed a decision model for yard template planning 

that in reality considers the above two important factors. This paper therefore presents an 

exploratory study conducted for this new problem. 
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3. Problem description 

3.1 Yard template in container terminals 

Before formulating a mathematical model, the background of the yard template planning 

problem will first be elaborated on. The „yard template‟ is a concept used mainly in the 

transshipment hubs of container ports, in which the yard management is based on a consignment 

strategy. This strategy stores the export and transshipped containers that will be loaded onto the 

same departing vessel in the same assigned subblocks. Therefore, the planning decision of the 

yard template is about how to assign subblocks to arriving vessels. For each vessel, one or more 

subblocks in the yard are reserved. According to the consignment strategy, the incoming 

containers, which are first discharged from vessels and then loaded onto Vessel Vi in the future, 

will be stored in the subblocks reserved for Vessel Vi. When Vessel Vi arrives at the terminal, all 

the containers placed in these dedicated subblocks will be loaded onto Vessel Vi. By using this 

strategy, both the number of reshuffles and the vessels‟ turnaround times can be significantly 

reduced . 

 

Figure 1: Typical configuration of a transshipment terminal 

Figure 1 shows an example of the application of such a consignment strategy. The subblocks, 

shown in three different colors, are reserved for three different arriving vessels. Figure 1 

demonstrates the moment when Vessel B arrives at the port. The dashed lines in Figure 1 denote 

the unloading routes, along which containers are discharged from Vessel B and are then 

transported to the subblocks reserved for Vessel D or Vessel E. The solid lines demonstrate the 

loading process, during which all containers stored in the subblocks reserved for Vessel B, 
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namely K9, K29, K48 and K50, are loaded onto Vessel B directly without any reshuffling 

operations.  

3.2 Multi-period yard template planning 

For a terminal, arriving vessels may have different cycle times. For example, some vessels 

have a weekly arrival pattern, and some may have a 10-day or biweekly pattern. In practice, the 

weekly pattern is the most common. Figure 2 shows a planning horizon example which contains 

10 periods, 7 periods, or 5 periods for vessels with weekly, 10-day, or biweekly patterns, 

respectively. It should be noted that the subblock assignment for each vessel can vary for 

different periods, as a subblock needs to not be assigned to one vessel for the whole planning 

horizon. The above mentioned heterogeneous periodicities of vessels, and the dynamic nature of 

the subblock assignment in each vessel‟s multiple periods, complicate the yard template planning 

problem in comparison with other more generalized assignment problems. For handling this 

issue of vessels‟ heterogeneous periodicities, an intuitive method is to regard a vessel in multiple 

periods as multiple vessels in one period. From the perspective of mathematical modeling, it 

does not influence the complexity of the formulated model.  

 

Figure 2: Multi-period yard template planning 

As shown in Figure 2, the time step is the basic unit of time in this decision problem, which is 

not only concerned with decisions on a spatial dimension, (i.e., the assignment of subblocks in a 

yard), but also contains constraints on a temporal dimension for considering the yard traffic 
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congestion issues, which are elaborated on in Section 3.3. Due to the heterogeneous periodicities 

of vessels, the time step acts as a uniform concept of time for all vessels, so that some limitations 

on activities occurring simultaneously can be formulated in constraints. The time step can be set 

as one day, 12 hours, 8 hours, or any other, the setting of which influences the problem scale. It 

should be noted that the term „time step‟ is different from the term „period‟. As shown in Figure 

2, a period contains several time steps.  

3.3 Objective for yard template planning 

The yard template planning problem is to determine which subblocks should be allocated to 

which vessels in different periods of the vessels, so as to minimize the total route length of all the 

container transshipment (discharging and loading) flows in the yard.  

For calculating the length of loading routes for Vessel Vi, a parameter 𝑑𝑘 ,𝑖
𝐿  is defined as the 

length of the loading route between Subblock k and the berthing position of Vessel Vi; 𝑑𝑖𝑘
𝑈  is 

defined as the length of the discharging route between the berthing position of Vessel Vi and 

Subblock k. Both 𝑑𝑘 ,𝑖
𝐿  and 𝑑𝑖𝑘

𝑈  are known data when vessels‟ berthing positions are 

deterministic. Figure 3 illustrates the above two parameters on route lengths, i.e., 𝑑𝑘 ,𝑖
𝐿  and 𝑑𝑖𝑘

𝑈 . 

It should be noted that the unloading route (dashed line with arrow) and loading route (solid line 

with arrow) between the same berth-subblock pair can be different, as shown in Figure 3.  

 

Figure 3: Loading and unloading routes of transshipped container flows 
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We define 𝑛𝑗𝑖𝑝  as the number of containers that are unloaded from Vessel Vj and loaded onto 

Vessel Vi in Period 𝑝. This parameter reflects the transshipment volume between two vessels. In 

addition, we define 𝑞𝑖𝑝  as the number of subblocks that should be reserved for Vessel Vi during 

Period 𝑝. When unloading the 𝑛𝑗𝑖𝑝  containers from Vessel Vj, the allocation of them to the 𝑞𝑖𝑝  

subblocks is another important decision. As shown in the right part of Figure 3, a decision 

variable 𝑧𝑗𝑖𝑘𝑝  is defined to denote the number of containers that are unloaded from Vessel Vj to 

Subblock 𝑘 reserved for Vessel Vi during Period 𝑝. Here  𝑧𝑗𝑖𝑘𝑝∀𝑘 = 𝑛𝑗𝑖𝑝 . 

Suppose 𝐾 denotes the set of all the subblocks; 𝑉 denotes the set of all the vessels; 𝔼𝑖  

denotes the set of all the periods of Vessel Vi in the whole planning horizon; each element in 𝔼𝑖  

is denoted by 𝐸𝑝
𝑖 , which reflects the 𝑝th period of Vessel Vi. Then we can calculate the total 

route length of the transshipped container flows in the yard during the whole planning horizon 

according to the following formula:       𝑑𝑗𝑘
𝑈 𝑧𝑗𝑖𝑘𝑝  𝑗∈𝑉 + 𝑑𝑘𝑖

𝐿  𝑧𝑗𝑖𝑘𝑝𝑗∈𝑉  𝑘∈𝐾𝐸𝑝
𝑖 ∈𝔼𝑖𝑖∈𝑉 . 

It should be mentioned that the above formula does not consider the empty trips of yard trucks 

but only takes account of their laden trips. This is because the routes taken for empty trips 

depend on the dispatching schedules of yard trucks, which belong to short-term decisions. 

Therefore this study uses only the route length of laden trips to evaluate the yard trucks‟ 

transportation cost. However, by assuming that the length of empty trips is approximately 

proportional to the length of laden trips, for the sake of simplicity the factor of empty trips can be 

ignored in the objective formulation. 

3.4 Constraints for yard template planning 

3.4.1 Basic constraints 

There are some basic constraints for yard template planning. For example, there exist a 

minimum number of subblocks that should be reserved exclusively for each vessel. In addition, 

shipping liners have their favorite ranges of subblocks. For each vessel, therefore, their 

exclusively reserved subblocks should be selected from a given set of subblocks, as requested by 

the shipping liners in advance. 

3.4.2 Constraints on yard crane contention in one block 
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For a container terminal using the consignment strategy, loading activity is very important for 

maintaining efficient operations, as the terminal needs to load all the containers in particular 

subblocks onto arriving vessels during a limited length of time. 

As shown in Figure 1, five subblocks constitute a block, in which two yard cranes are usually 

deployed. In practice, one yard crane is usually dedicated to one subblock during the loading 

process. Therefore, in each block it would be best to have at most one subblock reserved for a 

particular vessel (or for a group of vessels being simultaneously loaded). This leaves the other 

spare yard crane available to be used for possible discharging activities in the same block.  

As the berthing times of vessels are deterministic, the information about whether Vessel i has 

loading activities in time step m or not is also known in advance, which is denoted by a binary 

parameter 𝑙𝑖 ,𝑚 . The 𝑙 parameters will be used later in the model formulation. 

3.4.3 Constraints for mitigating traffic congestion 

As previously mentioned, loading activity is very important for maintaining efficient 

operations, as the terminal needs to load all the containers in particular subblocks onto arriving 

vessels during a limited length of time. During the loading process occurring in a subblock, there 

is heavy traffic flow in the area near the subblock. Yard cranes and yard trucks are usually very 

busy, so traffic congestion can easily occur if a heavy workload needs to be handled within a 

relatively small area.  

The upper right corner of Figure 1 demonstrates a scenario where subblocks K27 and K47 

have simultaneous loading activities. In this case, a number of yard trucks will be waiting or 

moving nearby, which will probably lead to traffic congestion. Moreover, as shown in the upper 

right corner of Figure 1, high traffic flow near K27 will also affect yard trucks going to K28. To 

ensure the smooth traffic flow of yard trucks, port operators thus need to impose some 

restrictions when planning the yard template. Here we define certain pairs of subblocks, such as 

(K27, K47) and (K27, K28). Each pair of subblocks cannot have loading activities going on at the 

same time. During the yard template planning process, the subblocks reserved for one vessel (or 

for vessels that are being loaded simultaneously during a particular period) should not be 

adjacent, such that two subblocks in each aforementioned pair will not have a loading process 

going on at the same time. Note that this study only takes account of the loading process, as the 

workload in a subblock when loading is usually much heavier than when discharging. During the 

loading activity, the port needs to load all the containers in the subblocks onto arriving vessels 
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within a limited period of time, whereas the discharging of containers can be much more flexible, 

because when a container is discharged it can be distributed to any of the subblocks that are 

reserved for the vessel going to the container‟s destination. Therefore, a discharged container can 

be stored in a subblock where there is little yard truck traffic nearby. 

3.4.4 Constraints on traffic flow in vertical passing lanes 

Besides the traffic congestion caused by loading activities in neighboring subblock areas, 

which has been already considered by Lee et al., (2006) and Han et al., (2008), the traffic flows 

of yard trucks in passing lanes can result in another type of congestion in the yard. For the 

example shown in Figure 3, three subblocks need to be assigned to Vessel Vi. Both of the set of 

subblocks (K10, K23, K40) and the set of subblocks (K19, K24, K27) obey the previously 

defined constraints on the traffic congestion caused by loading activities in neighbor subblocks. 

However, the former assignment will cause all the loading truck flows pass through Lane 7, 

while the latter assignment distributes the loading truck flows in Lane 6, Lane 7, and Lane 8. As 

the loading activity for a subblock needs to transport all the containers in the subblock (up to 240 

TEUs) to the quay side during a limited period of time, the loading truck flow for subblocks will 

cause heavy traffic. Thus we need to distribute the loading truck flows among passing lanes in a 

balance way. This study proposes some new constraints for limiting the number of traffic flows 

for loading activities in each time step.  

