
Abstract – Due to the increase in air transportation

demand, runway capacity is reaching a bottleneck at the

international airports, especially during peak hours.

Managing on aircraft sequencing or sequencing problems in

airport perspective have become a crucial operation

nowadays in order to maintain safety landing and utilize the

runway facility to handle the schedules for all incoming

aircraft under congestion. The traditional approach allows

aircraft to remain an economic speed during approaching to

the airport. However, such approach may not be applicable

in congested air traffic situation. Therefore, the makespan

minimization is more practical for the rescheduling efforts

afterwards. This article presents a modified artificial bee

colony algorithm to obtain nearly optimal solution to support

the air tower controller in order to obtain last-minute

decisions of landing sequence. The modified artificial bee

colony algorithm for aircraft landing problem provides a

promising optimal search within 6.1 seconds to handle last-

minute disruption.

Keywords – Aircraft landing problem, Air traffic control,

Meta-heuristics, Artificial bee colony algorithm

I. INTRODUCTION

Aircraft Landing Problem (ALP) is one of the major

attributes in Air Traffic Flow Management to maintain

smooth air traffic in from airspace to the corresponding

airport. The runway capacity is the key bottleneck for the

aircraft landing system. The cost of delays may rise due to

late departure, reassignment and customer dissatisfaction.

The current approach in ALP follows the rule of First-

Come-First-Serve (FCFS) to arrange the landing sequence.

The landing time is not exactly same as the earliest arrival

time of a flight, as the air tower control must follow the

standard landing procedure in order to sustain a safe

landing sequence and schedule. Since aircraft landing

generates vortices that create adverse effect to the trailing

aircraft, separation time between two aircraft must be

considered in the landing schedule. The separation time is

mainly determined by the flight classes matrix in terms of

time [1]. In this regard, the total makespan of the runway

may not necessarily be the optimal solution using the FCFS

approach.

In normal traffic situation, the landing decision is

based on the target landing time of incoming flights.

Flights remain an economic speed in reaching to the airport.

The objective in such situation is to minimize the total

tardiness of all flights from the target landing time, which

means that a penalty cost will exist with earlier or late

arrival. In contrast, the total makespan is expected to be

lengthy, as the airline aims to maintain a low cost in air

transport [2-4]. Under congested traffic scenario, certain

runway capacity is omitted if the model has taken tardiness

as an objective function. In order to reduce the

deterioration of following flight schedules, makespan

minimization in airport aspect should be respected [1].

Meta-heuristics research in ALP model is much more

preferable in handling last-minute changes under

congested air traffic, since the computational time using

exact method is lengthy that could not meet with the near

time decision in air tower control. Typical examples

include Genetic algorithm [5], Simulated Annealing [3]

and Iterated Local Search [4]. This research is the first

attempt to apply Artificial Bee Colony algorithm in ALP

model, and the proposed algorithm yields a better optimal

solution within several seconds.

TABLE I

Separation time between two consecutive flights for safe landing [1]

Following aircraft

SSF MSF LSF

Leading

aircraft

SSF 82 69 60

MSF 131 69 60

LSF 196 157 96

SSF = Small size flight

MSF = Medium size flight

LSF = Large size flight

II. PROBLEM FORMULATION

The ALP model under congested traffic scenario is to

minimize the overall completion or makespan of a runway

with hard constraints in separation requirement. Table II

shows the notation and decision variables in this ALP

model. The proposed algorithm is able to provide a

promising solution to support the landing decision.

