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Helmholtz resonator is often used to reduce noise in a narrow frequency range. To obtain a broader

noise attenuation band, combing several resonators is a possible way. This paper presents a theoret-

ical study of sound propagation in a one-dimensional duct with identical side-branch resonators

mounted periodically. The analysis of each resonator was based on a distributed-parameter model

that considered multi-dimensional wave propagation in its neck-cavity interface. This model pro-

vided a more accurate prediction of the resonant frequency of the resonator than traditional

lumped-parameter model. Bloch wave theory and the transfer matrix method were used to investi-

gate wave propagation in these spatially periodic resonators. The results predicted by the theory fit

well with the computer simulation using a three-dimensional finite element method and the experi-

mental results. This study indicates that the wave coupling in this periodic system results in the dis-

persion of the frequency band into the stop and the pass bands. The long-term significance is that

periodic resonators may more effectively control noise in ducts by broadening the bandwidth they

attenuate and increasing the magnitude of sound attenuation. VC 2012 Acoustical Society of America.

[DOI: 10.1121/1.3672692]
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I. INTRODUCTION

A periodic structure is composed of a number of identical

structural components that are joined together end-to-end

and/or side-by-side to form a whole complex.1 Periodic struc-

tures can be classified into three categories: (1) the periodic

medium, (2) the periodically inhomogeneous medium, and

(3) the periodically bounded medium.2 The study of Ray-

leigh3 on wave propagation in a stretched string with periodic

density is an example of the first class of periodic structures,

i.e., the periodic medium. Related work can be found on

structure-borne sound, in particular, on sound propagation in

one-, two-, and three-dimensional periodic structures, such as

beams,4,5 plates,6,7 and shells8,9 in various combinations and

support conditions, or even with multiple layers.10 An exam-

ple of the second class is a fluid having a periodic variation in

ambient density or sound speed.2 The work involving periodi-

cally inhomogeneous media is about the quantum theory of

electrical conductivity.11 The third class of periodic structures

is a system composed of a homogeneous medium with a peri-

odically vary boundary. Related work can be found on air-

borne sound, in particular, on sound propagation in a duct

with periodically varying cross section,12 a duct loaded peri-

odically with quarter-wavelength tubes,2 or a duct with peri-

odic arrays of obstacles inside.13 The duct loaded periodically

with Helmholtz resonators, which is found to be a new class

of ultrasonic metamaterials that have a negative modulus near

the resonance frequency,14 is the subject of present study.

Helmholtz resonators (called simply resonators, here-

after) are devices with a resonance peak designed to control

noise. They are useful against noise centralized in a narrow

frequency band. Many studies have tried to accurately pre-

dict resonant frequency. Initially, Rayleigh treated resonators

as lumped-parameter systems15 in which the air in the neck

acts as mass and the air inside its cavity acts as a spring.

Tang and Sirignano16 derived a general model that considers

one-dimensional wave propagation inside both the neck and

cavity. This model was then expanded by Monkewitz et al.17

and Selamet et al.18,19 Their studies investigated two- and

three-dimensional wave propagations in resonators. Their

models fit their experimental results better than the lumped-

parameter model.15

Because a single resonator has a narrow resonance peak,

combining several resonators is a possible way to obtain a

broader band of noise attenuation. An array of differently

tuned resonators was used in some previous works to

decrease broadband noise.20–22 The duct with multiple similar

resonators that includes a duct with the boundary of a perfo-

rated or micro-perforated plate backed by air cavities, was

discussed.22–24 It is found that when resonators of similar res-

onance frequency are in close proximity, they can interact

and lead to a decrease in the overall performance compared

to that of a single resonator.24 To avoid this interaction, the

resonators at some distance between each other were consid-

ered in most of the works.22,23 However, to investigate the

unusual attenuation of sound transmission in the periodic

structure at low to medium frequencies, the distance between

two nearby resonators should be larger. In the present study,

this distance between two nearby resonators is much larger

than the dimension of the resonators. It is hoped that the pres-

ent study can provide a stepping stone for investigation of the

acoustic properties of ducts loaded periodically with resona-

tors and its potential application in noise control.
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II. THE DISTRIBUTED-PARAMETER MODEL OF
RESONATORS

This study considers only circular concentric resonators.

As shown in Fig. 1, a resonator, with neck/cavity radius

r1/r2, cross sectional area S1/S2 and length l1/l2, respectively,

is mounted on a duct with cross sectional area Sd as a side

branch. Interested readers can find a detailed discussion of

the distributed-parameter model of resonators in Ref. 19.

However, for the sake of completeness, a brief description of

this model is required here. And it is rewritten here in terms

of matrices.

The sound pressure in the neck (P1) and cavity (P2) can

be expressed as19,25,28

Pqðr; zqÞ ¼ A
ðqÞ
0 e�jkzq þ

Xþ1
n¼1

AðqÞn J0ðkðqÞr;n rÞe�jk
ðqÞ
z;n zq þB

ðqÞ
0 ejkzq

þ
Xþ1
n¼1

BðqÞn J0ðkðqÞr;n rÞejk
ðqÞ
z;n zq ; q¼ 1;2 (1)

in a cylindrical coordinate as the combination of inward-

going planar waves (the first term), radial waves (the second

term), outward-going planar waves (the third term), and radial

waves (the fourth term), where the subscript or superscript

q¼ 1 indicates that it is a parameter considered in the neck of

the resonator; the subscript or superscript q¼ 2 indicates that

it is a parameter considered in the cavity of the resonator.

