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Abstract—This paper introduces an analysis of lightning 

surge propagation on a conductor without any returning current 
path. The conductor can be either a free-space or grounded 
conductor as long as the reflected surge from the ground has not 
arrived. Unlike a TEM transmission line, this conductor is 
characterized with time/position-variant surge impedance as 
surge current attenuates during its propagation. In this paper a 
simplified formula was derived. Using the unique parameter – 
attenuation coefficient of current, an iterative method was 
developed to evaluate actual propagation characteristics. This 
method was verified numerically, and is much more efficient in 
calculation and easier in implementation. It is found that the 
surge impedance is affected by the waveform of an impulse 
current source, but is independent of the slope of a ramp current 
source.  It increases quickly if the source current has a short 
rising time or failing time. The simplified formula generates 
over-estimated results, but the difference decreases with 
increasing distance to the source. The proposed method can be 
used to address surge voltage on the tower upon the arrival of a 
reflected surge from the ground.  

Keywords-lightning; surge; impedance; propagation; vertical 
conductor 

I.  INTRODUCTION 
Surge propagation on vertical structures above the ground 

is a long standing issue in lightning surge analysis. This is 
particularly important in predicting lightning overvoltage on 
electrical power systems as well as providing reference 
information for surge protection design. In the past decades, a 
number of experimental and theoretical studies have been 
carried out to investigate surge impedance [1-15] and the 
corresponding current attenuation phenomenon [16-19]. 
These studies provided useful information for researches and 
engineers in understanding surge propagation behaviors along 
vertical structures and designing effective lightning 
protection.  

The investigations into surge impedance have been carried 
out for a long time. In 1934, Jordan in [1] proposed the first 
theoretical equation based on the Neumann inductance 
equation. After that, several surge impedance equations were 
proposed using the field theory [2-4]. These equations all 
assume that the vertical conductor is a cylinder or an 
equivalent cylinder, and the surge propagation speed is 
assumed to be the same as the velocity of light. In these 
equations, surge impedance is expressed as a function of 
conductor height and radius, and is a time-invariant constant. 

The authors in [5] took the influence of a return stroke into 
consideration and developed corresponding equations of 
surge impedance. The surge impedance is not only affected by 
the height and radius, but also affected by the route of the 
current lead wire and the position of the current source. In 
these studies, the current attenuation in surge propagation was 
not taken into account. The author in [6] analyzed surge 
current in a dipole antenna fed with a unit step voltage.  This 
configuration is similar to those discussed in [5]. Again 
current attenuation on the line was not taken into account. 
Numerical methods are also available to study lightning 
surges on the vertical structures. These includes Method of 
Moment [7-8], partial element equivalent circuit (PEEC) [9-
11,21], finite-difference finite-time method [17]. Except the 
PEEC method, other methods are generally applicable to the 
surge current analysis only. 

Though it is known that further analysis on surge behavior 
on vertical conductors needs time-variant surge impedance 
expressions [10-12], the question of “how to define surge 
impedance” obstructs the understanding of this problem. 
Authors in [10] quoted some definitions of surge impedance 
in the time domain as below; 
• Transient surge impedance defined by voltage ( )v t and 

current ( )i t  at the top of a conductor: 

 ( )( )
( )

v tz t
i t

=  (1) 

• Surge impedance defined by voltage ( )v t  and current of 
a single value: 

( )( )
max[ ( )]

v tz t
i t

=  (2) 

where the current is of either a step wave or a ramp wave. 
Furthermore, the voltage in the equations above can be 

defined differently, such as: 
• Line integral of electric field from the ground to the top 

of a conductor. 
• Potential difference between the top and bottom of a 

conductor. 
• Measured value from the top of a conductor to a point 

far enough on the ground surface. 
In this paper, definition of surge impedance given in (1) is 

adopted. Voltage is defined as the potential with reference to 
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a point at infinity. Quasi-static definition of voltage (line 
integral of electric field) is not adequate in addressing surge 
propagation as the inductive effect is not taken into account. 
A comparison with quasi-static voltage was addressed in [12]. 

An important issue associated with the surge impedance is 
the attenuation of surge current along the conductor. This 
phenomenon was observed in both experimental and 
numerical results of the surge propagation on perfect vertical 
conductors, especially near the source region [17-20]. A 
“scatter theory” was proposed by authors in [17] to explain the 
current attenuation. The surge associated with an 
electromagnetic wave in a non-zero thickness vertical 
conductor does not transmit in TEM mode. The attenuation 
can be attributed to the “scattered waves” generated during its 
propagation. Authors in [18] provided experimental results for 
this analysis. Though the surge current on the vertical 
conductor encounters great attenuation and distortion, the 
propagating voltage waveform keeps unchanged on the 
condition that the electromagnetic wave propagates [19].  

This paper presents a further investigation into lightning 
surge propagation along a single conductor without any 
returning current path. This conductor can be either a free-
space conductor or a grounded conductor as long as the 
reflected surge from the ground has not arrived. Two issues 
are addressed, that is, time- and position-dependence of both 
current attenuation and surge impedance. Surge impedance of 
a single conductor without considering current attenuation is 
discussed first. The influence of an upward lead wire 
representing the return stroke current path is taken into 
consideration. Attenuation of surge current on the conductor 
is then addressed, as well as the impact on surge impedance. 
An efficient iterative algorithm is presented for the evaluation 
of both surge impedance and current attenuation on a free-
space conductor. The proposed method is validated with the 
simulation results obtained from the PEEC method. Finally a 
discussion of surge impedance against source current 
waveforms is provided.  