For the mathematical model formulation in the next section, this study only considers 

constraints on the traffic flows of yard trucks for loading activities in the vertical passing lanes. 

The reason for only considering loading as opposed to unloading activities is similar to that 

given in the previous analysis; and the reason for only considering vertical passing lanes is that 

the traffic flows in horizontal passing lanes have already been limited by the constraints defined 

in the previous two sub-sections.  

As shown in Figure 3, for each vertical passing lane u, we define a binary parameter 𝑕𝑖𝑘𝑢  to 

denote whether the loading flow from Subblock k to the berth where Vessel i moors passes Lane 

u. As the berthing positions of vessels are known, the parameters 𝑕𝑖𝑘𝑢  can be determined in 

advance. Based on these parameters, the total number of traffic flows that pass each lane (e.g., 

Lane u) can be limited by an upper bound (e.g., 𝑤𝑢 ) when making a yard template. For the 

example in Figure 3, 𝑕𝑖 ,24,7 = 1, which means the loading flow from the subblock K24 to the 

berth where Vessel i moors passes Lane 7.   
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4. Model formulation 

This section formulates two integer programming models for multi-period yard template 

planning in container ports. The objective of both models is to minimize the transportation cost 

that is related to the number of transported containers and the length of the container flows. The 

difference between the two models is this: The first model optimizes the tactical level yard 

template when taking into account the operational level yard storage allocation decisions; 

whereas the second model optimizes the yard template using a practical policy of equally 

allocating unloaded containers to the reserved subblocks.  

4.1 Yard template planning model when considering storage allocation decisions 

Indices and sets: 

𝑖, 𝑗   vessels   

𝑉   set of all the vessels 

𝑘   subblocks  

𝐾   set of all the subblocks 

𝑢   lanes   

𝑈   set of all the lanes 

𝑡   time steps  

𝑇   set of all the time steps in the planning horizon 

𝑝   periods  

Parameters: 

𝑞𝑖𝑝   number of subblocks that should be reserved for Vessel 𝑖 during Period 𝑝 

𝑄𝑖    set of candidate subblocks, from which some are selected and assigned to Vessel 𝑖 

𝑛𝑗𝑖𝑝   number of containers that are unloaded from Vessel 𝑗 and loaded to Vessel 𝑖 in Period 𝑝 

𝑑𝑘𝑖
𝐿   length of the loading route from Subblock 𝑘 to the berth where Vessel 𝑖 moors 

𝑑𝑗𝑘
𝑈   length of the unloading route from the berth where Vessel 𝑗 moors to Subblock 𝑘  

𝑙𝑖𝑡    equals 1 if Vessel 𝑖 has loading activities in Time Step 𝑡, and 0 otherwise 

𝑕𝑖𝑘𝑢  equals 1 if loading route from Subblock 𝑘 to berth where Vessel 𝑖 moors passes Lane 𝑢  

𝑤𝑢   maximum number of routes passing Lane 𝑢 simultaneously 

𝑆𝑟    pair of subblocks that cannot be assigned to the same vessel  
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𝕊   set of all the pairs 𝑆𝑟 , 𝑆𝑟 ∈ 𝕊  

𝐵𝑔   group of five subblocks that belong to the same block 

𝔹   set of all the blocks, i.e., the groups of subblocks 𝐵𝑔 , 𝐵𝑔 ∈ 𝔹 

𝐸𝑝
𝑖    group of time steps that belong to the 𝑝th

 period of Vessel 𝑖 

|𝐸𝑝
𝑖 |  cycle time of a period for Vessel 𝑖, the unit is one time step 

𝔼𝑖    set of all the groups 𝐸𝑝
𝑖  for Vessel 𝑖, i.e., 𝐸𝑝

𝑖 ∈ 𝔼𝑖  

|𝔼𝑖 |  number of periods for Vessel 𝑖 in the planning horizon 

𝐶  capacity of a subblock, i.e., the maximum TEUs that can be stored in a subblock 

𝑀  a sufficiently large positive number  

Variables: 

𝑥𝑖𝑘𝑡   set to 1 if Subblock 𝑘 is reserved for Vessel 𝑖 during Time Step 𝑡, and 0 otherwise 

𝑦𝑖𝑘𝑝   set to 1 if Subblock 𝑘 is reserved for Vessel 𝑖 during Period 𝑝, and 0 otherwise 

𝑧𝑗𝑖𝑘𝑝  number of containers unloaded from Vessel 𝑗 to Subblock 𝑘 that are reserved for Vessel 

𝑖 during Period 𝑝 

Mathematical model: 

(𝜧_𝟏)   Minimize        𝑑𝑗𝑘
𝑈 𝑧𝑗𝑖𝑘𝑝𝑗∈𝑉 + 𝑑𝑘𝑖

𝐿  𝑧𝑗𝑖𝑘𝑝𝑗∈𝑉  𝑘∈𝐾𝐸𝑝
𝑖 ∈𝔼𝑖𝑖∈𝑉      (1) 

s.t.  𝑥𝑖𝑘𝑡𝑖∈𝑉 ≤ 1        ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇      (2) 

   𝑦𝑖𝑘𝑝𝑘∈𝑄𝑖
= 𝑞𝑖𝑝         ∀𝑖 ∈ 𝑉, ∀𝐸𝑝

𝑖 ∈ 𝔼𝑖     (3) 

   𝑦𝑖𝑘𝑝𝑘∈𝐾/𝑄𝑖
= 0        ∀𝑖 ∈ 𝑉, ∀𝐸𝑝

𝑖 ∈ 𝔼𝑖     (4) 

    𝑙𝑖𝑡𝑥𝑖𝑘𝑡𝑖∈𝑉𝑘∈𝑆𝑟
≤ 1      ∀𝑆𝑟 ∈ 𝕊, ∀𝑡 ∈ 𝑇     (5) 

    𝑙𝑖𝑡𝑥𝑖𝑘𝑡𝑖∈𝑉𝑘∈𝐵𝑔
≤ 1      ∀𝐵𝑔 ∈ 𝔹, ∀𝑡 ∈ 𝑇     (6) 

  𝑙𝑖𝑡𝑕𝑖𝑘𝑢 𝑥𝑖𝑘𝑡∀𝑘∈𝐾𝑖∈𝑉 ≤ 𝑤𝑢       ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑇     (7) 

   𝑥𝑖𝑘𝑡𝑡∈𝐸𝑝
𝑖 =  𝐸𝑝

𝑖  𝑦𝑖𝑘𝑝       ∀𝑖 ∈ 𝑉, ∀𝐸𝑝
𝑖 ∈ 𝔼𝑖 , ∀𝑘 ∈ 𝐾   (8) 

  𝑧𝑗𝑖𝑘𝑝𝑘∈𝑄𝑖
= 𝑛𝑗𝑖𝑝        ∀𝑖, 𝑗 ∈ 𝑉, ∀𝐸𝑝

𝑖 ∈ 𝔼𝑖     (9) 

 𝑧𝑗𝑖𝑘𝑝 ≤ 𝑦𝑖𝑘𝑝 𝑀        ∀𝑖, 𝑗 ∈ 𝑉, ∀𝐸𝑝
𝑖 ∈ 𝔼𝑖 , ∀𝑘 ∈ 𝐾  (10) 

   𝑧𝑗𝑖𝑘𝑝𝑗∈𝑉 ≤ 𝐶        ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉, ∀𝐸𝑝
𝑖 ∈ 𝔼𝑖    (11) 

  𝑥𝑖𝑘𝑡 ∈ {0,1}         ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇   (12) 

  𝑦𝑖𝑘𝑝 ∈ {0,1}         ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝐸𝑝
𝑖 ∈ 𝔼𝑖   (13) 

 𝑧𝑗𝑖𝑘𝑝 ≥ 0         ∀𝑖, 𝑗 ∈ 𝑉, ∀𝐸𝑝
𝑖 ∈ 𝔼𝑖     (14) 
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In the above model, Objective (1) minimizes the total route length (loading/unloading) of all 

the transshipped containers for all the arriving vessels during the whole planning horizon. 

Constraints (2) limit each subblock allocation to at most one vessel in each time step. Constraints 

(3) and (4) ensure a given number (𝑞𝑖𝑝 ) of subblocks are allocated to Vessel i in Period p; the 

allocated subblocks are selected from among a certain set of candidate subblocks, i.e., 𝑄𝑖 , 

depending on the vessels (shipping liners). Constraints (5) guarantee that two subblocks in each 

pair 𝑆𝑟  cannot carry out loading activities simultaneously. Constraints (6) limit loading 

activities in each time step to at most one subblock in each block. Constraints (7) ensure that the 

number of container loading flows that pass along a lane cannot exceed the lane‟s traffic 

limitation. Constraints (8) connect the two decision variables, i.e., 𝑥𝑖𝑘𝑡  and 𝑦𝑖𝑘𝑝 . Constraints (9) 

and (10) are about storage allocation decisions based on the yard template. More specifically, 

Constraints (9) stipulate the allocation of the 𝑛𝑗𝑖𝑝  transshipped containers to the 𝑞𝑖𝑝  subblocks 

reserved for Vessel 𝑖. Constraints (10) ensure that containers transshipped to Vessel 𝑖 cannot be 

allocated to subblocks that are not reserved for Vessel 𝑖. Constraints (11) guarantee that the 

number of containers allocated to each subblock cannot exceed the capacity of the subblock (i.e., 

240 TEUs in reality). Constraints (12), (13) and (14) define the decision variables. 

Proposition 1: Finding an optimal solution for the model 𝛭_1 is strongly NP-hard 

Proof: See Appendix A ■ 

A lower bound for the model can be obtained by relaxing the constraints of traffic congestion, 

i.e., Constraints (5), (6), and (7). We use 𝑀1
𝐿𝐵  to denote the lower bound for model 𝛭_1. 

(𝑴𝟏
𝑳𝑩)   Objective (1) 

s.t. Constraints (2-4; 8-14) 

As the constraints on traffic congestion are relaxed, the lower bound model 𝑀1
𝐿𝐵  can be 

solved in a much faster way than the original model. The lower bound can also be used in the 

section on numerical experiments to evaluate the quality of solutions obtained by our methods. 

4.2 Yard template planning model under a policy of equal storage allocation 

In practice, containers unloaded from the original vessel are often evenly distributed to the 

subblocks reserved for their destination vessels. We refer to this policy as the equal storage 

allocation policy. It equally allocates the 𝑛𝑗𝑖𝑝  containers, which are unloaded from Vessel 𝑗, to 
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the 𝑞𝑖𝑝  subblocks reserved for Vessel 𝑖. More specifically, this means that there are „𝑛𝑗𝑖𝑝 /𝑞𝑖𝑝 ‟ 

containers transported from the berthing position of Vessel 𝑗 to each one of the 𝑞𝑖𝑝  subblocks, 

and which are then transported to the berthing position of Vessel 𝑖. This policy, using even 

distribution in the unloading process, obeys real-world, pragmatic rules, which helps avoid 

potential traffic congestion by yard trucks in some subblocks, and minimizes the completion time 

of the unloading process.  