Herein A
ðqÞ
0 , AðqÞn , B

ðqÞ
0 , and BðqÞn are the complex constants

related to the magnitude of the corresponding wave mode. J0

is the Bessel function of first kind and order zero.26 k, k
ðqÞ
r;n ,

and kðqÞz;n represent the wave number, the radial wave number

of mode n, and the axial wave number of mode n (respec-

tively), with the relation k2 ¼ ðk qð Þ
r;n Þ2 þ ðk qð Þ

z;n Þ
2 q ¼ 1; 2ð Þ. In

terms of the momentum equation, the particle velocity in

z-direction can be obtained as

Vqðr; zqÞ ¼
A
ðqÞ
0

qc
e�jkzq þ 1

qx

Xþ1
n¼1

AðqÞn kðqÞz;n J0ðkðqÞr;n rÞe�jk
ðqÞ
z;n zq

� B
ðqÞ
0

qc
ejkzq � 1

qx

Xþ1
n¼1

BðqÞn kðqÞz;n J0ðkðqÞr;n rÞejk
ðqÞ
z;n zq ;

q ¼ 1; 2 (2)

where q is the air density, c is the speed of sound, and x is

the circular frequency. The wall of the resonator is assumed

to be rigid without any absorption materials, so the boundary

conditions

@P1ðr; z1Þ
@r

����
r¼r1

¼ 0;
@P2ðr; z2Þ

@r

�����
r¼r2

¼ 0;
@P2ðr; z2Þ

@z2

����
z2¼l2

¼ 0

(3)

give

kð1Þr;n ¼ vn=r1; kð2Þr;n ¼ vn=r2 (4)

and

B
ð2Þ
0 ejkl2 ¼ A

ð2Þ
0 e�jkl2 ; Bð2Þn ejk

ð2Þ
z;n l2 ¼ Að2Þn e�jk

ð2Þ
z;n l2 (5)

where vn is the nth root of the function26 J00ðvnÞ ¼ 0.

At the neck-cavity interface of the resonator, the conti-

nuity conditions of sound pressure and particle velocity

P1ðr; z1Þjz1¼l1
¼ P2ðr; z2Þjz2¼0; 0 � r � r1; (6)

V1ðr; z1Þjz1¼l1
¼ V2ðr; z2Þjz2¼0; 0 � r � r1 (7)

give

1

2
r2

1ðA
ð1Þ
0 e�jkl1 þ B

ð1Þ
0 ejkl1Þ

¼ 1

2
r2

1ðA
ð2Þ
0 þ B

ð2Þ
0 Þ þ

Xþ1
n¼1

ðAð2Þn þ Bð2Þn Þ
r1r2

vn

J1

r1

r2

vn

� �
;

(8)
1

2
r2

1½J0ðvmÞ�2ðAð1Þm e�jk
ð1Þ
z;ml1þBð1Þm ejk

ð1Þ
z;ml1Þ

¼
Xþ1
n¼1

ðAð2Þn þBð2Þn Þ
r1�

xn

r2

�2

�
�

xm

r1

�2

vn

r2

J0ðvmÞJ1

r1

r2

vn

� �

(9)

and

r2
1ðA

ð1Þ
0 e�jkl1 � B

ð1Þ
0 ejkl1Þ ¼ r2

2ðA
ð2Þ
0 � B

ð2Þ
0 Þ; (10)

1

2
r2

2kð2Þz;m½J0ðvmÞ�2ðAð2Þm � Bð2Þm Þ � kðAð1Þ0 e�jkl1 � B
ð1Þ
0 ejkl1Þ

� r1r2

vm

J1

r1

r2

vm

� �
¼
Xþ1
n¼1

kð1Þz;n Að1Þn e�jk
ð1Þ
z;n l1 � Bð1Þn ejk

ð1Þ
z;n l1

� �

� r1

vm

r2

� �2

� vn

r1

� �2

vm

r2

J0ðvnÞJ1

r1

r2

vm

� �

(11)

where J1 is the Bessel function of first kind and order one,26

and m ¼ 1; 2;…;þ1 in both Eqs. (9) and (11).

The frequency range concerned in the present study is

well below the cut-on frequency of the resonator neck and

the duct. It means that the nonplanar waves excited at the

discontinuity junction (the duct-neck interface) will decay

exponentially. Therefore, only planar waves are assumed to

exist in the duct-neck interface. This is an approximation,

which helps us to develop a direct relation of the sound pres-

sure in the duct and neck by ignoring the multi-dimensionFIG. 1. Side-branch Helmholtz resonator.
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effect in this complex interface. Due to this assumption, Að1Þn

is set to zero. At the meantime, nonplanar waves can also be

excited at the neck-cavity interface due to the sudden area

discontinuity. This multi-dimension effect can no longer be

ignored since it can be considered as sounds radiate into a

bigger space (cavity) and the frequency may not below the

cut-on frequency of the cavity. However, the nonplanar

waves excited at the neck-cavity interface traveling in the

neck in negative-z direction will decay over the length of the

neck (i.e., kð1Þz;n should be imaginary). In this case, P1 is

assumed to be one-dimensional in the duct-neck interface

and two-dimensional in the neck-cavity interface. So P1 is

no longer a variation of r in the vicinity of z1 ¼ 0. At the

duct-neck interface, the continuity conditions of sound pres-

sure and volume velocity can be expressed as

Pi þ Po ¼ P1jz1¼0¼ Pt; (12)

Pi � Po

qc
Sd ¼ V1jz1¼0 S1 þ

Pt

qc
Sd (13)

which give

SdPi ¼ ðSd þ 0:5S1ÞAð1Þ0 þ ðSd � 0:5S1ÞBð1Þ0 : (14)

Combining Eqs. (5), (8)–(11), and (14) yields an equation

set that determines the complex coefficients A
ð1Þ
0 , B

ð1Þ
0 , Bð1Þn ,

A
ð2Þ
0 , B

ð2Þ
0 , Að2Þn , and Bð2Þn . Since higher-order harmonic com-

ponents have a diminishing effect on the solution,19,27 we

can use a finite number of terms instead of an infinite sum-

mation of all modes and still ensure that the solution is rea-

sonably accurate. Assuming that P1/P2 is made of harmonic

components up to order N/M, respectively, the equation set

can then be rewritten in terms of matrices, as

Ux ¼ y or x ¼ Uny; (15)

where x and y are both ð4þ N þ 2MÞ-dimensional vectors,

which are given by

x ¼ A
ð1Þ
0 B

ð1Þ
0 B

ð1Þ
1 � � � B

ð1Þ
N A

ð2Þ
0 B

ð2Þ
0 A

ð2Þ
1 B

ð2Þ
1 � � � A

ð2Þ
M B

ð2Þ
M

h iT
; (16)

y ¼ SdPi 01�ð3þNþ2MÞ
� �T

: (17)

And U is a square matrix of dimension ð4þ N þ 2MÞ � ð4þ N þ 2MÞ, which can be written as U ¼ U1 U2 U3 U4½ �T .