II. SURGE IMPEDANCE WITHOUT CONSIDERING CURRENT 
ATTENUATION 

When a surge current source is placed in series between 
two conductor segments, surges will be generated and 
propagate upwards and downwards. Fig. 1(a) shows a 
simplified configuration for surge propagation on a vertical 
line above the ground. These surges have the same current 
values at Point X due to the current continuity. This 
configuration is similar to that of a vertical grounded structure 
struck by lightning.  The return stroke can be viewed as a 
lumped current source placed between the grounded 
conductor and the lead wire when the current and voltage on 
the grounded object are of concern. The return stroke current 
propagates upwards along the lead wire and the discharge 
current propagates downwards to the ground. 

Note that the ground has no effect on the surge 
propagation if the reflected surge from the ground has not 
arrived. Without loss of generality, a single conductor with 
neither the ground nor a returning current path is then 

analyzed in this paper. As shown in Fig. 1(b) this conductor is 
separated into two segments at Point X: upper and lower 
segments carrying surges propagating in opposite directions. 

A. Surge voltage on a single conductor 
According to Maxwell equations, electric scalar potential 

φ at point z on a conductor (Fig. 1(b)) can be expressed by 
magnetic vector potential 𝐴𝐴𝑧𝑧  and electric field 𝐸𝐸𝑧𝑧  in the z 
direction, as follows; 

0

( , )( , ) ( ,

( '

)

, / )
( , ) '

4

z

z

zA z tz t E z t
z t

I l t R c
A z t dl

R
µ

π

φ

−

∂∂
= − −

∂ ∂

∫=
 (3) 

where 𝐼𝐼(𝑙𝑙′, 𝑡𝑡 − 𝑅𝑅/𝑐𝑐)  is a retarded surge current on the 
conductor, and is equal to zero when 𝑡𝑡 < 𝑅𝑅/𝑐𝑐. Both c and R 
are respectively the velocity of an electromagnetic wave in 
free space and the distance between the source-current point 
and observation point. On a perfect conductor electric field 𝐸𝐸𝑧𝑧 
in (3) is identically zero. As the resistance on a lossy 
conductor can be added into the surge impedance as a separate 
item [9], the lossy wire is not discussed in this paper. 

Throughout this paper, potential ( , )z tφ  in (3) is selected 
to be the voltage for addressing surge propagation on the 
conductor. This voltage is determined by conductor 
geometry, observation position and time, and is not affected 
by the path selected for the evaluation. 
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(a) (b) 

Fig. 1 Configuration of a vertical line over the ground 
(a) Vertical conductor over the ground 

(b) Single line in free space 

Assume that the surge current does not attenuate during its 
propagation. Voltage ( , )z tφ  at position z and time t on a 
conductor of radius r is given by 

( )
0 2

2 22

(0, )
( , )

4

l ctct

l ctz

l l l
I t

c cz t dl dl
t l l r

µ
φ

π

+

−

′ ′−
− −∂ ′= ⋅

∂ ′− +
∫ ∫          (4) 

where 𝐼𝐼(0, 𝑡𝑡) is the source current at Point X. The derivation 
of (4) is given in Appendix A.  
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B. Surge impedance of a single conductor 
Assume that the source current has a ramp waveform 

expressed by𝐾𝐾𝑡𝑡 . Voltage in (4) can be then evaluated 
analytically. Note that a return stroke current could be 
approximated by a series of ramp currents with different time 
delay. By using the definition of transient surge impedance 
given in (1) with the voltage given in (4), surge impedance at 
point z is obtained, 

( ) 0, ln 1 ln 2
2

ln

c ct z ctZ z t ct
r ct z

ct z rct z
ct z ct z

µ
π
 −

= − +
−

+ − + + − − 

 (5) 

for 𝑡𝑡 ≥ 𝑧𝑧/𝑐𝑐. Note that slope 𝐾𝐾 of a ramp current is constant, 
and has been cancelled out in (5). Surge impedance of a 
single conductor is then independent of the ramp slope. It is 
determined by time 𝑡𝑡  and positon 𝑧𝑧  as well as conductor 
radius 𝑟𝑟. At Point X (𝑧𝑧 = 0), surge impedance of the vertical 
conductor reduces to 

2(0, ) 60 ln 1ctZ t
r

 = − 
 

 (6) 

Fig. 2 shows time-domain curves of surge impedance at 
different positions on a conductor with the radius of 5mm.  
For comparison, the time delay of each curve in the figure is 
removed. It is noted that that surge impedance increases with 
time, but the changing rate becomes small as time goes on. 
The surge impedance increases as well when the distance to 
the source point is increased. However, the change of surge 
impedance will be small if the observation point is away from 
the source.   