Based on the above policy, the objective, i.e., minimizing the total route length of the 

transshipped container flows in the yard during the whole planning horizon, is formulated as: 

   𝑦𝑖𝑘𝑝    𝑑𝑗𝑘
𝑈 𝑛𝑗𝑖𝑝 /𝑞𝑖𝑝 𝑗∈𝑉 + 𝑑𝑘𝑖

𝐿  𝑛𝑗𝑖𝑝 /𝑞𝑖𝑝𝑗∈𝑉  𝑘∈𝐾𝐸𝑝
𝑖 ∈𝔼𝑖𝑖∈𝑉 . From this we then formulate the 

model of the yard template planning under a policy of equal storage allocation. The model is 

denoted by „𝛭_2‟. This model contains only the decision variables on yard template planning, 

i.e., binary variables 𝑥𝑖𝑘𝑡  and 𝑦𝑖𝑘𝑝 . 

(𝜧_𝟐)   Minimize      𝑦𝑖𝑘𝑝 𝐷𝑖𝑘𝑝𝑘∈𝐾𝐸𝑝
𝑖 ∈𝔼𝑖𝑖∈𝑉           (15) 

s.t. Constrains (2-8; 12-13) 

Here 𝐷𝑖𝑘𝑝 =   𝑑𝑗𝑘
𝑈 𝑛𝑗𝑖𝑝 /𝑞𝑖𝑝 𝑗 ∈𝑉 + 𝑑𝑘𝑖

𝐿  𝑛𝑗𝑖𝑝 /𝑞𝑖𝑝𝑗∈𝑉           (16) 

As the optimal solution of model 𝛭_2 is surely a feasible solution for that of model 𝛭_1, the 

optimal objective value of model 𝛭_1 is no greater than the optimal objective value of model 

𝛭_2. The solution obtained by solving model 𝛭_2 can act as an initial solution in searching for 

a good solution for model 𝛭_1, especially when solving some large scale problem instances of 

model 𝛭_1. 

Proposition 2: If there exist feasible solutions for model 𝛭_2, there is thus more than one 

optimal solution (optimal yard template). 

Proof: See Appendix B ■ 

Proposition 3: An optimal yard template for model 𝛭_2 has the following properties: (1) At 

least one subblock in the block that is nearest to the berthing position of Vessel 𝑖𝑚𝑎𝑥  is assigned 

to Vessel 𝑖𝑚𝑎𝑥  for its Period 𝑝𝑚𝑎𝑥 . (2) At least one subblock in the block section being used, 

and which is the furthest from the berthing position of Vessel 𝑖𝑚𝑖𝑛 , is assigned to Vessel 𝑖𝑚𝑖𝑛  

for its Period 𝑝𝑚𝑖𝑛 . Here (𝑖𝑚𝑎𝑥 , 𝑝𝑚𝑎𝑥 ) = arg max ∀ 𝑖 ,𝑝 ,𝑖∈𝑉,𝑝∈𝔼𝑖 {( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖 ,𝑝} ,  

(𝑖𝑚𝑖𝑛 , 𝑝𝑚𝑖𝑛 ) = arg min ∀ 𝑖 ,𝑝 ,𝑖∈𝑉 ,𝑝∈𝔼𝑖 {( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝}. 
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Proof: See Appendix C ■ 

The above Proposition 3 shows that the “( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝” is an important indicator in the 

yard template planning decision. This indicator will be used for developing solution methods for 

solving the model. 

5. Solution approaches 

For some small-scale problem instances, the proposed model 𝛭_1 can be solved by the 

CPLEX solver. However, for other large-scale problem instances, the model becomes too 

intractable for the CPLEX to solve directly. This study designs two solution approaches for 

solving the proposed model 𝛭_1. One is the local branching based method; the other is the 

Particle Swarm Optimization (PSO) based method, which can be used for solving extremely 

large-scale instances. Both methods require a good initial solution as a starting point. Section 5.1 

addresses the method for obtaining the initial solution; and then Section 5.2 and Section 5.3 

elaborate on the local branching based method and the PSO based method, respectively.  

5.1 Initial solution provided by solving model 𝜧_𝟐 

An initial solution for model 𝛭_1 can be obtained by solving its special case (i.e., model 

𝛭_2). However, the process by which the CPLEX solves model 𝛭_2 directly may also be very 

time-consuming if the problem scale is large. Here, a sequence based heuristic is proposed for 

obtaining a good solution to the 𝛭_2. The 𝛭_2 model is all about deciding the assignment of 

subblocks to vessels. As its name suggests, the sequence based heuristic assigns subblocks to the 

vessels one by one according to a given sequence of „vessel-period‟ pairs. This sequence is 

determined on the basis of the main idea contained in Proposition 3. More specifically, the 

sequence is generated by the decreasing order of the number of containers loaded onto each 

vessel during each period, divided by the number of subblocks that are assigned to the vessel, i.e., 

( 𝑛𝑗 ,𝑖,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝 . This indicator is determined according to Proposition 3.  

Given a sequence of vessels, a model 𝛭2(𝑛) is solved for the vessels one by one. Let the 

sequence of „vessel-period‟ pairs be {1, ⋯ , 𝑛, ⋯ ,   𝔼𝑖 𝑖∈𝑉 }. Here   𝔼𝑖 𝑖∈𝑉  denotes the total 

number of all the vessels‟ periods, which is also equal to the number of all the possible 

„vessel-period‟ pairs. This sequential method solves „  𝔼𝑖 𝑖∈𝑉 ‟ „vessel-period‟ pairs sequentially 
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in iterations. Suppose the value „( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝‟ for Vessel 𝑖 and its Period 𝑝 is in the n
th

 

position of the sequence. During the n
th

 iteration, we solve the model 𝛭2(𝑛) for obtaining the 

decision of subblock assignment for the „Vessel 𝑖 - Period 𝑝‟ pair. 

A parameter 𝐷𝑆 (i.e., the depth of search) is defined. During the n
th

 iteration for solving the 

subblock assignment decision of Vessel 𝑖 during its Period 𝑝, the variables related to the 

„vessel-period‟ pairs in the sub-sequence  1, ⋯ , 𝑛 − 1  are input data, whereas the variables 

related to the „vessel-period‟ pairs in the sub-sequence  𝑛, ⋯ ,   𝔼𝑖 𝑖∈𝑉   are still decision 

variables. After solving model 𝛭2(𝑛), the obtained decision variables related to the n
th

 item of 

the sequence (i.e., the „Vessel 𝑖 – Period 𝑝‟ pair) are fixed as the input data for the next 

iteration. The whole procedure has „  𝔼𝑖 𝑖∈𝑉 − 𝐷𝑆 + 1‟ iterations. For understanding the 

parameter 𝐷𝑆, an example is given as follow. There are 100 „vessel-period‟ pairs, which form a 

sequence. And 𝐷𝑆 is set as 20. Then there are 81 iterations (i.e.,   𝔼𝑖 𝑖∈𝑉 − 𝐷𝑆 + 1 = 100 −

20 + 1 = 81). The first iteration is to solve a model 𝛭2(1), in which the subblock assignments 

for the batch of 20 „vessel-period‟ pairs (i.e., the 1
st
, 2

nd
, …, 20

th
 pairs in the sequence) are 

decision variables, and the obtained subblock assignment for the 1
st
 pair is determined. The 

second iteration is to solve a model 𝛭2(2), in which the subblock assignments for the batch of 

20 „vessel-period‟ pairs (i.e., the 2
nd

, 3
rd

, …, 21
th

 pairs in the sequence) are decision variables, 

and the obtained subblock assignment for the 2
nd

 pair is determined. The following iterations are 

performed as the similar way. The last iteration (i.e., the 81
st
 iteration) is to solve a model 𝛭2(2), 

in which the subblock assignments for the batch of 20 „vessel-period‟ pairs (i.e., the 81
st
, 82

nd
 …, 

100
th

 pairs in the sequence) are decision variables, and the obtained subblock assignments for 

these 20 pairs are determined.  

From the above, we can see that the 𝐷𝑆 parameter setting is important for the procedure‟s 

performance. The setting of 𝐷𝑆 as a large value will result in a time-consuming solution process. 

The proper setting of 𝐷𝑆 is related to the computational capacity of the computer. If the 𝐷𝑆 

equals zero, the method is degenerated to the normal greedy search, which means it will 

sequentially make the best decision over choosing subblocks for each vessel and period within 

the remaining time-space of subblocks. This setting results in a fast solution process but may 

result in much loss of optimality. In addition, if the 𝐷𝑆 is set too small, such as at zero, it will 

probably occur that no feasible subblocks can be assigned to the last few vessel-period pairs. 
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Therefore, a proper setting of the  𝐷𝑆 value can effectively avoid any infeasibility for rear 

vessel-period pairs. 

5.2 Local branching based solution method 

Model 𝛭_1 is a MIP (mixed integer programming) model and contains integer variables, i.e., 

𝑥𝑖𝑘𝑡 , 𝑦𝑖𝑘𝑝 ∈ {0,1} . Other than for 𝑥𝑖𝑘𝑡  and 𝑦𝑖𝑘𝑝 , the variables 𝑧𝑗𝑖𝑘𝑝  in model 𝛭_1  are 

continuous. The integer variables 𝑥𝑖𝑘𝑡  depend only on the variables 𝑦𝑖𝑘𝑝 ; thus there is actually 

only one set of integer variables 𝑦𝑖𝑘𝑝  in the nature of this problem. Therefore, the solution 

speed for model 𝛭_1 is mainly limited by the branching process of the binary variable 𝑦𝑖𝑘𝑝  

within its huge solution space. In this study, a local branching strategy is utilized to solve model 

𝛭_1. The local branching strategy is exact in nature, though it can improve the heuristic behavior 

of the solver at hand. It alternates high-level strategic branching in order to define the solution 

neighborhoods, and low-level tactical branching to explore them (Fischetti and Lodi, 2003).  

The proposed solution method in this study is based on the local branching strategy, the core 

idea of which is to use the CPLEX solver as a black-box „tactical‟ tool for exploring suitable 

solution subspaces, which are defined and controlled at a „strategic‟ level by a simple external 

branching framework. Our proposed solution method is in the spirit of widely used local search 

meta-heuristics, but the neighborhoods are formulated by introducing local branching cuts (linear 

inequalities). This proposed method can be regarded as a two-level branching strategy aimed at 

favoring early updating of the incumbent solution, hence producing improved solutions at early 

stages of the computation. The main procedure of the local branching is illustrated in Figure 4. 