TABLE II

Notation and decision variable

Notations Explanation

i Aircraft ID i (i = 1,2, … , n)

n The maximum number of aircraft

r Runway ID r (r = 1,2, … m)

m The maximum number of runway

𝑆𝑖𝑗 The separation time between aircraft 𝑖 and 𝑗

scheduled on the same runway, 𝑆𝑖𝑗 ≥ 0

𝑒𝑖 The possible earliest landing time of aircraft 𝑖

Makespan Minimization in Aircraft Landing Problem under Congested Traffic

Situation using Modified Artificial Bee Colony Algorithm

K.K.H. NG, C.K.M. LEE
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China

kkh.ng@connect.polyu.hk , ckm.lee@polyu.edu.hk

This is the Pre-Published Version.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mailto:kkh.ng@connect.polyu.hk
mailto:ckm.lee@polyu.edu.hk

𝑙𝑖 The possible latest landing time of aircraft 𝑖
𝑇𝑖𝑟 The assigned landing time for aircraft 𝑖 on runway 𝑟

M Large number associated with the artificial variable

Decision

variables

Explanation

𝑥𝑖𝑟 1, if aircraft i is assigned to runway r; 0, otherwise

𝑦𝑗𝑖𝑟 1, if aircraft j is assigned to before aircraft i in a

consecutive sequence on the same runway r

0, otherwise

𝑇𝑖𝑟 The assigned landing time for aircraft I on the runway

r in schedule s, 𝑇𝑖𝑟 ≥ 0

𝐶𝑟 The total makespan of runway r in schedule s, 𝐶𝑟 ≥ 0

min 𝐶𝑟 (1)

s. t.

𝑥𝑗𝑟 + 𝑥𝑖𝑟 ≤ 1 − 𝑦𝑖𝑗𝑟 − 𝑦𝑗𝑖𝑟 , ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟 (2)

𝑦𝑗𝑖𝑟 + 𝑦𝑖𝑗𝑟 ≤ 1, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟 (3)

∑ 𝑥𝑖𝑟 = 1, ∀𝑖𝑚

𝑟=1 (4)

𝑒𝑖 ≤ 𝑇𝑖𝑟(X) ≤ 𝑙𝑖 , ∀𝑖 (5)

𝑇𝑖𝑟(X) − 𝑇𝑗𝑟(𝑋) ≥ 𝑆𝑗𝑖 × 𝑌𝑗𝑖𝑟 − 𝑀(1 − 𝑌𝑗𝑖𝑟), ∀𝑖, 𝑗, 𝑟 (6)

𝐶𝑟 ≥ 𝑇𝑖𝑟(𝑋) − 𝑀(1 − 𝑥𝑖𝑟𝑘), ∀𝑖, 𝑟 (7)

𝑥𝑖𝑟𝑘 ∈ {0,1}, ∀𝑖, 𝑟, 𝑘 (8)

𝑦𝑗𝑖𝑟 ∈ {0,1}, ∀𝑖, 𝑗, 𝑟 (9)

 Objective function (1) is to minimize the competition

of each runway 𝐶𝑟 by modifying the landing sequence,

named makespan minimization. In congested airport, the

runway loading is reaching to the maximum tolerance of

runway capacity. Makespan minimization is the approach

to schedule the incoming aircraft according to the earliest

landing time of each flight and separation time of two

consecutive aircraft. The separation time herein follows

the requirements from the literature [1]. Constraints (2) and

(3) calculate the consecutive sequence in Boolean value. If

aircraft 𝑖 and 𝑗 are assigned to runway 𝑟, 𝑦𝑗𝑖𝑟 equals to 1,

otherwise, 𝑦𝑗𝑖𝑟 equals to 0. Constraint (4) ensures that each

aircraft can only land on one runway. The landing time 𝑇𝑖

of each flight must lie on the time window [𝑒𝑖 , 𝑙𝑖] in

constraint (5). The separation time between aircraft classes

is to measure the minimum time requirement of flight 𝑖 and

𝑗 in terms of their flight classes. The landing time of the

trailing aircraft must be larger or equal to the summation of

previous landing time and separation requirement using

inequality equation (6). The makespan of each runway

must be larger than the completion landing time of all

flights 𝑇𝑖𝑟 on runway 𝑟 by constraint (7). The decision

variable 𝑥𝑖𝑟 and 𝑦𝑗𝑖𝑟 could be either 0 or 1 by the

constraints (8) and (9).