 
Fig.2 Surge impedance on a single conductor with the radius of 5mm 

Analytic formulas of surge impedance have been derived 
in the literature by using different approaches. These 
formulas are normally used to estimate the surge at the top of 
a grounded conductor just before a reflected surge from the 
ground reaches the top of the conductor. Table 1 shows some 
of the surge impedance formulas together with the proposed 
formula of (6). It is noted that these expressions are very 
similar. Only the coefficients or the constants of the formulas 
are different. The difference might be caused by; (a) the 
upward lead wire is not taken into account, or (b) a step 
function is adopted for the current source. Note that the 

revised Jordan’s expression [16] is the same as the proposed 
formula when 𝑡𝑡 = 2𝐻𝐻/𝑐𝑐 . However, the revised Jordan’s 
expression was derived with the following assumptions:  
• The effect of the conductor image is considered; 
• The effect of the upward lead wire is not considered. 

Table 1 Analytic formulas of surge impedance for a vertical conductor 
with height H and radius r above the ground 

Revised Jordan’s formula [16] 𝑍𝑍 = 60 ln(4𝐻𝐻/𝑟𝑟) − 60 
Wagner’s formula [3] 𝑍𝑍 = 60 ln�2√2𝐻𝐻/𝑟𝑟� 
Sargent’s formula [4] 𝑍𝑍 = 60 ln(√2𝐻𝐻/𝑟𝑟) − 60 
CIGRE formula [22] 𝑍𝑍 = 60 ln [cot[0.5𝑡𝑡𝑡𝑡𝑡𝑡−1(𝑟𝑟/𝐻𝐻)]]  
Proposed formula (6) 𝑍𝑍 = 60 ln(4𝐻𝐻/𝑟𝑟) − 60 

III. CHARACTERISTICS OF SURGES WITH CURRENT 
ATTENUATION BEING CONSIDERED 

Surge propagation on a free-space single conductor 
excited by a ramp current source is investigated numerically 
with the PEEC method. The cylindrical conductor has the 
radius of 5mm, and the length of 150m in both upper and 
lower segments, as shown in Fig. 1(b). It is connected to the 
perfect ground at the lower end, and to a ramp current source 
of 𝐾𝐾𝑡𝑡 (𝐾𝐾 = 5𝑘𝑘𝐴𝐴/µ𝑠𝑠)  at Point X on the conductor. In the 
PEEC method, wires are divided into short elements which are 
represented by coupled lumped-parameter circuit components. 
In this model the conductor is equally divided into 2500 
elements. Surge voltage and current in the coupled network 
are analyzed using a circuit approach. Both surge current and 
voltage are calculated in the frequency domain. The time 
domain solution is obtained using an inverse Fourier 
Transform technique (ifft). 

A. Surge current on the conductor 
Fig. 3 shows time-domain curves of the surge current at 

different positions along the conductor. In the figure the time 
delay of individual current curves is removed. As the reflected 
surge is not an issue of concern in this paper, all the curves are 
padded with zeros when a reflected surge from the ground or 
a discontinuity arrives. This is for easy identification of curves 
at different locations. It is found in the figure that the surge 
current attenuates or the slope of its waveform decreases with 
increasing distance to the observation point. The change, 
however, becomes less at a farther position.  

Attenuation coefficient of surge current 𝑝𝑝(𝑧𝑧, 𝑡𝑡)  is 
introduced in this paper for surge evaluation. It is defined by 
a ratio of the current 𝐼𝐼  with propagation attenuation to the 
current 𝐼𝐼′ without propagation attenuation, as follows: 

0

(z, )( , )
( , )

( , )
( / )

I tp z t
I z t

I z t
I t z c

=
′

=
−

 (7) 

for 𝑡𝑡 ≥ 𝑧𝑧/𝑐𝑐. Attenuation coefficient of the surge current is 
affected by conductor radius as well. Fig. 4 shows time-
domain curves of attenuation coefficient at different positions 
for two conductor radii. The time delay of each curve is 
removed. It is found that current attenuation is significant in 
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the early time period, and becomes small when time goes on. 
Current attenuation is significant as well as near the source 
point. It is also found that attenuation coefficient approaches 
one when the radius becomes small.  

 
Fig. 3 Current curves on the lower segment with time delay being removed 

 
Fig. 4 Attenuation coefficient 𝑝𝑝(𝑧𝑧, 𝑡𝑡) of surge current at z=18m and 30m 

with conductor radius r=5mm and 10mm 

B. Surge voltage on the conductor 
Fig. 5 shows the curves of the surge voltage at different 

positions along the conductor. The time delay of individual 
voltage curves is removed again, and each curve is padded 
with zeros when a reflected surge comes back from the ground. 
It is found that the voltage curves at different positions on the 
conductor match very well. This indicates that there is no 
voltage attenuation during its propagation. This phenomenon 
can be explained theoretically using the wave propagation 
equation. The detail is given in Appendix B. 

As the surge voltage does not attenuate during its 
propagation along the conductor, an equation can be 
established between current attenuation and surge impedance. 
Note that at any point on the conductor voltage can be 
expressed by 

(z, ) ( , ) ( , )t I z t Z z tφ = ⋅ , (8) 
and voltage φ remains the same everywhere on the conductor. 
The relationship of surge currents 𝐼𝐼0(𝑡𝑡) and 𝐼𝐼(z,t) at Point X 
and position z is given by 

0

( , ) (0, / )( , )
( / ) ( , )
I z t Z t z cp z t

I t z c Z z t
−

= =
−

. (9) 

for 𝑡𝑡 ≥ 𝑧𝑧/𝑐𝑐. 