 

Figure 4: The main procedure of local branching 
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In Figure 4, node 1 is the starting point of the local branching procedure. At node 1, the binary 

variables 𝑦𝑖𝑘𝑝  can be initialized according to the method proposed in Section 5.1. The initial 

setting on variables 𝑦𝑖𝑘𝑝  (∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝐸𝑝
𝑖 ∈ 𝔼𝑖) is denoted by 𝒚(1) in Figure 4. Based on 

node 1, we derive node 2 and node 3, which denote model 𝛭_1 with further constraints 

 𝒚 − 𝒚(1) ≤ 𝑒,  𝒚 − 𝒚(1) ≥ 𝑒 + 1, respectively. Here  𝒚 − 𝒚(1)  reflects the radius of 𝒚(1)‟s 

neighborhood in the solution space of the 𝒚  variables. More specifically,  𝒚 − 𝒚(1)  is 

calculated as:  𝒚 − 𝒚(1) =     𝑦𝑖𝑘𝑝 − 𝑦𝑖𝑘𝑝
(1)

 𝑘∈𝐾𝐸𝑝
𝑖 ∈𝔼𝑖𝑖∈𝑉 . Its value reflects the number of 

variables 𝑦𝑖𝑘𝑝  that are different from their corresponding fixed values 𝑦𝑖𝑘𝑝
(1)

. The parameter 𝑒 

controls the neighborhood size when searching for solutions around the current solution. If the 𝑒 

is small, the solution process in node 2 will be fast; otherwise it may be time-consuming.  

When node 2 is solved, the binary variables 𝑦𝑖𝑘𝑝  are denoted by 𝒚(2) in Figure 4. Then node 

4 denotes the model 𝛭_1 with constraints  𝒚 − 𝒚(2) ≤ 𝑒,  𝒚 − 𝒚(1) ≥ 𝑒 + 1. Because the 

neighborhood size is limited by the constraint  𝒚 − 𝒚(2) ≤ 𝑒, node 4 can be solved in a much 

faster way than would be the case without this limitation on its neighborhood size. 

Figure 4 shows the main flow of the branching process, in which all the nodes marked by the 

dark color will be solved by the CPLEX solver. The whole solution procedure may be trapped 

(or deferred) by the time-consuming solution processes in some nodes. So we impose an upper 

limit for the solution time in each node. If the solution time exceeds this limit, the CPLEX solver 

will stop solving the model at this node, and will either return a feasible but non-optimal solution; 

otherwise, it means the model at this node has been solved optimally by the CPLEX solver. It 

should be noted that there is none possibility that a node cannot return a feasible solution within 

the time limit. For example of node 2 in Figure 4, there is at least one feasible solution 𝒚(1); for 

node 4, there is at least one feasible solution 𝒚(2).  

For each node marked by the dark color, the CPLEX result can be any of four cases: 

Case 1: The objective value of model 𝛭_1 with some 𝒚 related constraints is improved, and 

the solution time limit for the CPLEX solver is not reached. This means the node is solved 

optimally by the CPLEX solver, and the solution is better than the incumbent best solution so far. 

Case 2: The solution time limit for the CPLEX solver is reached, but the objective value is 

improved. This means the CPLEX solver obtains a non-optimal solution that is also better than 
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the incumbent best solution so far. 

Case 3: The solution time limit for the CPLEX solver is not reached, but the objective value is 

not improved. This means that the CPLEX solver obtains an optimal solution that is worse than 

the incumbent best solution so far. 

Case 4: The solution time limit for the CPLEX solver is reached, but the objective value is not 

improved. This means that the CPLEX solver obtains a non-optimal solution that is worse than 

the incumbent best solution so far. 

For the above four cases, the handling strategies are shown in Figure 5. 

 

Figure 5: Four different cases obtained during the branching process 

Case 1 is the most common case in the local branching procedure. It denotes the standard flow 

of the solution process, as shown in Figure 4. 

Case 2 results from updating of the neighborhood related constraint, which is changed from 

 𝒚 − 𝒚(4) ≤ 𝑒 to  𝒚 − 𝒚(6) ≤ 𝑒, because the solution of node 6 replaces that of node 4 and 

becomes the incumbent best one so far. 

Case 3 means that node 6 is completely pruned, because the optimally solved solution at this 

node is worse than the incumbent best solution so far. Therefore, the solution of the original 

model equals the solution of node 7.  

Case 4 means that the neighborhood size needs reducing so as to either solve a solution in the 

node optimally or obtain a better solution than the incumbent best one so far. 
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The above four cases cover all possible situations throughout the procedure, which is in line 

with well-known local search meta-heuristics. In this study, the neighborhoods used in the local 

branching procedure are realized by defining certain linear inequalities (or branching cuts) with 

respect to binary variables (𝑦𝑖𝑘𝑝 ). The whole solution procedure terminates if the incumbent best 

objective value has not been improved over a given number of consecutive iterations. 

5.3 PSO based solution method 

When solving some extremely large-scale instances of model 𝛭_1, the above local branching 

based method may be somewhat time consuming, so we have to consider heuristic solution 

approaches. PSO was first proposed by Eberhart and Kennedy (1995), and they used it to 

optimize continuous nonlinear functions. In recent years, the PSO has been used for solving 

certain port operation problems, e.g., berth allocation problem (Ting et al., 2014), quay crane 

scheduling problems (Tang et al., 2014). This paper designs a PSO based solution approach for 

solving model 𝛭_1. 

5.3.1 Solution representation and velocity updating strategy 

Like the well known genetic algorithm, PSO is also a population based heuristic method. In the 

population of PSO, each solution is denoted by a particle whose status contains its position and 

velocity at each iteration. A particle‟s position denotes the quality of the solution that 

corresponds with the particle; while the particle‟s velocity denotes the direction along which it 

will move in the next iteration.  

In the proposed model 𝛭_1, the decision variables 𝑥𝑖𝑘𝑡  and 𝑦𝑖𝑘𝑝  are actually related to each 

other. Once one type of variable is determined, the other type of variable is also known. In this 

study, we use the 𝑦𝑖𝑘𝑝  variable to define particles in the PSO. More specifically, for a particle 

𝑚  in iteration 𝑛 , its position is defined by 𝕐𝑚
𝑛 =  𝑌𝑚𝑖𝑘𝑝

𝑛  , and its velocity is defined by 

𝕧𝑚
𝑛 =  𝑣𝑚𝑖𝑘𝑝

𝑛  , ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝐾, ∀𝐸𝑝
𝑖 ∈ 𝔼𝑖 . We define 𝑌𝑝𝐵𝑒𝑠𝑡𝑚𝑖𝑘𝑝

𝑛  as the best position of the 

particle 𝑚 on dimensions 𝑖, 𝑘, 𝑝 until iteration 𝑛, and 𝑌𝑔𝐵𝑒𝑠𝑡𝑖𝑘𝑝
𝑛  as the best position of the 

whole swarm on dimensions 𝑖, 𝑘, 𝑝 until iteration 𝑛. Then the updating formulae of velocity 

and position are: 

𝑣𝑚𝑖𝑘𝑝
𝑛+1 = 𝑤𝑛  𝑣𝑚𝑖𝑘𝑝

𝑛 +  𝑐1𝑟1 𝑌𝑝𝐵𝑒𝑠𝑡𝑚𝑖𝑘𝑝
𝑛 − 𝑌𝑚𝑖𝑘𝑝

𝑛  + 𝑐2𝑟2 𝑌𝑔𝐵𝑒𝑠𝑡𝑖𝑘𝑝
𝑛 − 𝑌𝑚𝑖𝑘𝑝

𝑛      (17) 

𝑌𝑚𝑖𝑘𝑝
𝑛+1 =  𝑌𝑚𝑖𝑘𝑝

𝑛 + 𝑣𝑚𝑖𝑘𝑝
𝑛                 (18) 
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Here 𝑤𝑛  is the inertia weight, and is calculated by 𝑤𝑛 =  
𝑁−𝑛

𝑁
 𝑤𝑖𝑛𝑖 − 𝑤𝑒𝑛𝑑  + 𝑤𝑒𝑛𝑑 , in 

which 𝑁 is the number of iterations; 𝑤𝑖𝑛𝑖  and 𝑤𝑒𝑛𝑑  are the initial inertia weight and the final 

inertia weight, respectively. The inertia weight affects the PSO procedure‟s convergence towards 

the optimal solution. At the beginning of the procedure, a large inertia weight causes the 

procedure to achieve good convergence towards the global optimal solution. As the procedure 

continues, the inertia weight becomes smaller and smaller, which causes the final stage of the 

procedure to achieve good convergence towards the local optimal solution.  

In addition, 𝑐1 and 𝑐2 are acceleration weights; 𝑟1 and 𝑟2 are random numbers generated 

between zero and one. 

In order to avoid the PSO procedure falling only into local optima, the above updating 

formulae of velocity, i.e., Formula (18), is modified as follows: 

𝑣𝑚𝑖𝑘𝑝
𝑛+1 = 𝑤𝑛  𝑣𝑚𝑖𝑘𝑝

𝑛 +  𝑐1𝑟1 𝑌𝑝𝐵𝑒𝑠𝑡𝑚𝑖𝑘𝑝
𝑛 − 𝑌𝑚𝑖𝑘𝑝

𝑛  + 𝑐2𝑟2 𝑌𝑔𝐵𝑒𝑠𝑡𝑖𝑘𝑝
𝑛 − 𝑌𝑚𝑖𝑘𝑝

𝑛     

  +𝑐3𝑟3 𝑌𝑎𝑖𝑘𝑝
𝑛 − 𝑌𝑏𝑖𝑘𝑝

𝑛                (19) 

Here 𝑌𝑎𝑖𝑘𝑝
𝑛  and 𝑌𝑏𝑖𝑘𝑝

𝑛  are the positions of two randomly chosen particles on dimensions 𝑖, 

𝑘, 𝑝 in iteration 𝑛. Then, a particle not only moves in the direction of the best positions for 

both the whole swarm and the particle, but may also fly to two randomly chosen particles. In this 

case, the particle will be more likely to leave the local optima to search for better solutions.  