III. MODIFIED ARTIFICIAL BEE COLONY

ALGORITHM

 ABC algorithm is classified as a Swarm Intelligence

(SI) algorithm in optimization, which is proposed by

Karaboga [6]. The algorithm architecture includes three

main phases, which are initialization, exploitation phase

and exploration phase. Employed bees and onlooker bees

carry the random neighbourhood searching to the previous

solution so as to obtain better solution quality in the process

of exploitation, while the scout bee will terminate the

searching on a solution and replace by an initialized

solution when a solution is tripped in local optimal. The

termination criterion is measured by the number of

unsuccessful update. The detail descriptions are shown as

follows:

 Various probabilistic selection processes in the ABC

algorithm contribute to the ability in exploitation. First,

arbitrary neighbourhood searching provides randomness

during searching locally among each food source, which

enhances the ability to exploit unknown space from a

known solution by different types of operators. Second, the

greedy exploitation in the neighbourhood search operation

is applied in local selection achieved by employed bee and

onlooker bees when the neighbourhood solution 𝑐�̅� is more

desirable than the previous solution 𝑐𝑖 . Third, onlooker

bees will conduct a global probabilistic selection among

the discovered regions to encourage exploitation of better

solution by fitness proportionate selection. The fitness

proportionate selection follows the rule in roulette wheel

selection with a random number 𝑝. The method of ABC

algorithm in exploration employs scout bee phase to

terminate searching in worse candidate solutions, and has

the ability to escape from local optimum traps. Local

optima may exist and fail to converge to the global

optimum when a neighbourhood search is trapped.

TABLE III

Notation of artificial bee colony algorithm

Notations Explanation

CS The size of bee colony

SN The number of colony solution

MaxIter The maximum number of iteration

D The dimension of an independent solution

𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁 The position of each solution in bee colony

fun(𝑐𝑖) The objective value of solution 𝑐𝑖

fit(𝑐𝑖) The fitness value of solution 𝑐𝑖

𝐼𝑛𝑑𝑖𝑃𝑟𝑜𝑏𝑖 The probability of an individual solution 𝑐𝑖

among the entire colony in term of fitness

value

𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑏𝑖 The cumulative probability of an individual

solution 𝑐𝑖 in ascending order among the entire

colony in term of fitness value

𝑐�̅� The neighbour solution of an individual

solution 𝑐𝑖

trial(𝑐𝑖) The accumulated trial value of an individual

solution 𝑐𝑖, which cannot be enhanced the

quality of solution in terms of its objective
value

𝑙𝑖𝑚𝑖𝑡 The maximum tolerance of trial(𝑐𝑖)

𝑝 Random number, 0 ≤ 𝑝 ≤ 1

 Table III demonstrates the notation of ABC algorithm.

The size of bee colony is equal to CS. In a bee colony, half

of the bees are functioned as employed bees, and the

remaining are onlooker bees. Therefore, the number of

colony solutions SN equals half of the CS. The pseudo code

of ABC algorithm is illustrated in Table IV.

TABLE IV

Pseudo code of artificial bee colony algorithm

Algorithm Architecture

Initialization

 Generate the initial solution randomly for each individual

solution 𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁

Compute the objective value fun(𝑐𝑖) and fitness value

fit(𝑐𝑖) of each solution 𝑐𝑖

𝑓𝑖𝑡(𝑐𝑖) = {

1

1 + 𝑓𝑢𝑛(𝑐𝑖)
, 𝑖𝑓 𝑓𝑢𝑛(𝑐𝑖) ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑢𝑛(𝑐𝑖)), 𝑖𝑓 𝑓𝑢𝑛(𝑥𝑖) ≤ 0

, ∀𝑖

set Loop = 0

set MaxIter = Number of Aircraft × 1000

Exploitation Phase

do

Employed Bee Phase

Adopt neighbourhood operation for each solution 𝑐𝑖 , ∀𝑖 to

generate a neighborhood solution 𝑐�̅�

Calculate the objective value fun(𝑐�̅�) and fitness value fit(𝑐𝑖)̅̅̅̅

IF the neighbourhood solution 𝑐�̅� is better than original

solution 𝑐𝑖

 THEN

 𝑐𝑖 ← 𝑐�̅�

 ELSE

 trial(𝑐𝑖) = trial(𝑐𝑖) + 1

Onlooker Bee Phase

Calculate the selective probability of individual solution

𝑐𝑖 , ∀𝑖

𝐼𝑛𝑑𝑖𝑃𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡(𝑐𝑖)

∑ 𝑓𝑖𝑡(𝑐𝑖)𝑆𝑁
𝑖=1

, ∀𝑖

Compute the cumulative probability of each solution
𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑏𝑖 in ascending order

Rand generate a number 𝑝 in roulette wheel selection, and

select one solution 𝑐𝑖. The selected 𝑐𝑖 pass to employed bee

phase again.