 
Fig. 5 Voltage curves on the lower segment with time delay being removed. 

IV. ALGORITHM FOR SURGE IMPEDANCE AND CURRENT 
EVALUATION  

An iterative method is presented in this section for the 
evaluation of surge propagation on a free-space single 
conductor. This procedure does not request a detailed 
knowledge of circuit modeling. With the information of 
conductor geometry and current source, surge current, voltage 
and impedance can be obtained directly. Two particular 
requirements imposed in Section II are relaxed, that is, (1) the 
source current waveform can be arbitrary and (2) the surge 
current attenuates during its propagation. 

Assume source current 𝐼𝐼0(𝑡𝑡) at Point X is already given, 
and attenuation coefficient 𝑝𝑝(𝑧𝑧, 𝑡𝑡)  are known. Let discrete 
values 𝑧𝑧𝑖𝑖 = 𝑖𝑖∆𝑧𝑧 , and 𝑡𝑡𝑗𝑗 = 𝑗𝑗∆𝑡𝑡  (position index 𝑖𝑖  and time 
index 𝑗𝑗 = 0, … ,𝑁𝑁 ) and ∆𝑧𝑧 = 𝑐𝑐∆𝑡𝑡 .  With the results in 
Appendix A, discrete potential 𝐴𝐴𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑧𝑧(𝑧𝑧𝑖𝑖 , 𝑡𝑡𝑗𝑗) is expressed 
by 

0 2
, 2 2

2 1

( , )
4 ( ')

i j

i j

z ct
i

z cti j

i

I l t z l c
A dl

z l r

µ
π

+

−

′ ′− −
′=

− +
∫  (10) 

where 𝑐𝑐𝑡𝑡𝑗𝑗 > 𝑧𝑧𝑖𝑖. 𝑟𝑟1 is the radius of the conductor. To evaluate 
(10), the interval of 𝑙𝑙′ is divided into three sub-segments, that 
is, [0.5(𝑧𝑧𝑖𝑖 − 𝑐𝑐𝑡𝑡𝑗𝑗) , 0], [0, 𝑧𝑧𝑖𝑖 ] and [𝑧𝑧𝑖𝑖 , 0.5(𝑧𝑧𝑖𝑖 + 𝑐𝑐𝑡𝑡𝑗𝑗)  ]. By 
replacing 𝑑𝑑𝑙𝑙′ = −𝑑𝑑𝑙𝑙′  in the first interval of [0.5(𝑧𝑧𝑖𝑖 − 𝑐𝑐𝑡𝑡𝑗𝑗) , 
0], vector potential 𝐴𝐴𝑖𝑖,𝑗𝑗 turns to 
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It is noted from (7) that 𝐼𝐼(𝑙𝑙′, 𝑡𝑡)  can be expressed with source 
current 𝐼𝐼0  and attenuation coefficient𝑝𝑝(𝑙𝑙′, 𝑡𝑡) . Three surge 
currents in (11) are then expressed by  

0

( )/2

0, 2 ,
0

' 2 ' '
( ', ) ( ) ( ', )

( ')

i i i
j j j

j i

j i k k j i k k
k

z l z l z l
I l t I t p l t

c c c

I p U l
−

− + − −
=

+ − +
− = − × −

≈ × ×∑
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i i i
j j j
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j i k j i k k
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− −
− = − × −

≈ × ×∑
   (12) 
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0, 2 ,
0

' 2 ' '
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j j j
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j i k k j i k k
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l z l z l z
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where 𝐼𝐼0,𝑗𝑗 is the discrete source current at 𝑡𝑡 = 𝑡𝑡𝑗𝑗, and 𝑝𝑝𝑖𝑖,𝑗𝑗 is 
the discrete attenuation coefficient at 𝑧𝑧 = 𝑧𝑧𝑖𝑖  and 𝑡𝑡 = 𝑡𝑡𝑗𝑗 . In 
(12) pulse function 𝑈𝑈𝑘𝑘(𝑙𝑙′) is defined by 

1 ' ( 1)
( ')

0k

k z l k z
U l

otherwise
∆ ≤ < + ∆
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 (13) 
Substituting (12) in (11) yields 
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where function 𝑓𝑓1,𝑖𝑖(𝑘𝑘) is defined by  
( 1)0

1, 2 2
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and 𝑓𝑓2,𝑖𝑖(𝑘𝑘) is defined by 
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and reduces to 
2 2
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Note in Appendix B that vector potential propagates 
downwards without any attenuation, that is, 𝐴𝐴𝑖𝑖,𝑗𝑗 =
𝐴𝐴𝑖𝑖−𝑘𝑘,𝑗𝑗−𝑘𝑘  (𝑘𝑘 = 1, … ). If any difference of vector potential at 

different positions along the conductor is observed, 
attenuation coefficient 𝑝𝑝𝑖𝑖,𝑗𝑗  will be adjusted. The vector 
potential will be updated again.  