Because the decision variables in this study are binary variables, we cannot calculate a 

particle‟s position according to the above Formula (18). It is thus modified as follows: 

𝑌𝑚𝑖𝑘𝑝
𝑛+1 =  

1,  𝑤𝑕𝑒𝑛  𝑟4 < 𝑆(𝑣𝑚𝑖𝑘𝑝
𝑛+1 )

0,  𝑤𝑕𝑒𝑛  𝑟4 ≥ 𝑆(𝑣𝑚𝑖𝑘𝑝
𝑛+1 )

               (20) 

Here 𝑟4  is a random number generated between zero and one; 𝑆 𝑣𝑚𝑖𝑘𝑝
𝑛+1   is a sigmoid 

function, 𝑆 𝑣𝑚𝑖𝑘𝑝
𝑛+1  = 1/(1 − 𝑒−𝑣𝑚𝑖𝑘𝑝

𝑛+1

). 

5.3.2 Main framework of the PSO procedure 

Based on the above definition of the solution representation and velocity updating strategy, 

the main framework of the PSO procedure is as follows. 

Step 1: Set the iteration number 𝑛 = 1. Initialize a swarm containing 𝑀 particles whose 

positions determine which subblocks are assigned to which vessels during each period. The 

assignment plan is randomly generated.  
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Step 2: For certain particles (e.g., particle 𝑚) whose „vessel-subblock‟ assignment plan 

disobeys some constraints of the model, a sub-procedure 𝑨𝒅𝒋𝒖𝒔𝒕(𝑚) is performed to revise the 

assignment so as to make particle 𝑚‟s assignment plan feasible. Details of the sub-procedure 

𝑨𝒅𝒋𝒖𝒔𝒕(𝑚) are addressed later. 

Step 3: For all the particles, calculate their fitness value by solving model 𝛭_1, in which the 

𝒙 and 𝒚 variables are fixed according to the particles. As model 𝛭_1 with the fixed 𝒙 and 𝒚 

variables is a linear programming model, it can be solved by the CPLEX solver directly in 

affordable running time. 

Step 4: Update the best position of each particle, i.e.,  𝑌𝑝𝐵𝑒𝑠𝑡𝑚𝑖𝑘𝑝
𝑛  , and the best position of 

the swarm, i.e.,  𝑌𝑔𝐵𝑒𝑠𝑡𝑖𝑘𝑝
𝑛  . 

Step 5: Update the velocity according to Formula (19), and update the position according to 

Formula (20). 

Step 6: If the iteration number reaches the preset maximum value, stop; otherwise, 

𝑛 = 𝑛 + 1 and then go to Step 2. 

In the above steps, the sub-procedure 𝑨𝒅𝒋𝒖𝒔𝒕(𝑚) is important for the whole PSO solution 

method. Its target is to make the infeasible particles become feasible by means of adjusting the 

„vessel-subblock‟ assignment plan so as to satisfy all the constraints of the model. A detailed 

description of the sub-procedure 𝑨𝒅𝒋𝒖𝒔𝒕(𝑚) is addressed in Appendix D. 

6. Computational experiments 

Several experiments are performed on a PC (Intel Core i5, 1.6G Hz; Memory, 4G) to validate 

the efficiency of the solution method and the effectiveness of the proposed model 𝛭_𝑇𝑃. The 

PSO based solution method is implemented by C# (VS2008). For solving the model optimally, it 

is implemented by CPLEX12.1 with concert technology of C# (VS2008). 

6.1 Generation of test cases 

We generate test cases as follow. The planning horizon is about 70 days, which means 10 

periods for vessels with a weekly arrival pattern, 5 periods for vessels with a biweekly arrival 

pattern, and 7 periods for vessels with a 10-day arrival pattern. For each instance, we assume that 

about 2/3, 1/6, 1/6 of all the vessels belong to the weekly pattern, bi-weekly pattern and 10-day 

pattern, respectively. The time step is set to contain eight hours. We randomly generate the 
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starting time step of the periods for each vessel. Then we can determine in advance the groups of 

time steps that belong to each period of each vessel (i.e., 𝐸𝑝
𝑖 ). In addition, we can also determine 

the time steps during which each vessel has loading activities (i.e., 𝑙𝑖𝑡 ). Each block contains six 

containers (TEUs) along the depth dimension and 40 containers along the length dimension. 

Each block contains five subblocks. Each subblock contains eight containers along the length 

dimension, which means a subblock‟s length is about 50 meters. The stacking height is five tiers 

(containers). Thus the capacity of a subblock is about 240 (= 6×8×5) TEUs. This study uses the 

concept of „subblock‟ as the basic unit for the decisions on yard storage allocation and yard 

template planning. The average number of subblocks that should be reserved for a vessel (i.e, 

𝑞𝑖𝑝 ) is about five. The number of containers that are transshipped between pairs of vessels in a 

period (i.e., 𝑛𝑗𝑖𝑝 ) are randomly generated such that the average number of containers for loading 

onto a vessel is about 1000 TEUs. The width of the passing lanes is set as 30 meters. The 

maximum number of routes passing along each lane simultaneously (i.e., 𝑤𝑢 ) is set as one. The 

vessels‟ berthing positions along the quay are randomly generated. The configuration of 

subblocks in a yard is arranged similar to the example in Figure 1. The pairs of subblocks that 

are neighbors (i.e., 𝑆𝑟  and 𝕊) and the groups of five subblocks that belong to the same block 

(i.e., 𝐵𝑔  and 𝔹) are determined accordingly. Based on the configuration of subblocks and the 

berthing positions of vessels, the loading/unloading route length (i.e., 𝑑𝑗𝑘
𝑈  and 𝑑𝑘𝑖

𝐿 ) can be 

calculated. According to the vessels‟ berthing positions, whether a loading route from a subblock 

to a vessel‟s berth passes a Lane or not can also be determined (i.e., 𝑕𝑖𝑘𝑢 ).  

6.2 Performance of the proposed solution methods 

Experiments on small-scale cases are conducted first to validate the efficiency of the local 

branching based method. The optimal results are obtained using the CPLEX solver. From Table 

1 we can see that the local branching based solution algorithm can obtain near-optimal results. 

The average gap between the objective values of the local branching based solution algorithm 

and the optimal results is just 0.09%. The CPU time for the local branching based solution 

algorithm is longer than the CPLEX solver‟s CPU time when solving some very small-scale 

problem cases, but is much shorter than the CPLEX solver for some middle-scale problem cases. 

Generally, the local branching based solution algorithm‟s CPU time is acceptable, but displays 

its relative merit as the problem scale increases. More importantly, it is seen that the CPLEX 
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cannot solve the model under large-scale problem cases, whereas the local branching solution 

algorithm can solve such problems within a reasonable time period.  

Table 1: Comparison between the local branching algorithm and the CPLEX solver 

Instances Optimal results Local branching based method Lower Bound 

Scale ID ZC TC ZL TL GAPL 
TL / 

TC 
LB GAPLB 

6 6_40_1 18,780,078 12 18,787,078 77 0.04% 6.42 18,743,789 0.19% 

Vessels 6_40_2 19,819,045 24 19,819,045 127 0.00% 5.29 19,786,350 0.16% 

& 6_40_3 18,410,123 19 18,414,139 132 0.02% 6.95 18,396,923 0.07% 

40 6_40_4 18,815,707 23 18,816,859 110 0.01% 4.78 18,800,079 0.08% 

Subblocks 6_40_5 18,673,848 32 18,673,848 188 0.00% 5.88 18,667,432 0.03% 

9 9_60_1 41,165,233 341 41,192,521 365 0.07% 1.07 41,140,417 0.06% 

Vessels 9_60_2 40,191,729 413 40,213,264 317 0.05% 0.77 40,174,089 0.04% 

& 9_60_3 39,468,476 264 39,484,267 262 0.04% 0.99 39,454,668 0.03% 

60 9_60_4 41,094,872 547 41,107,157 438 0.03% 0.80 41,079,610 0.04% 

Subblocks 9_60_5 39,829,041 574 39,853,650 352 0.06% 0.61 39,724,793 0.26% 

12 12_80_1 53,207,203 1,625 53,253,455 590 0.09% 0.36 53,158,412 0.09% 

Vessels 12_80_2 57,201,700 1,547 57,286,412 632 0.15% 0.41 57,126,320 0.13% 

& 12_80_3 59,538,137 2,090 59,594,184 675 0.09% 0.32 59,283,614 0.43% 

80 12_80_4 55,473,855 1,874 55,548,822 714 0.14% 0.38 55,347,313 0.23% 

Subblocks 12_80_5 59,974,347 1,718 60,046,988 774 0.12% 0.45 59,790,448 0.31% 

15 15_100_1 75,806,885 4,503 75,940,828 1,092 0.18% 0.24 75,779,699 0.04% 

Vessels 15_100_2 72,027,118 5,838 72,165,303 1,011 0.19% 0.17 71,808,740 0.30% 

& 15_100_3 74,929,292 5,476 75,114,549 1,212 0.25% 0.22 74,826,055 0.14% 

100 15_100_4 82,736,577 5,543 82,866,984 1,083 0.16% 0.20 82,561,398 0.21% 

Subblocks 15_100_5 83,281,560 6,381 83,387,140 1,163 0.13% 0.18 83,225,790 0.07% 

Average:  0.09%   0.15% 

Notes: (1) The optimal results are obtained by using the CPLEX solver. The optimal objective values and the 

CPU time are denoted by ZC and TC, respectively. (2) The objective values and the CPU time of the local 

branching algorithm are denoted by ZL and TL, respectively. GAPL = (ZL - ZC) / ZC. (3) The lower bounds are 

obtained by solving the model 𝑀1
𝐿𝐵 proposed in Section 4.1. GAPLB = (ZC - LB) / ZC. 

Table 1 also demonstrates the quality of the lower bound (i.e., 𝑀1
𝐿𝐵) proposed in Section 4.1. 

The gap between the proposed lower bound and the optimal result is about 0.15% on average. As 
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the lower bound can be obtained in an easier way than by solving the original model, it will be 

used as a criterion for evaluating the performance of the proposed solution methods when facing 

some large-scale problem instances. 