Herein the 3� ð4þ N þ 2MÞ-dimensional matrix U1 is given by

U1 ¼
Sd þ 0:5S1 Sd � 0:5S1 01�N 01�ð2þ2MÞ

r2
1e�jkl1 �r2

1ejkl1 01�N �r2
2 r2

2 01�2M

r2
1e�jkl1 r2

1ejkl1 01�N �r2
1 �r2

1 C1�2M

2
4

3
5 (18)

where 0 denotes a zero matrix, with the subscript such as 1� N indicating its dimension, and

C1�2M ¼ �2r1r2

1

v1

J1

r1

r2

v1

� �
1

v1

J1

r1

r2

v1

� �
� � � 1

vM

J1

r1

r2

vM

� �
1

vM

J1

r1

r2

vM

� �	 

: (19)

U2 is a ðM þ 1Þ � ð4þ N þ 2MÞ matrix, as U2 ¼ 0ðMþ1Þ�ðNþ2Þ DðMþ1Þ�ð2þ2MÞ
� �

, where

DðMþ1Þ�ð2þ2MÞ ¼

e�jkl2 �ejkl2 � � � 0

e�jk
ð2Þ
z;1 l2 �ejk

ð2Þ
z;1 l2

..

. . .
. . .

. ..
.

0 � � � e�jk
ð2Þ
z;Ml2 �ejk

ð2Þ
z;Ml2

2
6664

3
7775: (20)

The N � ð4þ N þ 2MÞ-dimensional matrix U3 is given by

U3 ¼ 0N�2 EN�N 0N�2 FN�2M½ �, in which

EN�N ¼
1

2
r2

1

½J0ðv1Þ�2e
jkð1Þ

z;1
l1

. .
.

½J0ðvNÞ�2e
jkð1Þ

z;N
l1

2
64

3
75;

(21)
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FN�2M ¼
r1

r2

W1;1 � � � WM;1

..

. . .
. ..

.

W1;N � � � WM;N

2
664

3
775

�
1 1

. .
. . .

.

1 1

2
64

3
75 (22)

where

Wm;n ¼
vm

vm

r2

� �2

� vn

r1

� �2
J0ðvnÞJ1

r1

r2

vm

� �
;

n ¼ 1; 2;…N and m ¼ 1; 2;…;M:

U4 is a M � ð4þ N þ 2MÞ matrix, as

U4 ¼ IM�2 JM�N 0N�2 KM�2M½ �, in which

IM�2 ¼ �kr1r2

J1

r1

r2

v1

� �
v1

..

.

J1

r1

r2

vM

� �
vM

2
666666664

3
777777775
� e�jkl1 �ejkl1
� �

; (23)

JM�N ¼
r1

r2

k
ð1Þ
z;1 W1;1ejk

ð1Þ
z;1

l1 � � � k
ð1Þ
z;NW1;Nejk

ð1Þ
z;1

l1

..

. ..
.

k
ð1Þ
z;1 WM;1ejk

ð1Þ
z;1

l1 � � � k
ð1Þ
z;NWM;Nejk

ð1Þ
z;1

l1

2
664

3
775; (24)

KM�2M ¼
1

2
r2

2

½J0ðv1Þ�2k
ð2Þ
z;1

. .
.

½J0ðvMÞ�2k
ð2Þ
z;M

2
6664

3
7775

�
1 �1

. .
. . .

.

1 �1

2
64

3
75: (25)

III. WAVE PROPAGATION IN A SEMI-INFINITE DUCT
LOADED PERIODICALLY WITH RESONATORS

A. Theoretical outline

This section considers a semi-infinite duct loaded peri-

odically with resonators, as shown in Fig. 2. Compared with

the length of duct segment between two nearby resonators

D, the diameter of the neck of the resonator is assumed to be

negligible. In other words, D also can be regarded as the per-

iodic distance.

As shown in Fig. 2, a typical periodic cell consists of

the duct segment and a resonator attached to the left. As

assumed in Sec. II, only planar waves exist in the duct and

the vicinity of the opening of the resonator. In the region

of the nth periodic element (ðn� 1ÞD � x � nD), the sound

traveling in positive- and negative-x directions can be

described with sound pressure Pþn ðxÞ ¼ Cþn e�jkðx�ðn�1ÞDÞ and

P�n ðxÞ ¼ C�n ejkðx�ðn�1ÞDÞ, where Cþn and C�n are complex con-

stants related to the magnitude of positive- and negative-

going planar waves in the nth duct segment respectively. In

the region of the next cell (nD � x � ðnþ 1ÞD), the acoustic

field has a similar form, with sound pressure Pþnþ1ðxÞ
¼ Cþnþ1e�jkðx�nDÞ and P�nþ1ðxÞ ¼ C�nþ1ejkðx�nDÞ. Combining

the continuity of sound pressure and volume velocity at the

point x ¼ nD yields the relation between the nth cell and

nthþ 1 cell in the form of matrix, called the periodic transfer

matrix28 T, as

Cþnþ1

C�nþ1

" #
¼ T

Cþn
C�n

	 

(26)

where the 2� 2-dimensional matrix T is given by

T ¼
1� 1

2

S1

Sd

qc

Zb

� �
e�jkD � 1

2

S1

Sd

qc

Zb
ejkD

1

2

S1

Sd

qc

Zb
e�jkD 1þ 1

2

S1

Sd

qc

Zb

� �
ejkD

2
664

3
775: (27)

The entry in the ith row and the jth column of T is denoted

as tij, and Zb is the acoustic characteristic impedance of the

resonator in the neck opening, as Zb ¼ P1=V1jz1¼0, where P1

and V1 are described in Eqs. (1) and (2).