In the proposed algorithm, the following error of vector 
potential (𝐸𝐸𝑅𝑅𝑅𝑅(𝑚𝑚)) in the m-th iteration is checked 

( ) ( )
, 1 1( )

( )
0 0 ,

m mN N
i j i jm

m
i j i j

A A
ERR

A
+ +

= =

−
= ∑∑    (16)  

If 𝐸𝐸𝑅𝑅𝑅𝑅(𝑚𝑚)  is greater than a pre-set value, attenuation 
coefficient 𝑝𝑝𝑖𝑖+1,𝑗𝑗+1

(𝑚𝑚+1)  will be updated with 
( 1) ( 1) ( 1)

1, 1 , ,
m m m

i j i j i jp p p+ + +
+ + = ∆ +   (17) 

In (17) difference of attenuation coefficient ∆𝑝𝑝𝑖𝑖,𝑗𝑗
(𝑚𝑚+1)  is 

determined by 
( ) ( )
, 1, 1

( )
,( 1) ( )

, ,

m m
i j i j

m
i j

A A

Am m
i j i jp p e

β + +−
×

+∆ = ∆ ×    (18) 

where β is a damping coefficient. A minimum value of the 
damping coefficient could be set for fast convergence of the 
iterative method. Prior to the calculation with (17), a 
boundary condition has to be set, that is, 𝑝𝑝0,𝑗𝑗

(𝑚𝑚+1) = 1 for any 
j. This means that the current at Point X does not have any 
attenuation. After 𝑝𝑝𝑖𝑖,𝑗𝑗

(𝑚𝑚+1)is obtained, voltage 𝜙𝜙𝑖𝑖,𝑗𝑗
(𝑚𝑚+1) can be 

calculated using (B6). The flow chart of this iterative 
procedure is given in Fig. 6. 

V. SIMULATION RESULTS AND COMPARISONS 
Propagation characteristics of a surge on a free-space 

single conductor can be analyzed by applying the iterative 
method proposed in Section IV. This method has been coded 
on the MATLAB platform. With the source current and 
conductor radius, this MATLAB program returns attenuation 
coefficient of the surge current, as well as surge voltage, 
current and impedance at any time and any position along the 
conductor. 

A. Comparison with PEEC results 
A numerical comparison with the PEEC results has been 

made. The configuration of a conductor system for 
comparison is illustrated in Fig. 1(b). Both conductor and 
source parameters and are given in Section III, as well as 
PEEC simulation parameters. In the simulation with the 
proposed iterative method, both distance and time steps ∆𝑧𝑧 
and ∆𝑡𝑡 were selected to 1.5m and 5ns, respectively. It is noted 
that simulation time in a PC with i7-4790 CPU at 3.6GHz and 
16GB RAM is 27.5 sec. with the iterative method, and 3hr 
15min. with the PEEC method. 

Fig. 7 shows the surge current at z=30m on the conductor 
calculated with (1) the iterative method and (2) the PEEC 
method. It is noted that these two curves match very well. The 
average error is less than 1%. The source current at Point X 
is also presented in the figure for reference. Fig. 8 shows 
surge impedance at 𝑧𝑧 = 0𝑚𝑚  and 𝑧𝑧 = 30𝑚𝑚  calculated with 
these two methods. When the current attenuation is taken into 
consideration, the calculated impedance matches with the 
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PEEC result. The average difference between the calculated 
surge impedance and simulated one is 0.2% for the time 
greater than 0.2µs.  

start

Set initial step constants :
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Fig. 6 Iterative method for surge evaluation  

A relatively large difference of these curves is observed in 
the early time period in which the current is relatively small. 
This difference arises from using the frequency-domain PEEC 
method. Because both fft and ifft techniques are used to obtain 
the time-domain result, a small non-zero current is observed 
in the PEEC result even before the surge arrives. This leads to 
a relatively large error.  

For comparison, surge impedance calculated with the 
simplified formula (5) is presented in the figure as well. It is 
noted that there is a large difference between the results using 
the simplified formula and the iterative method. The surge 
impedance is generally over estimated if the theoretical 
formula is used, as the current attenuation is not taken into 
consideration.  

B. Surge impedance with arbitrary current waveforms 
It is noted in Section II that simplified surge impedance 

given in (6) is not affected by the slope of a ramp current 
source. It is then interesting to know whether the surge 
impedance is affected by source current waveform when the 
current attenuation is taken into account. Simulation of surge 
impedance with different current waveforms has been carried 
out using the proposed iterative method. Three groups of 
representative waveforms were selected for evaluation, that is, 
(1) ramp waveform, (2) impulse waveform for the 2nd stroke 
lightning return stroke current, and (3) impulse waveform 
with a slow decaying or rising rate.  

 
Fig. 7 Surge current on the vertical conductor under a ramp current source 

  
Fig. 8 Surge impedance on the vertical conductor under a ramp current 

source 

Fig. 9 shows all the waveforms used for a surge current 
injected at Point X. The front time of an impulse current varies 
from 0.25µs or 0.38µs, and the time to half-peak varies from 
1.7µs to 100µs approximately. The impulse current has a fixed 
magnitude of 10kA. The ramp current has a slope of either 
10kA/µs or 20kA/µs. Fig. 10 shows the curves of surge 
impedance under five different current waveforms. It is noted 
that the slope of a ramp current does not affect the surge 
impedance. This is the same as that observed from the 
simplified formula of (6). The surge impedance under an 
impulse current is, however, significantly different from that 
under a ramp current. The surge impedance generally varies 
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with the front time and the time to half-peak. It increases 
quickly if the front time is short, and remains the same if there 
is no difference in the tail. The surge impedance generally 
continues to increase no matter what waveform the tail has. 
The surge impedance will increases quickly if the time to half-
peak is short. Therefore, the surge impedance under a ramp 
current generally has a lower impedance than that under an 
impulse current.  