Besides the local branching algorithm, another method based on the PSO is also proposed for 

solving large-scale instances. The performance of the proposed two types of solution methods is 

also investigated using comparative experiments. The results are shown in Table 2 as follows: 

Table 2: Comparison between the local branching method and the PSO method 

Instances 
LB 

Local branching method PSO method 𝑻𝑷

𝑻𝑳
 

Scale ID ZL TL GAPL ZP TP GAPP 

15 15_100_1 74,397,548 74,663,131 1,088 0.36% 75,575,951 386 1.58% 0.35 

Vessels 15_100_2 79,647,014 79,890,584 1,078 0.31% 81,103,171 495 1.83% 0.46 

& 15_100_3 82,205,374 82,642,541 1,245 0.53% 83,243,513 514 1.26% 0.41 

100 15_100_4 71,661,053 71,917,954 969 0.36% 72,852,153 430 1.66% 0.44 

Subblocks 15_100_5 83,172,711 83,357,904 877 0.22% 84,322,887 380 1.38% 0.43 

18 18_120_1 105,028,710 105,269,475 2753 0.23% 106,672,604 790 1.57% 0.29 

Vessels 18_120_2 95,105,536 95,420,672 1,849 0.33% 96,876,440 726 1.86% 0.39 

& 18_120_3 105,073,034 105,373,151 2,255 0.29% 107,074,052 819 1.90% 0.36 

120 18_120_4 95,124,070 95,619,624 2,653 0.52% 96,588,320 858 1.54% 0.32 

Subblocks 18_120_5 102,635,574 103,060,198 2,347 0.41% 104,913,811 790 2.22% 0.34 

21 21_140_1 120,552,274 121,099,057 4,608 0.45% 122,587,291 1,009 1.69% 0.22 

Vessels 21_140_2 114,179,590 114,493,737 3,990 0.28% 115,871,475 1,130 1.48% 0.28 

& 21_140_3 118,823,449 119,300,962 4,198 0.40% 120,575,135 918 1.47% 0.22 

140 21_140_4 121,006,723 121,274,173 4,293 0.22% 123,646,146 1,119 2.18% 0.26 

Subblocks 21_140_5 118,284,955 118,612,993 3,890 0.28% 120,894,503 997 2.21% 0.26 

24 24_160_1 132,203,697 132,584,614 5,910 0.29% 133,960,772 1,208 1.33% 0.20 

Vessels 24_160_2 128,544,588 129,004,866 6,138 0.36% 130,166,114 1,449 1.26% 0.24 

& 24_160_3 131,601,171 132,114,939 5,807 0.39% 134,616,907 1,433 2.29% 0.25 

160 24_160_4 133,102,076 133,453,741 6,865 0.26% 135,777,889 1,224 2.01% 0.18 

Subblocks 24_160_5 128,220,615 128,842,951 5,779 0.49% 130,518,957 1,150 1.79% 0.20 

Average:  0.35%   1.73% 0.31 

Notes: (1) GAPL = (ZL - LB) / LB, GAPP = (ZP - LB) / LB. (2) TL and TP denote the CPU time of the local 

branching method and the PSO method, respectively.  

For the middle-scale problem instances in Table 2, both the local branching based method and 

the PSO based method can obtain near-optimal solutions according to the comparison with the 

lower bounds. The results show that the average gap between the result of the local branching 

based method (and the PSO based method) and the optimal result is less than 0.35% (and 1.73%). 

Although, according to the criterion of the objective value, the local branching based method 
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outperforms the PSO based method, the CPU time of the PSO based method is just thirty percent 

of the CPU time of the local branching based method. This indicates that the PSO based method 

can obtain satisfying solutions in a much faster way than the local branching based method. 

We also compare the performance of the proposed PSO based solution method with certain 

other widely used metaheuristics, e.g., the genetic algorithm (GA). The results are listed in Table 

3, which indicates that the PSO based method outperforms the GA based method in most 

problem cases. According to the comparison with the lower bound (LB), the average gap 

between the results of the PSO based method and that of the LB is 1.25%, which is much less 

than the value of 4.33%, which is the average gap between the results of the GA based method 

and the LB. As for the CPU time of the two methods, the average ratio of them both is 1.03, 

which indicates that their computation time is similar to each other.  

Table 3: Comparison between the PSO based method and the GA based method 

Instances 
LB 

PSO method GA method 𝑻𝑮

𝑻𝑷
 

Scale ID ZP TP GAPP ZG TG GAPG 

24 24_160_1 130,392,711 132,131,488 1,243 1.33% 135,416,707 1,439 3.85% 1.16  

Vessels 24_160_2 127,978,164 129,327,582 1,260 1.05% 130,074,677 1,407 1.64% 1.12  

& 24_160_3 127,961,458 130,008,702 1,429 1.60% 138,850,728 1,193 8.51% 0.83  

160 24_160_4 129,932,112 131,464,208 1,211 1.18% 137,380,458 1,334 5.73% 1.10  

Subblocks 24_160_5 126,414,100 127,587,246 1,355 0.93% 137,705,593 1,556 8.93% 1.15  

27 27_180_1 152,499,587 154,200,375 2,132 1.12% 157,850,908 1,987 3.51% 0.93  

Vessels 27_180_2 153,262,257 154,919,313 2,664 1.08% 153,303,772 1,755 0.03% 0.66  

& 27_180_3 150,199,293 152,177,436 1,878 1.32% 154,663,467 1,590 2.97% 0.85  

180 27_180_4 150,989,468 153,336,676 1,911 1.55% 154,679,956 2,724 2.44% 1.43  

Subblocks 27_180_5 154,337,434 156,849,526 2,295 1.63% 165,823,329 2,442 7.44% 1.06  

30 30_200_1 168,538,444 170,673,470 3,433 1.27% 183,034,096 3,125 8.60% 0.91  

Vessels 30_200_2 179,693,092 182,213,882 3,180 1.40% 182,846,052 4,072 1.75% 1.28  

& 30_200_3 173,609,696 175,407,547 3,594 1.04% 186,285,321 3,021 7.30% 0.84  

200 30_200_4 179,819,015 182,753,841 3,302 1.63% 185,033,276 3,570 2.90% 1.08  

Subblocks 30_200_5 176,038,420 178,853,009 2,963 1.60% 178,253,690 4,183 1.26% 1.41  

33 33_220_1 202,302,331 205,272,133 4,007 1.47% 214,394,704 3,907 5.98% 0.98  

Vessels 33_220_2 201,973,990 204,037,346 5,381 1.02% 205,246,590 4,621 1.62% 0.86  

& 33_220_3 199,919,406 201,764,614 4,970 0.92% 208,616,768 4,774 4.35% 0.96  

220 33_220_4 203,331,107 205,142,659 5,162 0.89% 207,662,326 4,046 2.13% 0.78  

Subblocks 33_220_5 211,257,043 213,501,119 4,343 1.06% 223,257,371 5,319 5.68% 1.22  

Average:  1.25%   4.33% 1.03 

Notes: (1) GAPP = (ZP - LB) / LB, GAPG = (ZG - LB) / LB. (2) TP and TG denote the CPU time of the PSO based 

method and the GA based method, respectively.  
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6.3 Evaluating the effectiveness of the proposed models 

For evaluating the effectiveness of the proposed models, we compare the proposed decision 

model 𝛭_1 with a common decision rule (FCFS) that allocates subblocks according to the 

arrival order of vessels. When assigning subblocks to a vessel, we give priority to those 

subblocks that are both available and near the vessel. As the problem cases are large-scale, the 

PSO-based solution method is employed to solve the proposed model. The results of the 

comparative experiments between the proposed model and the decision rule are listed as follows: 

Table 4: Comparison between the proposed model 𝛭_1 and the FCFS decision rule 

Instances Model 𝜧_𝟏 FCFS rule GAP 

Scale ID ZM_1 ZFCFS (ZFCFS − ZM_1) / ZM_1 

15 15_100_1 75,575,951 98,201,306 29.94% 

vessels 15_100_2 81,103,171 97,044,844 19.66% 

& 15_100_3 83,243,513 98,902,482 18.81% 

100 15_100_4 72,852,153 96,515,460 32.48% 

subblocks 15_100_5 84,322,887 102,404,228 21.44% 

21 21_140_1 122,587,291 162,678,507 32.70% 

vessels 21_140_2 115,871,475 148,840,186 28.45% 

& 21_140_3 120,575,135 147,657,164 22.46% 

140 21_140_4 123,646,146 146,046,294 18.12% 

subblocks 21_140_5 120,894,503 146,576,991 21.24% 

27 27_180_1 154,200,375 188,739,412 22.40% 

vessels 27_180_2 154,919,313 187,488,266 21.02% 

& 27_180_3 152,177,436 179,102,540 17.69% 

180 27_180_4 153,336,676 189,397,220 23.52% 

subblocks 27_180_5 156,849,526 211,623,674 34.92% 

33 33_220_1 205,272,133 258,978,901 26.16% 

vessels 33_220_2 204,037,346 239,366,589 17.32% 

& 33_220_3 201,764,614 244,030,955 20.95% 

220 33_220_4 205,142,659 256,327,165 24.95% 

subblocks 33_220_5 213,501,119 278,434,553 30.41% 

Average: 24.23% 

 

Table 4 shows that the proposed model 𝛭_1 outperforms the FCFS decision rule by 24% on 

average with respect to their objective values, i.e., the total route length of transporting 

containers within the yard. In other words, the proposed model can help the port operator save 

about 24% of his yard truck transportation costs in comparison to the commonly used FCFS 

decision rule. This result validates the effectiveness of the proposed model. 
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Besides model 𝛭_1, another decision model 𝛭_2 is also proposed in Section 4. Model 𝛭_2 

is formulated under a policy of equal storage allocation, which follows real-world, pragmatic 

rules, because this method can help avoid the potential traffic congestion of yard trucks in some 

subblocks, and can minimize the completion time of the unloading process. We therefore need to 

investigate how this simplified model 𝛭_2 (i.e., the policy of equal storage allocation) will 

affect the total route length of transporting containers within the yard. A experiment is conducted 

by comparing the objective values of the solutions obtained by solving the two models.  