Dynamic periodic systems are unlike static periodic sys-

tems, which can be described in terms of a periodic function

f ðxÞ, with the relation f ðxþ LÞ ¼ f ðxÞ, where L is the perio-

dicity of the function. Instead, dynamic periodic systems

(such as the structure considered in this section) can be

described by the function f ðxþ LÞ ¼ elf ðxÞ. This is called

the Bloch wave theory.11 Therefore, Eq. (26) can be rewrit-

ten in another form, as

Cþnþ1 C�nþ1

� �T¼ el Cþn C�n
� �T

: (28)

Combining Eqs. (26) and (28), the analysis of a periodic res-

onator system boils down to an eigenvalue problem that

involves finding the eigenvalue k ¼ el and the correspond-

ing eigenvector v ¼ vþ v�½ �T for the transfer matrix T.

FIG. 2. Semi-infinite duct loaded peri-

odically with resonators.
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B. Nature of the characteristic wave type

l in Eq. (28) is called the propagation constant,5 which

is a complex value composed of a real part lr , called the

attenuation constant, and an imaginary part li, called the

phase constant (l ¼ lr þ jli). In principle there are ranges

of frequencies in which the solution contains the real part lr.

This result indicates that the energy gets attenuated when

waves travel through each periodic cell, and those frequency

ranges are called the stop bands. In other frequency ranges,

the solution only contains the imaginary part li, which indi-

cates that there is only a phase delay when a wave travels

through each cell. These frequency ranges that the waves are

allowed to propagate through are called the pass bands.

Combining Eqs. (26) and (28) yields the characteristic

polynomial29 of T. Note that—for a passive system—the de-

terminant of the matrix T is unity28 and

e2l � ðt11 þ t22Þel þ t11t22 � t12t21

¼ e2l � ðt11 þ t22Þel þ 1 ¼ 0: (29)

Consequently, we can write

cosðjlÞ¼ 1

2
ðt11þ t22Þ

¼ 1

2

�
ðejkDþ e�jkDÞþ1

2

S1

Sd

qc

Zb
ðejkD� e�jkDÞ

�
: (30)

Equation (30) indicates that l is a function of the frequency and

other geometric parameters, such as periodic distance (D) and

resonator acoustic characteristic impedance (Zb). In general, the

eigenvalue k ¼ el describes the propagation property of a char-

acteristic wave type, and the characteristic wave type is defined

by its corresponding eigenvalue vþ v�½ �T , which represents

the specific linear combination of positive- and negative-going

planar waves. There are two solutions of l in Eq. (30) that occur

in opposite pairs: l ¼ 6ðlr þ jliÞ in the stop band, and

l ¼ 6jli in the pass band. Assumed that lr > 0 and

0 � li < 2p, l1 ¼ �ðlr þ jliÞ describes the propagation

property of the “positive-going” characteristic wave type (or

simply positive wave type), defined by the corresponding eigen-

vector v1 ¼ vþ1 v�1
� �T

. Similarly, l2 ¼ lr þ jli describes

the propagation property of the “negative-going” characteristic

wave type (or simply negative wave type), defined by the corre-

sponding eigenvector v2 ¼ vþ2 v�2
� �T

. It can be imaged that

these two wave type are of the same characteristic wave type

but traveling in opposite directions, and there are relations

between two corresponding eigenvectors
�
v1 ¼ vþ1 v�1

� �T
and v2 ¼ vþ2 v�2

� �T�
, as vþ1
�� �� ¼ v�2

�� ��, and v�1
�� �� ¼ vþ2

�� ��.
When planar waves travel in the semi-infinite duct with

periodic resonators considered in this section, only the

positive-going characteristic wave type v1 exists in duct seg-

ments of all periodic cells, as

Cþn
C�n

	 

¼ anv1 ¼ an

vþ1
v�1

	 

; n ¼ 1; 2; :::;1 (31)

where an is a complex constant. By introducing Eq. (26),

Eq. (31) can be expressed as

Cþn
C�n

	 

¼ T

Cþn�1

C�n�1

	 

¼ T2

Cþn�2

C�n�2

	 

¼ � � � ¼ Tn�1 Cþ1

C�1

	 


¼ a1Tn�1v1 ¼ a1k
n�1
1 v1 (32)

which gives an ¼ a1k
n�1
1 . Equation (32) indicates that the

positive- and negative-going planar waves in duct segments

of all periodic cells have the same amplitude ratio vþ1 =v�1
�� ��

and decay at the same rate anþ1=an (¼e�lr ) when they pass

through each periodic cell along the positive-x direction. In

other words, they propagate as a whole in the positive-x

direction, denoted as the positive-going characteristic wave

type. Let l1 ¼ �jqD (k1 ¼ e�jqD), the sound pressure in the

duct segment of nth periodic cell can be expressed as

PnðxÞ¼Cþn e�jkðx�ðn�1ÞDÞ þC�n ejkðx�ðn�1ÞDÞ

¼ ½a1vþ1 e�jkðx�ðn�1ÞDÞ þa1v�1 ejkðx�ðn�1ÞDÞ�e�jqðn�1ÞD:

(33)

Let us set xn ¼ x� ðn� 1ÞD (0 � xn � D), which is a local

variable. The exponential component of Eq. (33) (e�jqðn�1ÞD)

represents net changes of the characteristic wave type from

cell to cell in a positive-x direction. The terms in square

bracket (a1vþ1 e�jkxn þ a1v�1 ejkxn ) represent components of the

characteristic wave type, and its behavior in a periodic cell.