 
Fig. 9 Waveforms of a surge current propagating on the conductor 

 
Fig. 10 Surge impedance with different waveforms of a surge current  

Although surge impedance is not affected by the slope of 
a ramp function, it is indeed changed by the shape of the 
source current waveform, as seen in Fig. 10. This is because 
surge impedance of a standalone line is time-variant. Assume 
that the source current is made of two ramp functions 𝑅𝑅1(𝑡𝑡) 
and 𝑅𝑅2(𝑡𝑡)  applied at 𝑡𝑡 = 0  and 𝑡𝑡 = 𝑡𝑡1 respectively. Surge 
impedances at point 𝑧𝑧  associated with these two current 
components are then expressed by 𝑍𝑍(𝑧𝑧, 𝑡𝑡) and 𝑍𝑍(𝑧𝑧, 𝑡𝑡 − 𝑡𝑡1).  
The resultant impedance of the current source 𝑍𝑍𝑡𝑡(𝑧𝑧, 𝑡𝑡)  is 
given by 

1 1 2 1

1 2 1

( , ) ( ) ( , ) ( , ) ( ) ( , )
( , )

( ) ( , ) ( ) ( , )t
Z z t R t p z t Z z t t R t p z t tZ z t

R t p z t R t p z t t
+ − −

=
+ −

 

 (19) 
where 𝑝𝑝(𝑧𝑧, 𝑡𝑡) is the attenuation coefficient of surge current at 
position 𝑧𝑧. Generally 𝑍𝑍𝑡𝑡(𝑧𝑧, 𝑡𝑡) ≠ 𝑍𝑍(𝑧𝑧, 𝑡𝑡) as surge impedance 
varied with time. Impedance 𝑍𝑍𝑡𝑡(𝑧𝑧, 𝑡𝑡) will be equal to 𝑍𝑍(𝑧𝑧, 𝑡𝑡) 

only if 𝑍𝑍(𝑧𝑧, 𝑡𝑡)  does not vary with time, that is, 𝑍𝑍(𝑧𝑧, 𝑡𝑡) =
𝑍𝑍(𝑧𝑧, 𝑡𝑡−𝑡𝑡1). 

VI. CONCLUSION 

This paper addressed the propagation of a lightning surge 
along a single conductor without any returning current path. 
This conductor can be either a free-space conductor or a 
grounded conductor as long as the reflected surge from the 
ground has not arrived. Similar to a traditional transmission 
line, surge propagation can be characterized using surge 
impedance. This surge impedance, however, varies with time 
and position. A simplified formula of surge impedance was 
derived with the assumption of ramp current excitation and 
no current attenuation. By using the attenuation coefficient of 
current, a simple iterative method was then presented for the 
evaluation of surge propagation without these constraints. 
The iterative method was validated numerically using the 
PEEC method. It is much more efficient in calculation and 
easier in implementation. 

Unlike a traditional transmission line, a surge current 
attenuates during its propagation even on a lossless line while 
the surge voltage does not attenuate. The corresponding surge 
impedance varies with conductor radius, and is affected by 
surge current waveform. It is found that the surge impedance 
increases continuously with increasing time and distance 
from the source point, as long as the current source does not 
change its polarity. The surge impedance increases quickly if 
the surge current has a short rising time or failing time. 
Generally speaking, the surge impedance under a ramp 
current source is lower than that under an impulse current 
source. What is more, it does not vary with the slope of the 
ramp current. The surge impedance calculated with the 
simplified formula is normally higher than the actual value, 
as the attenuation of a current surge in its propagation is not 
taken into account. The proposed method can be used to 
address surge voltage on the top of a grounded tower or 
voltage between two points on the tower upon the arrival of 
a reflected surge from the ground. It could be extended to 
solve wave propagation problems for the lines associated 
with a discontinuity or the ground. 

REFERENCES 
[1] C. A. Jordan, "Lightning Computation for Transmission Line with 

Ground Wires," General Electric Review, vol. 34, 1934, pp. 180-185 
[2] R. Lundholm, R. B. Finn, W. S. Price, "Calculation of Transmission 

Line Lightning Voltages by Field Concepts," Power Apparatus and 
Systems, Part III. Transactions of the American Institute of Electrical 
Engineers, vol. 76, pp. 1271-1281, 1957. 

[3] C. F. Wagner and A. R. Hileman, "A New Approach to Calculation of 
Lightning Performance of Transmission Lines-Ii," Power Apparatus 
and Systems, Part III.” Transactions of the American Institute of 
Electrical Engineers, vol. 78, 1959, pp. 996-1020 

[4] M. A. Sargent and M. Darveniza, "Tower Surge Impedance," IEEE 
Trans. on PAS, vol. PAS-88, 1969, pp. 680-687 

[5] H. Motoyama and H. Matsubara, "Analytical and experimental study 
on surge response of transmission tower," IEEE Trans. on Power 
Delivery, vol. 15, 2000, pp. 812-819 

[6] K.C Chen, “Transient Response of an Infinite Cylindrical antenna,” 
IEEE Trans. on AP, vol. 31, no. 1, Jan. 1983, pp. 170-172 