Table 5: Comparison between the proposed models 𝛭_1 and 𝛭_2 

Solution 

Methods 

Instances Model 𝜧_𝟏 Model 𝜧_𝟐 𝒁𝟐 − 𝒁𝟏

𝒁𝟏
 

𝑻𝟐

𝑻𝟏
 

Scale ID Z1 T1 Z2 T2 

CPLEX 

Solver 

9 9_60_1 41,165,233 341 45,725,007 53 11.08% 0.16  

vessels 9_60_2 40,191,729 413 44,388,200 42 10.44% 0.10  

& 9_60_3 39,468,476 264 43,846,808 76 11.09% 0.29  

60 9_60_4 41,094,872 547 46,282,198 41 12.62% 0.07  

subblocks 9_60_5 39,829,041 574 45,595,175 63 14.48% 0.11  

12 12_80_1 53,207,203 1,625 65,489,021 263 23.08% 0.16  

vessels 12_80_2 57,201,700 1,547 68,728,497 302 20.15% 0.20  

& 12_80_3 59,538,137 2,090 70392905 254 18.23% 0.12  

80 12_80_4 55,473,855 1,874 68995343 410 24.37% 0.22  

subblocks 12_80_5 59,974,347 1,718 69505982 323 15.89% 0.19  

Local  

Branching 

18 18_120_1 105,269,475 2,753 116,978,869 563 11.12% 0.20  

vessels 18_120_2 95,420,672 1,849 116,551,627 617 22.15% 0.33  

& 18_120_3 105,373,151 2,255 118,937,913 578 12.87% 0.26  

120 18_120_4 95,619,624 2,653 117,919,939 790 23.32% 0.30  

subblocks 18_120_5 103,060,198 2,347 119,207,301 755 15.67% 0.32  

21 21_140_1 121,099,057 4,608 141,509,416 877 16.85% 0.19  

vessels 21_140_2 114,493,737 3,990 141,924,529 863 23.96% 0.22  

& 21_140_3 119,300,962 4,198 138,915,115 1,078 16.44% 0.26  

140 21_140_4 121,274,173 4,293 141,293,348 903 16.51% 0.21  

subblocks 21_140_5 118,612,993 3,890 141,784,556 1,175 19.54% 0.30  

PSO 

27 27_180_1 154,200,375 2,132 192,476,566 1,566 24.82% 0.73  

vessels 27_180_2 154,919,313 2,664 186,904,526 1,480 20.65% 0.56  

& 27_180_3 152,177,436 1,878 185,918,958 1,448 22.17% 0.77  

180 27_180_4 153,336,676 1,911 186,857,614 1,529 21.86% 0.80  

subblocks 27_180_5 156,849,526 2,295 184,973,841 1,645 17.93% 0.72  

30 30_200_1 170,673,470 3,433 231,538,475 2,304 35.66% 0.67  

vessels 30_200_2 182,213,882 3,180 237,806,212 2,476 30.51% 0.78  

& 30_200_3 175,407,547 3,594 239,208,123 3,127 36.37% 0.87  

200 30_200_4 182,753,841 3,302 236,980,620 2,776 29.67% 0.84  

subblocks 30_200_5 178,853,009 2,963 234,799,959 2,543 31.28% 0.86  

Average: 22.47% 0.51 
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The results in Table 5 demonstrate that the average gap between their objective values is about 

22%, which means that the proposed model 𝛭_1 can save about 22% of the transportation costs 

of yard trucks in comparison to the policy of equal storage allocation. The reason for this evident 

advantage may be that the berthing position of a vessel (e.g., Vessel 1) might be close to some 

sub-blocks (e.g., K1, K2), and the berthing position of another vessel (e.g., Vessel 2) might be 

close to some other sub-blocks (e.g., K3, K4). Using the equal allocation policy will lead to very 

long travel distance from Vessel 1 to K3, K4, and from Vessel 2 to K1, K2.  

Also, as the problem scale grows in size, this relative advantage of the proposed model 𝛭_1 

becomes more and more significant. These phenomena validate the effectiveness of the proposed 

model 𝛭_1. It should be mentioned that the advantages of model 𝛭_1 are based on a longer 

computation time than model 𝛭_2. The results of Table 5 show that the average CPU time for 

solving model 𝛭_2 is almost half of the CPU time needed for solving model 𝛭_1. Although 

the CPU time of solving model 𝛭_1 is relatively longer, it is still affordable. This longer 

computation time is not a significant issue, because yard template planning is a tactical level 

(long-range) decision problem for port operators.  

6.4 Some discussions 

At last, it should be mentioned that some existing studies (Lee et al., 2006; Han et al., 2008) 

proposed a sequential method for solving the problem with homogeneous periodicities. The 

sequential method is to solve the subblock assignment decision for vessels stage by stage (period 

by period). However, the sequential method may not be applied to this problem with 

heterogeneous periodicities after minor modification, because it is difficult to divide the planning 

horizon into several stages. For a case with homogeneous weekly arrival pattern, the length of 

the above mentioned stage should be 7 days. However, for a case with both weekly arrival 

pattern and 10-days arrival pattern, the length of the above mentioned stage should be 70 days 

(because the least common multiple of seven and ten is 70) if we use the sequential method. 

When we solve the subblock assignment decision for vessels every 70-day by 70-day, the 

solution space of the sub-models embedded in this procedure will be very large. If the number of 

vessels is large, the sub-models may be intractable for the CPLEX solver, or the whole solution 

process becomes extremely time-consuming.  
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The local branching based solution method that is proposed in this study does not need to 

divide the planning horizon into stages as the sequential method.  It uses the CPLEX solver as a 

black-box „tactical‟ tool for exploring suitable solution subspaces controlled by an external 

branching framework. By comparing with the previously proposed sequential method, the 

advantage of the local branching based method lies in its independence on the stage divisions 

along the time dimension. Thus the local branching based method can also apply to the problem 

with homogeneous periodicities.  

Moreover, the local branching based method is superior to the previously proposed sequential 

method when solving the problem with homogeneous periodicities. The reason is as follows. We 

borrow the idea of the sequential method and designed a method based on the sequence of 

„vessel-period‟ pairs (described in Section 5.1) for generating an initial solution for the local 

branching based method. Therefore, the solution obtained by the new method is surely not worse 

than the sequential method. Because this paper‟s topic focuses on the problem with 

heterogeneous periodicities, we have not showed the experimental results that compare the two 

methods for solving the problem with homogeneous periodicities so as to demonstrate the 

outperformance of the proposed method. 

7. Conclusions 

This paper studies the yard template planning problem for arriving vessels, which visit the port 

periodically, e.g., weekly, biweekly, every ten days. A mixed integer programming model is 

proposed for this problem. In addition, a local branching based solution method and a PSO based 

solution method are developed for solving the model. Numerical experiments are also conducted 

to validate the effectiveness of the proposed model, which can save around 24% of the 

transportation costs of yard trucks in comparison with the commonly used FCFS decision rule. 

Moreover, the numerical experiment also shows that the proposed local branching method can 

obtain near optimal solutions within a much shorter time than the CPLEX solver. The gap from 

the optimal objective value is only 0.09% on average. In addition, the proposed PSO solution 

method outperforms the widely used GA based solution method, and can not only solve the 

proposed model within a reasonable time but can also obtain near-optimal results, with only 

about 1.73% relative gap from the lower bound. The contribution this study makes is mainly in 

regard to the following three aspects: 
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(1) Most previous yard template related studies do not consider the multiple periods of the 

planning horizon, which is especially important because the cycle time of the vessels‟ 

periodicities is not uniform among them. This paper makes an explorative study into this area, 

and proposes a model for the multi-period yard template planning problem that takes account of 

the heterogeneous periodicities of vessels. 

(2) Yard traffic congestion factors are usually ignored in many yard management studies. The 

proposed model in this study contains particular constraints that minimize or avoid this yard 

truck congestion phenomenon, which has become an important factor that limits the performance 

of a container terminal. 

(3) For solving the proposed integer programming model under large-scale problem cases, this 

study develops two solution methods, based on local branching and the PSO. Their efficiency is 

validated by several numerical experiments on real world like instances. 

However, there are limitations for the current models. The objective of the models (i.e., to 

minimize the cost of transportation between subblocks and berths) mainly considers laden trips, 

but does not take account of all the empty trips occurring in a real-world environment. In 

addition, as more and more maritime logistic related studies consider uncertain issues, the 

models in this paper can then be extended to consider these uncertain factors, such as stochastic 

arrival time, operation time, and berthing positions of vessels. These limitations will form the 

research directions for our future studies. 

Appendices 

Appendix A. Proof of Proposition 1 

Proposition 1: Finding an optimal solution for model 𝛭_1 is strongly NP-hard. 

Proof: We can prove the proposition by a reduction to the problem from the maximum 

independent set problem, which is well-known to be strongly NP-complete. Given an undirected 

graph 𝐺 =  𝑉, 𝐸  with the vertex set 𝑉 =  1,2, ⋯ , 𝑛  and the edge set 𝐸 , the maximum 

independent set problem is to find an independent set of size greater than or equal to 𝑚, i.e., to 

find a subset 𝑆 of 𝑉 with  𝑆 ≥ 𝑚 such that no pairs of vertices 𝑢 and 𝑣 in 𝑆 are joined by 

an edge in 𝐸.  
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Given any instance of the maximum independent set problem, consider the following instance 

of the problem, where there is only one vessel that requires 𝑚 subblocks of the yard at period 1. 

The yard has 𝑛 subblocks, and for each pair of subblocks, 𝑢 and 𝑣, they cannot be assigned to 

the vessel during the same time period if, and only if  𝑢, 𝑣  is in 𝐸. It can be seen that the yard 

planning problem has a feasible solution if and only if 𝐺 has an independent set of size greater 

than 𝑚 . Therefore, finding an optimal solution to the yard planning problem is strongly 

NP-hard. ■ 

Appendix B. Proof of Proposition 2 

Proposition 2: If there exist feasible solutions for model 𝛭_2, there are more than one 

optimal solutions (optimal yard templates). 

Proof: As shown in Figure 1, a yard template contains blocks, which can be further divided 

into subblocks. Above the level of block, there is another concept, namely „block section‟ (or big 

block), which is also widely used in real-world yard management (Lee et al., 2006; Han et al., 

2008). A block section is composed of one or two blocks that share the same horizontal lane. An 

illustration of the „block section‟ concept is shown in Figure A. 

 
Figure A: An example of block sections in a yard template 

For the subblocks in a block section, any change in their assignment to a particular vessel will 

not affect the final objective value. For the example in Figure A, Subblock K22 is assigned to 

Vessel 𝑖, and Subblock K24 is assigned to Vessel 𝑖′. If we exchange them, then K22 is assigned 

to 𝑖′, and K24 is assigned to 𝑖. However, the objective values of both of the two vessels will not 

change. For Vessel 𝑖, the numbers of both the unloaded and loaded containers going through this 

lane are the same as in the previous case, i.e., „( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑟𝑖,𝑝‟. For Vessel 𝑖, the length of the 

loading route decreases by „2𝐿‟, and the length of the unloading route increases by „2𝐿‟, 𝐿 

being the length of a subblock. According to the definition of the model‟s objective, i.e., the sum 
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of the containers multiplied by their travel distance, the reassignment of subblocks to a vessel 

within a block section has no effect on the final objective value.  

Another important issue also needs clarifying. This issue concerns the fact that reassigning 

subblocks to a vessel within a block section also has no influence on the constraints. The reason 

is that model 𝛭_2 assumes that any containers for transshipping to a vessel are equally 

distributed within the subblocks reserved for that vessel. This policy results in the fact that, no 

matter where they are stored in the subblocks reserved for a vessel, the number of containers 

actually totals the same. Therefore, any reassignment has no influence on the constraints. 