Besides, Eq. (33) indicates that the positive-going character-

istic wave type v1 contains the negative-going planer wave

component v�1 . Moreover, Eq. (33) can be expressed as

PnðxÞ ¼ ½a1vþ1 e�jðk�qÞxn þ a1v�1 ejðkþqÞxn �e�jqx

¼ U1ðxnÞe�jqx: (34)

It can be noted that the x in the exponential term e�jqx is a

global variable, Eq. (34) describes the sound pressure distri-

bution in the whole duct. This is another expression of the

positive-going characteristic wave type. It can be seen that q
is the wave number of the wave type.

Figure 3 shows the dispersion of the attenuation con-

stant lr, in terms of 20 log10ðelrÞ, and the phase constant li.

FIG. 3. Frequency variation of the real and imaginary parts of the propaga-

tion constant for the positive-going characteristic wave type in the semi-

infinite duct with periodic resonators.
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Resonators, with neck radius r1¼ 1.7 cm, length l1¼ 4.55 cm

and cavity radius r2¼ 4.7 cm, length l2¼ 4 cm, mounted on a

duct of cross sectional area Sd ¼ 13.2 cm2 is selected here,

with periodic distance D¼ 40 cm. The positive-going charac-

teristic wave type is seen to propagate without attenuation

over the two broad bands of 0–240 Hz and 630–870 Hz with

a phase change per cell li. A strong stop band is found in the

frequency range of 240–630 Hz, with a phase inversion

between two nearby periodic cells (i.e., li ¼ p). It should be

noted that there is a sharp gap at around 425 Hz in the stop

band, which belongs to the phase inverse of a single resonator

at its resonant frequency f0. Basically, the frequency positions

of the peak and gap of the stop band are related to the f0 of

the single resonator, the bandwidth of which is controlled by

the periodic distant D, as well as the geometries of both duct

and resonators. The dispersion of the frequency band into the

stop and pass bands is due to wave coupling, which is similar

to the waves that Yun and Mak10 observed propagating in a

periodic structure.

Figure 4 shows the ratio of negative- and positive-going

planar wave components in the positive-going characteristic

wave type in terms of v�1 =vþ1
�� ��, ignoring the phase difference

between them. The dimensions of duct, resonators and peri-

odic distance used here maintain the same as those used in

Fig. 3, so the stop and the pass bands are the same as shown

in Fig. 3(a). It can be seen that even in the pass bands of the

positive-going characteristic wave type as shown in Fig.

3(a), a small amount of negative-going planar wave compo-

nent v�1 exists, which means the “pass band” is fully passed

for the characteristic wave type, but not for the planar waves.

In the situation of planar waves traveling through a single

resonator, a full reflection only occurs at the resonance fre-

quency f0 of the resonator. In contrast, a full reflection (i.e.,

v�1 =vþ1
�� �� ¼ 1) is observed here in the whole stop band

(240–630 Hz and 870–940 Hz) regardless of whether the

characteristic wave type decays significantly or only slightly.

C. Response of a semi-infinite duct loaded
periodically with resonators

This study also investigated a semi-infinite duct with

periodic resonators responding to external excitation, which

is a positive-going sound wave of pressure magnitude

Pi ¼ 1. This can be described by the maximum sound pres-

sure in the duct segments of the first five periodic cells. The

maximum sound pressure in the duct segment of the nth cell

Pn;max can be calculated by finding the maximum30 of

PnðxÞ ¼ Pþn ðxÞ þ P�n ðxÞ ¼ Cþn e�jkðx�ðn�1ÞDÞ

þ C�n ejkðx�ðn�1ÞDÞ; n ¼ 1; 2;…; 5: (35)

The dimensions of the duct, resonators and periodic dis-

tance used in Fig. 5 maintain the same as those used in

Fig. 3. Figure 5 clearly shows the occurrence of the pass

bands and stop bands that are associated with the corre-

sponding propagation constant in Fig. 3(a). In the main stop

band of 240–630 Hz, the energy of the propagating waves

drops at a rate of about 10 dB per periodic cell. It is also seen

that the system has a strong attenuation peak at the natural

frequency of a single resonator (i.e., around 415 Hz).

IV. WAVE PROPAGATION IN A FINITE-LENGTH DUCT
LOADED PERIODICALLY WITH N RESONATORS

A. Theoretical outline

In the previous section, for a semi-infinite duct with per-

iodic resonators, there is only the positive-going characteris-

tic wave type defined by the eigenvector v1. This section

considers a more general situation: a finite-length duct with

N periodic resonators. In this case, the influence of the end

boundary condition should be considered. This means in

addition to the positive-going characteristic wave type, the

negative one defined by the eigenvector v2 needs to be con-

sidered, which can be regarded as the “reflected” characteris-

tic wave type.

Figure 6 shows a duct loaded periodically with N side-

branch resonators at an identical distance D between two

nearby resonators. At the beginning of the duct there is a

loudspeaker that oscillates at the magnitude of sound pres-

sure P0 at the distance Lbegin from the first resonator. At the

end of the duct there is a material with reflection coefficient

a at the distance Lend from the Nth resonator.

Similar to Sec. III, the sound pressure in the duct seg-

ment of the nth periodic cell can be described as PnðxÞ
¼ Cþn e�jkðx�ðn�1ÞDÞ þ C�n ejkðx�ðn�1ÞDÞ, in which the magni-

tude of positive- and negative-going planar waves can be

FIG. 4. Frequency variation of the positive- and negative-going planar

wave components of the positive-going characteristic wave type in the semi-

infinite duct with periodic resonators.