0 0.5 1 1.5 2 2.5
0

4

8

12

16

20

t (µs)

cu
rr

en
t (

K
A

)

 

 
(1) 2nd stroke lightning current
(2) waveform with short tail
(3) waveform with long front
(4) ramp waveform (10kA/us)
(5) ramp waveform (20kA/us)

0 0.5 1 1.5 2 2.5
350

450

550

650

750

850

t (µs)

S
ur

ge
 im

pe
da

nc
e 

(O
hm

)

 

 

(1) 2nd lightning stroke current
(2) waveform with short tail 
(3) waveform with long front
(4) ramp waveform  (10kA/us)
(5) ramp waveform  (20kA/us)



8 

 

[7] R.K. Pokharel and M. Ishii, “Applications of Time-Domain numerical 
Electromagnetic Code to Lightning Surge Analysis,” IEEE Trans. on 
EMC, Vol 49 No. 3, August 2007, pp 623-631. 

[8] Y. Baba and M. Ishii, “Numerical Electromagnetic Field Analysis of 
Lightning Current in tall Structures,” IEEE Trans. on PWRD, Vol 16 
no. 2, April 2001, pp.324-328 

[9] P. Yutthagowith, A. Ametani, F. Rachidi, N. Nagaoka, Y. Baba, 
"Application of a partial element equivalent circuit method to lightning 
surge analyses," EPSR, Vol. 94, 2013, pp. 30–37 

[10] Y. Du, W. Xinghua, and C. Mingli, "Numerical investigation of 
transient surge impedance of a vertical conductor over a perfect 
ground," EPSR, vol. 94, 2013, pp. 106– 112  

[11] Xinghua Wang, Y. Du, Mingli Chen, Xiaohong Huang, "Surge 
behavior at the discontinuity of a vertical line over the ground, " EPSR, 
Vol. 113, 2014, pp. 129–133 

[12] Grcev and F. Rachidi, "On tower impedances for transient analysis," 
IEEE Trans. on Power Delivery, vol. 19, pp. 1238-1244, 2004. 

[13] G. D. Breuer, A. J. Schultz, R. H. Scholomann, W. S. Price, "Field 
Studies of the Surge Response of a 345-Kv Transmission Tower and 
Ground Wire," AIEE Trans. on PAS, Part III, vol. 76, 1957, pp. 1392-
1396 

[14] R. W. Caswell, I. B. Johnson, E. F. Koncel, N. R. Schultz, "Lightning 
Performance of 138-kV Twin-Circuit Transmission Lines of 
Commonwealth Edison Company - Operating Experience and Field 
Studies," AIEE Trans. on PAS, Part III, vol. 76, 1957, pp. 1480-1489 

[15] M. Kawai, "Studies of the Surge Response on a Transmission Line 
Tower," IEEE Trans. on PAS, vol. 83, 1964, pp. 30-34 

[16] A. De Conti, S. Viscaro, A. Soares, Jr. and M. Schroeder, “Revision, 
Extension, and Validation of Jordan’s Formula to Calculate the Surge 
Impedance of Vertical Conductors,” IEEE Trans. on EMC, Vol 48 no. 
3, August 2006, pp. 530-536 

[17] Y. Baba and V. A. Rakov, "On the mechanism of attenuation of current 
waves propagating along a vertical perfectly conducting Wire above 
ground: application to lightning," IEEE Trans. on EMC, vol. 47, 2005, 
pp. 521-532 

[18] A. Shoory, F. Vega, P. Yutthagowith, F. Rachidi, M. Rubinstein, Y. 
baba, V. A. Rakov, K. Sheshyekani, A. Ametani, "On the Mechanism 
of Current Pulse Propagation along Conical Structures: Application to 
Tall Towers Struck by Lightning," IEEE Trans. on EMC, vol. 2011, 
pp. 1-11 

[19] J. Takami, T. Tsuboi, S. Okabe, "Measured Distortion of Current 
Waves and Electrical Potentials with Propagation of a Spherical Surge 
in an Electromagnetic Field," IEEE Trans. on EMC, vol. 52, 2010, pp. 
753-756 

[20] C. Menemenlis and C. Zhu Tong, "Surge Propagation on Nonuniform 
Lines," IEEE Trans. on PAS, vol. PAS-101, 1982, pp. 833-839 

[21] Y. Du, Xinghua Wang and Mingli Chan, "Circuit Parameters of 
Vertical Wires above a Lossy Ground in PEEC Models," IEEE Trans. 
on EMC vol. 54 no. 4, 2012, pp. 871-879 

[22] “Guide to Procedures for Estimating the Lightning Performance of 
Transmission Lines,” CIGRE SC33-WGO1 Report, 1991 

APPENDIX A 

Applying (3) for the conductor given in Fig. 1(b) yields 
voltage ( , )z tφ at position z and time t, that is, 

0

0( , ) ( , ) ( , )
z

zz
z t z t A l t dl

t
φ φ ∂

− =
∂∫  (A1) 

where reference position z0 is selected in such a way that the 
surge has not arrived at that point yet, that is, 𝑧𝑧0 > 𝑐𝑐𝑡𝑡 . 
Therefore, voltage φ(𝑧𝑧0, 𝑡𝑡) is identically zero. Alternatively, 
z0 can be located at infinity to which a virtual wire is extended 
from the conductor.  