As the reassignment of subblocks to a vessel within a block section will not affect either the 

objective value or the constraints, we can conclude that there exists more than one optimal 

solution (optimal yard template) for model 𝛭_2. ■ 

Appendix C. Proof of Proposition 3 

Proposition 3: An optimal yard template for model 𝛭_2 has the following properties: (1) At 

least one subblock in the block that is nearest to the berthing position of Vessel 𝑖𝑚𝑎𝑥  is assigned 

to Vessel 𝑖𝑚𝑎𝑥  for its Period 𝑝𝑚𝑎𝑥 . (2) At least one subblock in the block section being used, 

and which is the furthest from the berthing position of Vessel 𝑖𝑚𝑖𝑛 , is assigned to Vessel 𝑖𝑚𝑖𝑛  

for its Period 𝑝𝑚𝑖𝑛 . Here (𝑖𝑚𝑎𝑥 , 𝑝𝑚𝑎𝑥 ) = arg max ∀ 𝑖 ,𝑝 ,𝑖∈𝑉,𝑝∈𝔼𝑖 {( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖 ,𝑝} ,  

(𝑖𝑚𝑖𝑛 , 𝑝𝑚𝑖𝑛 ) = arg min ∀ 𝑖 ,𝑝 ,𝑖∈𝑉 ,𝑝∈𝔼𝑖 {( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝}. 

Proof: We prove property (1) by two steps. Each block‟s position in a yard template has two 

dimensional coordinates; one is the vertical dimension, and the other is the horizontal dimension.  

The first step is in the vertical dimension. We prove that at least one subblock in the block row 

that is nearest to the quay side is assigned to Vessel 𝑖𝑚𝑎𝑥  for its Period 𝑝𝑚𝑎𝑥 . We prove it by 

contradiction. Suppose that in an optimal yard template, none of the subblocks in the row that is 

nearest to the quay side is assigned to Vessel 𝑖𝑚𝑎𝑥 . Using the example in Figure 1, if Subblock 

K25 is assigned to Vessel 𝑖𝑚𝑎𝑥  and Subblock K65 is assigned to Vessel 𝑖, then we exchange 

their assignments: K65 is assigned to Vessel 𝑖𝑚𝑎𝑥  and K25 is assigned to Vessel 𝑖. The 

objective value related to Vessel 𝑖 increases by 2W( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝 ; while the objective value 

related to Vessel 𝑖𝑚𝑎𝑥  decreases by 2W( 𝑛𝑗 ,𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥𝑗∈𝑉 )/𝑞𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥
. Here 𝑊 is the distance 

between two parallel adjacent passing lanes in the horizontal dimension. As 
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2W( 𝑛𝑗 ,𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥𝑗∈𝑉 )/𝑞𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥
>2W( 𝑛𝑗 ,𝑖,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝 , the final objective value will decrease, 

which contradicts the fact that the given solution is optimal. 

The second step is in the horizontal dimension. In the row of subblocks that is next to the quay 

side, we define 𝑥 as the horizontal position of the subblock assigned to Vessel 𝑖, and 𝑠𝑖  as the 

berthing position favored by Vessel 𝑖. 𝑠𝑖1
′ , ⋯, 𝑠𝑖𝑚

′ , ⋯, 𝑠𝑖𝑀
′  are the berthing positions favored 

by Vessel 𝑖1
′ , ⋯, 𝑖𝑚

′ , ⋯, 𝑖𝑀
′ , respectively. These vessels all transship containers to Vessel 𝑖. 

The objective value related to the subblock assignment for Vessel 𝑖  is proportional to 

𝑓 𝑥 = ( 𝑛𝑖𝑚
′ ,𝑖

𝑀
𝑚=1 ) ∙  𝑥 − 𝑠𝑖 +  {𝑛𝑖𝑚

′ ,𝑖 ∙  𝑥 − 𝑠𝑖𝑚
′  }𝑀

𝑚=1 . It is easy to prove that when 𝑥 = 𝑠𝑖 , 

𝑓 𝑥  reaches its minimum value. This means that the berthing position of a vessel affects the 

decision on its subblock assignments, from which it is easy to see that not all vessels can have 

their favorite subblocks allocated to them. However, Vessel 𝑖𝑚𝑎𝑥  can always be allocated with 

its favorite subblock, as stated in property (1). Following is the proof of the above statement by 

contradiction.  

Suppose that in an optimal yard template, none of the subblocks in the block that is nearest to 

the berthing position of Vessel 𝑖𝑚𝑎𝑥  is assigned to Vessel 𝑖𝑚𝑎𝑥  for its Period 𝑝𝑚𝑎𝑥 . We use 

𝑠𝑖𝑚𝑎𝑥
 to denote Vessel 𝑖𝑚𝑎𝑥 ‟s favourite subblock, but this subblock is already assigned to 

another Vessel 𝑖. A subblock in location 𝑥 is assigned to Vessel 𝑖𝑚𝑎𝑥 . Without loss of the 

generality, we assume 𝑥 > 𝑠𝑖𝑚𝑎𝑥
, which means that position 𝑥 is on the right of position 𝑠𝑖𝑚𝑎𝑥

 

along the horizontal axis. We exchange the subblock assignment for the two vessels. 𝑠𝑖𝑚𝑎𝑥
 is 

assigned to Vessel 𝑖𝑚𝑎𝑥 , and 𝑥 is assigned to Vessel 𝑖. Case 1: If 𝑥 is the best position for 

Vessel 𝑖, obviously this exchange will surely decrease the objective value, which contradicts the 

fact that the given solution is optimal. Case 2: If 𝑥 is the worst position for Vessel 𝑖, which 

implies that the berthing position of Vessel 𝑖 is on the left of position 𝑠𝑖𝑚𝑎𝑥
, the objective value 

of Vessel 𝑖 increases by (𝑥 − 𝑠𝑖𝑚𝑎𝑥
) ∙ ( 𝑛𝑗 ,𝑖 ,𝑝𝑗∈𝑉 )/𝑞𝑖 ,𝑝 , and the objective value of Vessel 𝑖𝑚𝑎𝑥  

decreases by (𝑥 − 𝑠𝑖𝑚𝑎𝑥
) ∙ ( 𝑛𝑗 ,𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥𝑗∈𝑉 )/𝑞𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥

. As ( 𝑛𝑗 ,𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥𝑗∈𝑉 )/𝑞𝑖𝑚𝑎𝑥 ,𝑝𝑚𝑎𝑥
 > 

( 𝑛𝑗 ,𝑖,𝑝𝑗∈𝑉 )/𝑞𝑖,𝑝  the final objective value will decrease, which also contradicts the fact that the 

given solution is optimal. Case 3: If 𝑥 is between the worst position and the best position, this is 

also easy to prove. 
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Similar to the above proof of property (1) by contradiction, we can also prove the property (2) 

that there is at least one subblock in the block section used that is furthest from the berthing 

position of Vessel 𝑖𝑚𝑖𝑛 . This subblock is assigned to Vessel 𝑖𝑚𝑖𝑛  for its Period 𝑝𝑚𝑖𝑛 . ■ 

Appendix D. The sub-procedure 𝐴𝑑𝑗𝑢𝑠𝑡(𝑚) in the PSO based method 

The sub-procedure 𝑨𝒅𝒋𝒖𝒔𝒕(𝑚) 

Initialize all the variable 𝑋𝑚𝑖𝑘𝑝  as zero  

For all the 𝑖,  𝑖 ∈ 𝑉 

  For all the 𝑝, 𝐸𝑝
𝑖 ∈ 𝔼𝑖  

     Define a set 𝐾𝑖𝑝   // This set is used to avoid assigning a subblock to several vessels in a time step 

     If 𝑖 = 1 Then 

          𝐾𝑖𝑝 = ∅ 

     Else 

          𝐾𝑖𝑝 =   𝑘  𝑌𝑚𝑖 1𝑘𝑝1

𝑛 = 1, 𝑖1 ∈  1, … , 𝑖 − 1 , 𝑘 ∈ 𝐾, 𝐸𝑝
𝑖 ∩ 𝐸𝑝1

𝑖1  ≠ ∅, 𝐸𝑝1

𝑖1 ∈ 𝔼𝑖1  

     End If 

For all the 𝑘,  𝑘 ∈ 𝐾 

If 𝑌𝑚𝑖𝑘𝑝
𝑛 = 1 and 𝑘 ∈  𝐾𝑖𝑝  Then 

𝑌𝑚𝑖𝑘𝑝
𝑛 = 0  

End If 

If 𝑌𝑚𝑖𝑘𝑝
𝑛 = 1 and 𝑘 ∈  𝐾 − 𝑄𝑖  Then 

𝑌𝑚𝑖𝑘𝑝
𝑛 = 0  // According to Constraint (4) 

End If 

End For 

Sum up all the subblocks assigned to Vessel 𝑖 in Period 𝑝, the total number is 𝑇𝑜𝑡𝑎𝑙𝑖𝑝  

If 𝑇𝑜𝑡𝑎𝑙𝑖𝑝 < 𝑞𝑖𝑝  Then 

For all 𝑘 ∈ 𝑄𝑖  and 𝑘 ∉  𝐾𝑖𝑝 , sort them by the decreasing order of  𝑆 𝑣𝑚𝑖𝑘𝑝
𝑛   , and then set        

𝑌𝑚𝑖𝑘𝑝
𝑛 = 1 until  𝑇𝑜𝑡𝑎𝑙𝑖𝑝 = 𝑞𝑖𝑝       // According to Constraint (3) 

End If   

If 𝑇𝑜𝑡𝑎𝑙𝑖𝑝 > 𝑞𝑖𝑝  Then 

For all 𝑘 ∈ 𝑄𝑖  and 𝑘 ∉  𝐾𝑖𝑝 , sort them by the inceasing order of  𝑆 𝑣𝑚𝑖𝑘𝑝
𝑛   , and then set        

𝑌𝑚𝑖𝑘𝑝
𝑛 = 0 until  𝑇𝑜𝑡𝑎𝑙𝑖𝑝 = 𝑞𝑖𝑝       // According to Constraint (3) 

End If  

Calculate  𝑋𝑖𝑘𝑡
𝑚  according to 𝑌𝑚𝑖𝑘𝑝

𝑛  

For all 𝑡 ∈ 𝑇, 𝑆𝑟 ∈ 𝕊, 𝐵𝑔 ∈ 𝔹 

If   𝑙𝑖1𝑡𝑖1∈{1,..𝑖}𝒌∈𝑆𝑟
𝑥𝑖1𝑘𝑡 > 1 or   𝑙𝑖1𝑡𝑖1∈{1,..𝑖}𝒌∈𝐵𝑔

𝑥𝑖1𝑘𝑡 > 1 Then  

As to Vessel 𝑖, unassign the subblocks that disobey the constraints, and assign the 

subblocks that are randomly chosen from the set  𝑘 𝑘 ∈ 𝑄𝑖  and 𝑘 ∉  𝐾𝑖𝑝   to the 

vessel. Repeat this process until Constraints (5) and (6) hold. 

End If 

End For 

End For 
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