FIG. 5. Frequency variation of the maximum sound pressure in duct seg-

ments of the first five periodic cells of the semi-infinite structure, n¼ 1,

2…5.
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obtained by adding the part of negative-going characteristic

wave type v2 into Eq. (31), as

Cþn
C�n

	 

¼ anv1 þ bnv2 ¼ an

vþ1
v�1

	 

þ bn

vþ2
v�2

	 

(36)

where bn is also a complex constant. By introducing Eq.

(26), Eq. (36) also can be expressed as

Cþn
C�n

	 

¼ T

Cþn�1

C�n�1

	 

¼ T2

Cþn�2

C�n�2

	 

¼… ¼ Tn�1

Cþ1
C�1

	 


¼ a1Tn�1v1 þ b1Tn�1v2 ¼ a1k
n�1
1 v1 þ b1k

n�1
2 v2:

(37)

Combining Eqs. (36) and (37) gives an ¼ a1k
n�1
1 and

bn ¼ b1k
n�1
2 .

The periodic function in the Nth cell (as shown in Fig. 6)

is also valid in the range ðN � 1ÞD � x � ðN � 1ÞDþ Lend

by assuming that the cell is also “length” D, but the sound

pressure in x ¼ ðN � 1ÞDþ Lend matches the end boundary

condition, as

P�N ðxÞ
PþN ðxÞ

����
x¼ðN�1ÞDþLend

¼ C�N ejkðx�ðN�1ÞDÞ

CþN e�jkðx�ðN�1ÞDÞ

����
x¼ðN�1ÞDþLend

¼ a1k
N�1
1 v�1 ejkLend þ b1k

N�1
2 v�2 ejkLend

a1k
N�1
1 vþ1 e�jkLend þ b1k

N�1
2 vþ2 e�jkLend

¼ a: (38)

Similarly, the periodic function in the 0th cell (as shown in

Fig. 6) is also valid in the range �Lbegin � x � 0 by assum-

ing that the cell is also “length” D, but the sound pressure in

x ¼ �Lbegin matches the beginning boundary condition, as

Pþ0 ðxÞ þ P�0 ðxÞ
��
x¼�Lbegin

¼ Cþ0 e�jkðxþDÞ þ C�0 ejkðxþDÞ��
x¼�Lbegin

¼ ða1k
�1
1 vþ1 þ b1k

�1
2 vþ2 Þe�jkðD�LbeginÞ

þ ða1k
�1
1 v�1 þ b1k

�1
2 v�2 ÞejkðD�LbeginÞ

¼ P0: (39)

So the complex constants a1 and b1 can be solved by com-

bining the boundary conditions [Eqs. (38) and (39)], which

means for a certain beginning- and end-boundary condition,

the sound pressure in the duct segment of the nth periodic

cell can be described by the specific combination of the posi-

tive- and negative-going characteristic wave types, as

a1k
n�1
1 v1 þ b1k

n�1
2 v2.

General speaking, in the finite-length duct with N peri-

odic resonators, the positive-going planar waves can be di-

vided into two parts (i.e., Cþn ¼ anvþ1 þ bnvþ2 ), the first part

anvþ1 decays at the rate anþ1=an (¼k1) with the other part

bnvþ2 increasing at the rate bnþ1=bn (¼k2). Due to the relation

k1 ¼ 1=k2 discussed in previous section, these two parts

actually decay at the same rate but in opposite directions:

one anvþ1 as a component of the positive-going characteristic

wave type with the other bnvþ2 belonging to the negative-

going characteristic wave type. Similarly, the negative-going

planar waves can also be divided into two parts (i.e.,

C�n ¼ anv�1 þ bnv�2 ), with one anv�1 moving forward and the

other bnv�2 backward. Similar to Eq. (34), the sound pressure

field in the whole duct can be expressed as PnðxÞ
¼ U1ðxnÞe�jqx þ U2ðxnÞejqx, where U2 ¼ b1vþ2 e�jðk�qÞxn

þ b1v�2 ejðkþqÞxn represents the components of the negative-

going characteristic wave type.

B. A finite-length duct-resonator structure with
anechoic termination

Although the positive- and negative-going characteristic

wave types belong to the same characteristic wave type, they

propagate in opposite directions along the duct. Their rela-

tive ratio in the duct segment of the nth periodic cell can be

expressed as dn ¼ bn=anj j ð0 � n � NÞ.
Under the condition of a semi-infinite duct with periodic

resonators, there is no negative-going characteristic wave

type (i.e., dn ¼ 0). In contrast, dn is a function of frequency

in a finite-length duct with N periodic resonators. Figure 7

shows the variation of dn under anechoic termination in a

finite-length duct with ten resonators (N¼ 10). The dimen-

sions of duct, resonators and periodic distance used here

maintain the same as those used in Fig. 3, so the stop and the

pass bands are the same as shown in Fig. 3(a). It should be

noted that although Fig. 3 only shows the stop and the pass

bands of the positive-going characteristic wave type, it can

be imaged that the negative one has the same frequency

band dispersion since they are of the same characteristic

FIG. 6. Finite-length duct loaded

periodically with N resonators.

FIG. 7. Frequency variation of the finite periodic structure under anechoic

termination, n¼ 0, 1,…, 10.
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wave type. In the stop bands (240–630 Hz and 870–940 Hz),

there are few waves of the negative wave type in the duct

segment of the first periodic cell (dn ¼ 0). In addition, it can

be seen in the stop bands that the amount of the negative

wave type continues to increase in the subsequent periodic

cells, and finally reaches the same amount as the positive

one (dn ¼ 1) in the last periodic cell (the Nth cell). In other

words, dn reaches its minimum value at the beginning

(n¼ 0) and its maximum value at the end (n¼ 10). It is inter-

esting to see that even though “anechoic termination” does

not reflect any planar waves, it is an absolutely “rigid” termi-

nation for the characteristic wave type in the stop bands,

since it fully reflects the positive wave type in the Nth cell,

as the dotted line in Fig. 7 shows.