Note that two current surges propagate upwards and 
downwards on the conductor, respectively, as shown in Fig. 

1(c). Assume that at time t the two surges arrive at ct on the 
lower segment of the conductor, and –ct on the upward 
segment.  Voltage φ(𝑧𝑧, 𝑡𝑡)  in (A1) can be then expressed by   

( )
0

2 2

'
( ', )

( , ) '
4

ct ct

z ct

l l
I l t

cz t dl dl
t l l r

µ
φ

π −

 − 
− ∂ =

∂ ′− + 
 

∫ ∫  (A2) 

where l and 'l  are respectively the variables of integration 
along the conductor for scalar potential and vector potential. 
Voltage ( , )z tφ is identically zero if 𝑧𝑧 > 𝑐𝑐𝑡𝑡 (travel distance of 
the surge at time t). 

Considering there is no current attenuation on the 
conductor, the retarded current is expressed by 

),0(),(
c

ll
c
l

tI
c

ll
tlI

′−
−

′
−=

′−
−′                           (A3) 

It is noted that the retarded time of 𝑡𝑡 − |𝑙𝑙′|/𝑐𝑐 − |𝑙𝑙 − 𝑙𝑙′|/𝑐𝑐 
must be greater than zero at any point and at any moment. 
The following inequalities yield  

2 ' for ' 0
2 ' for ' 0

ct l l l
ct l l l
> − <
≥ + ≥

 (A4) 

The upper and lower limits of variable 𝑙𝑙′ can be worked out 
from (A4). Then voltage ( , )z tφ in (A2) reduces to 

( )
0 2

2 22

(0, )
( , )

4

l ctct

l ctz

l l l
I t

c cz t dl dl
t l l r

µ
φ

π

+

−

′ ′−
− −∂ ′= ⋅

∂ ′− +
∫ ∫          (A5) 

Appendix B 
In free space, with the Lorentz condition both vector 

potential A and scalar potential (voltage) φ satisfy wave 
equations, as follows: 

2
2

2 2

2
2

2 2

1

1

J
c t

c t

µ

φ ρφ
ε

∂
∇ − = −

∂
∂

∇ − = −
∂

AA
                                              (B1)                                           

where both  𝐽𝐽  and 𝜌𝜌  is the current density and the charge 
density in the medium. Assume that the conductor is made of 
perfectly conducting material. The current and charge are 
situated on the conductor surface if a surge propagates along 
the conductor shown in Fig. 1(b). Consequently, both electric 
field strength E and magnetic flux density B are identically 
equal to zero within the conductor.  

Note that vector potential A reduces to 𝐴𝐴𝑧𝑧  (z direction). 
Both vector potential 𝐴𝐴𝑧𝑧 and voltage φ  within the conductor 
remain constant on its cross section, and satisfy the following 
1D wave equations 
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2 2

2 2 2

2 2

2 2 2

1 0

1 0

z zA A
z c t

z c t
φ φ

∂ ∂
− =

∂ ∂
∂ ∂
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 (B2) 

A solution of (B2) for the downward surge is given by  
( , ) ( )

( , ) ( )
zA z t F z ct
z t G z ctφ

= −
= −

 (B3) 

where ( )F ⋅ and ( )G ⋅  are wave functions for the vector 
potential and voltage, respectively. 

Assume that vector potential 𝐴𝐴𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑧𝑧(𝑧𝑧𝑖𝑖 , 𝑡𝑡𝑗𝑗), where 𝑧𝑧𝑖𝑖 =
𝑖𝑖∆𝑧𝑧 , 𝑡𝑡𝑗𝑗 = 𝑗𝑗∆𝑡𝑡  ( 𝑖𝑖, 𝑗𝑗 = 0,1,…𝑁𝑁  and ∆𝑧𝑧 = 𝑐𝑐∆𝑡𝑡 ). A discrete 
equation can be obtained from (B3), as follows: 

, , ( )i j i k j kA A F i z j z− −= = ∆ − ∆  (B4) 

where k is an arbitrary integer (𝑘𝑘 ≤ 𝑖𝑖 and 𝑘𝑘 ≤ 𝑗𝑗). This is the 
discrete propagation equation of vector potential without any 
attenuation.  

Similarly, a discrete wave equation without any attenuation 
for voltage 𝜙𝜙𝑖𝑖,𝑗𝑗 = 𝜙𝜙(𝑧𝑧𝑖𝑖 , 𝑡𝑡𝑖𝑖) can be derived, as follows: 

, ,i j i k j kφ φ − −=    
                                                              (B5) 

Voltage 𝜙𝜙𝑖𝑖,𝑗𝑗 can be determined directly with (A1), and is 
expressed by  

,

, , 1

,
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j

i

ct z
i j z

j

k j k j
k i

i j

A dl
t

c A A

c A

φ

−
=

∂
=

∂

≈ ⋅ −

≈ ⋅

∫

∑  (B6) 

Note 𝐴𝐴𝑖𝑖,𝑗𝑗 = 0 for 𝑖𝑖 ≥ 𝑗𝑗, as the surge has just arrived at 𝑧𝑧 = 𝑧𝑧𝑖𝑖 
when 𝑡𝑡 = 𝑡𝑡𝑗𝑗.  
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