In the pass bands (0–240 Hz, 630–870 Hz, and above

940 Hz), it can be seen that all the lines overlap. This means

that the relative ratio of the positive- and negative-going

characteristic wave types (dn) has the same pattern in all per-

iodic cells, as both the positive- and negative-going charac-

teristic wave types propagate freely without any attenuation

in the duct. In the pass bands, the “anechoic termination”

seems to be a partially reflective boundary for the character-

istic wave type.

It should be noted that the amount of negative wave

type quickly increases at the pass band and stop band junc-

tures, at frequencies around 240, 430, 640, 870, and 940 Hz

in all periodic cells. The system seems to respond strongly at

these frequencies. It is more prominent in the gap of the stop

band, i.e., a sharp boundary at around 425 Hz [as shown in

Fig. 3(a)], because the characteristic wave type is fully

reflected and the amount of negative wave type is nearly the

same as that of the positive one. In general, unlike what it

means to planar waves, anechoic termination cannot be

regarded as “anechoic” to the characteristic wave type, and

it can even be fully reflective at a particular frequency.

C. Estimating the properties of the characteristic
wave type in an N-cell duct-resonator structure with
anechoic termination

First of all, dN can be used to estimate the ratio of

v�1 =vþ1
�� �� described in Sec. III by rewriting Eq. (38) under

anechoic termination as

a1k
N�1
1 v�1 ejkLend þ b1k

N�1
2 v�2 ejkLend

¼ aNv�1 ejkLend þ bNv�2 ejkLend ¼ 0: (40)

So there is

dNj j ¼
bN

aN

����
���� ¼ v�1

v�2

����
���� ¼ v�1

vþ1

����
���� (41)

by using the relation vþ1
�� �� ¼ v�2

�� ��, which was discussed in

Sec. III. This can be verified by comparing Fig. 4 and the

dotted line in Fig. 7.

Furthermore, the averaged transmission loss TL of this

finite-length duct with N periodic resonators can be used to

estimate the attenuation constant lr in terms of 20 log10ðelrÞ.
The averaged transmission loss TL can be expressed as

TL ¼ 20

N
log10

Pþ0
PþN

����
���� ¼ 20

N
log10

Cþ0
CþN

����
����

¼ 20

N
log10

a1k
�1
1 vþ1 þ b1k

�1
2 vþ2

a1k
N�1
1 vþ1 þ b1k

N�1
2 vþ2

�����
����� ¼ 20

N
log10 Xj j:

(42)

Within the frequency range of stop bands, there is

k1 ¼ e�lr�jli ;k2 ¼ elrþjli ; lr > 0 and 0� li < 2p:

(43)

Because k1j j < 1, when N !1, the first term in Eq. (40)

approaches zero, so b1 ¼ 0. Therefore, Eq. (42) can be

rewritten as

TL ¼ 20

N
log10

a1k
�1
1 vþ1

a1k
N�1
1 vþ1

�����
����� ¼ 20 log10ðeur Þ: (44)

Within the frequency range of pass bands, there is

k1 ¼ e�jli ; k2 ¼ ejli 0 � li < 2pð Þ (45)

and the X in the Eq. (42) can be rewritten as

X ¼ ejli a1vþ1 þ e�jli b1vþ2
e�jðN�1Þli a1vþ1 þ ejðN�1Þli b1vþ2

¼ a0vþ1 þ b0vþ2
e�jNli a0vþ1 þ ejNli b0vþ2

(46)

which can be regarded as the addition of the vectors a0vþ1
and b0vþ2 divided by the addition of themselves with an Nli

degree rotation of a0vþ1 in the clockwise direction and an

Nli degree rotation of b0vþ2 in the counter-clockwise direc-

tion. By substituting Eq. (46) into Eq. (42), TL fluctuates

over the pass band since the phase constant li is the function

of frequency. On the other hand, TL decreases at the rate of

1/N and the fluctuation of TL becomes smaller when the

number of periodic cells (N) increases. Moreover, TL
approaches zero [i.e., is close to 20 log10ðelr Þ] within the

pass band in the semi-finite duct with periodic resonators

when N approaches to infinity, as shown in Fig. 3(a).

Compared with the semi-infinite duct with periodic res-

onators discussed in Sec. III, this section investigates two

cases: two ducts with three and ten resonators, respectively,

under anechoic termination, as shown in Fig. 8. It is noted

that the case N¼ 1 is also investigated, which is the common

condition that a duct with a single side-branch resonator. In

addition, the attenuation constant lr in terms of 20 log10ðelrÞ
in Fig. 3(a) is re-plotted in Fig. 8, which has been verified

above that equals to TL in the case N¼1. The dimensions

of duct, resonators and periodic distance maintain the same

as those used in Fig. 3. When the case N¼ 1 is compared to

other three cases (N¼ 3, 10 and 1), one can have a clear

impression of the difference brought by structural periodic-

ity. In the frequency range of 150–240 Hz and 640–860 Hz,

different from a single resonator (N¼ 1) providing slightly
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attenuation of around 0.5–2 dB, planar waves propagate

without any decay through the resonators array (N¼1).

On the other hand, the combination of several identical reso-

nators provides more averaged noise attenuation than the

single resonator in the frequency range 240–380 Hz and

480–640 Hz of the main stop band (N¼1). When the three

cases of N¼ 3, 10 and1 are compared, one can see that the

averaged transmission loss TL approaches the attenuation

constant lr in terms of 20 log10ðelrÞ (i.e., the case N¼1) in

the stop bands as N increases. Similarly, as N increases, TL
approaches 20 log10ðelr Þ with the ripple pattern of TL
decreasing in both cases of N¼ 3 and 10 in the pass bands.

V. NUMERICAL SIMULATION BASED ON THE FINITE
ELEMENT METHOD

A three-dimensional finite element method was used to

verify the theoretical analysis of the finite-length duct with

periodic resonators discussed in Sec. IV; it is then compared

with the experimental results in Sec. VI. The detailed

description of this method for time-harmonic acoustics in

this paper, which are governed by the Helmholtz equation,

can be found in numerous sources.31 The numerical model

consisted of a duct with five identical side-branch resonators

(N¼ 5) and an excitation from an oscillating sound pressure

at fixed magnitude P0 ¼ 1. The dimensions of duct, resona-

tors and periodic distance used here maintained the same as

those used in Fig. 3. The end termination was set to be

anechoic (i.e., @P=@xþ jkP ¼ 0).32 To ensure accuracy, a

fine mesh spacing of less than 5 cm was maintained for the

models. The mesh divided it into more than 8000 triangular

elements. The maximum element was observed in the duct

with a side length of 4.8 cm; the minimum element was

observed in the neck-duct interface with a side length of

1.7 mm. In order to investigate the noise attenuation effect

formed by the wave coupling in the periodic duct instead of

the resonance of a single resonator (415 Hz), sound field dis-

tribution (pressure magnitude) on the sliced plane along the

duct were examined at 500 Hz. It can be seen from Fig. 9

that sound pressure dropped noticeably at a rate of around

10 dB per cell.

VI. EXPERIMENT

Figure 10 shows the experimental setup for the measure-

ment of the sound pressure in a duct with an array of resona-

tors. Similar to the numerical model, the experimental

apparatus consisted of a duct with five identical side-branch

resonators and a loudspeaker mounted at the beginning.

In the experiment, two replaceable end terminations were

used. One is rigid end termination and one is a termination

with absorptive materials. The transfer matrix method was

used.33,34 This method including the two-microphone tech-

nique is used to separate incident and reflected waves for cal-

culation of the transmission loss by placing one pair of

microphones before and another pair after the resonators

array, and the two-load method to yield strict anechoic end

termination. A detailed description of the transfer matrix

method can be found in Ref. 33. The testing apparatus con-

sisted of four B&K 1/4” type 4935 microphones, a B&K

PULSE analyzer with four input channels and two output

channels, and a B&K type 2706 power amplifier. The mis-

matches of the four microphones were carefully calibrated

following Ref. 34. The calculated transmission loss is then

divided by the number of resonators (N¼ 5) as averaged

transmission loss TL, that can be regarded as an approxima-

tion of the attenuation constant lr in terms of 20 log10ðelrÞ,
as discussed in Sec. IV. The dimensions of duct, resonators

are the same as that discussed in the previous sections,

except now l1 ¼ 5 cm and D ¼ 47 cm. These dimensions of

the duct and resonators are similar to that in Ref. 19, which

are selected to investigate nonplanar waves excited in the

resonators neck-cavity interface and to ensure planar wave

propagation in the duct and neck with higher-mode waves

decay quickly.

VII. RESULTS AND DISCUSSION

Figure 11 shows the comparison of the average trans-

mission loss TL between the experiment, the theory using

FIG. 9. Sound field (pressure magni-

tude) of the finite periodic structure.

FIG. 8. Using the averaged transmission loss TL to estimate the attenuation

constant lr in terms of 20 log10ðelr Þ.

1180 J. Acoust. Soc. Am., Vol. 131, No. 2, February 2012 X. Wang and C. Mak: Periodic Helmholtz resonators

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  158.132.161.52 On: Mon, 30 Dec 2013 03:20:33



the distributed-parameter model, and the FEM simulation for

a duct with five identical side-branch resonators. It can be

seen from Fig. 11 that the changes in the geometry of the

structure result in the difference of the range of the main

stop band, the position of the gap, and the peak of the main

stop band compared to Fig. 8. As shown in Fig. 11, the FEM

simulation fits better with the experimental data than the the-

oretical predictions both in the stop bands and in the ripple

of the pass bands. The deviation of the experiment data from

other two methods at the sharp peak is probably due to the

sensitivity of the microphones, which is similar to that

observed in Ref. 14. However, instead of the sharp peak

resulted from the resonance of a single resonator, the broad

noise attenuation band from 210 to 570 Hz is a more impor-

tant feature for this periodic structure because it can provide

considerable noise attenuation in both magnitude and band-

width. It can be seen from Fig. 11 that the averaged trans-

mission loss TL in the main stop band is about 3–15 dB,

except the narrow gap at around 380 Hz and the sharp peak

at around 400 Hz. In this finite-length duct with five identical

resonators (i.e., N¼ 5), the overall transmission loss TL is

about 15–75 dB (i.e., 5� 3–15 dB) in the stop band except

the gap and the peak. The narrow gap at around 380 Hz is

being investigated. It seems that this gap can be eliminated

when this periodic structure has a slight irregularity. In other

words, the periodic distance D and/or the geometry of a sin-

gle resonator element are not exactly identical. Future

research is needed to examine this.

VIII. CONCLUSIONS

This paper has presented a theoretical study of a periodic

resonators array based on the distributed-parameter resonator

model. When waves travel through each resonator, they pro-

duce reflected and transmitted waves. Those reflected and

transmitted waves are then reflected and transmitted again by

the previous and next resonators. This process is physically

repeated in the periodic structure. In this situation, instead of

dividing the sound pressure field in the duct simply into posi-

tive- and negative-going planar waves, it is more appropriate

to decompose it into positive- and negative-going characteris-

tic wave types.

After introducing the characteristic wave type to describe

the wave coupling in the periodic structure, both the semi-

infinite duct with infinite periodic resonators and the finite-

length duct with N periodic resonators have been discussed.

The predicted results using this theory fit well with the FEM

simulation and the experimental results. This study indicates

that the use of periodic resonators may provide a much

broader band of sound attenuation compared to a single reso-

nator. It is hoped that the present study can provide a basis

for investigating its potential application in noise control.
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