Exploration Phase

 Scout Bee Phase

IF the trial of a solution 𝑐𝑖 , trial(𝑐𝑖) over the maximum

tolerance of neighbourhood searching 𝑙𝑖𝑚𝑖𝑡

 THEN

 Generate a new solution to replace solution 𝑐𝑖

 trial(𝑐𝑖) = 0

Find the best solution from the bee colony, 𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁

Record the current best solution as global solution

Stopping Criterion

while

Loop = Loop + 1

loop < MaxIter

Return the global solution

 The convergence from a random initial solution in

ABC algorithm to a promising region may take several

thousand iterations. The solution space may be too large to

coverage to global optimal using random assignment.

Certain promising solution may be abandoned as it overs

the maximum tolerance in searching optimal. One of the

easiest ways to solve this problem is to increase the

tolerance of searching, but this will further deteriorate the

ability of exploration, and limit the search coverage in a

solution space. Therefore, a constructive heuristics is

applied to provide a solution quality. The ABC algorithm

can further improve the solution without spending extra

effort to converge to a promising solution region. The

aircraft sequence is sorted based on their earliest landing

time. Each aircraft is randomly assigned to a runway, until

all flights are assigned. The random number in runway

assignment is to ensure the diversity between solutions so

as to avoid convergence problem in population-based

meta-heuristics. The pseudo code of constructive heuristic

is shown in Table V.

TABLE V

Constructive heuristics for initialization in aircraft landing problem

Modified Initialization Phase

Store the earliest landing time in permutation array 𝑝𝑒𝑟𝑚𝑢 and create

an ascending flight number in sequential array 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑝𝑒𝑟𝑚𝑢 = (𝑒1, 𝑒2, … , 𝑒𝑛−1, 𝑒𝑛)

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = (𝑖1, 𝑖2, … , 𝑖𝑛−1, 𝑖𝑛)

Sort the aircraft landing sequencing in ascending order based on the

target landing time 𝑒𝑖 in permutation array 𝑝𝑒𝑟𝑚𝑢 and revise the

corresponding sequential order in sequential array 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

Create a runway assignment using random number r, r = (1,2, … , m),

and take the first flight ID in 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and remove it afterwards.

Assign the flight ID to corresponding runway array

Until all the flight ID are assigned

 The employed bee phase adopts several

neighbourhood operators 𝑁𝑂 to generate a neighbourhood

solution iteratively in discrete ABC algorithm. This

operator randomly selects one or two elements to measure

the feasible revision in solution quality by objective value.

𝑁𝑂𝑆𝑤𝑎𝑝 : This neighbourhood operator randomly selects

two flights and swap their sequence and position. The swap

method can be applied on the same or different runways.

𝑁𝑂𝑖𝑛𝑠𝑒𝑟𝑡 : This neighbourhood operator randomly selects

one flight and insert to another position. The insert method

can be applied on the same or different runways.

𝑁𝑂𝑟𝑒𝑣𝑒𝑟𝑠𝑒 : This neighbourhood operator selects a

sequential range using random number, which is smaller

than the dimension of the solution size. Reverse order to

the selected region will be applied. Same position will be

filled up by a reversed sequence.

IV. EXPERIMENTAL RESULT AND DISCUSSION

 The proposed ABC algorithm is evaluated with a

randomly generated 18 ALP instances under high traffic

situation. The number of runway is ranged from 1 to 4. The

landing time is randomly generated within the landing time

window [LandingLB, LandingUB]. The instances with

equal or less than 15 aircraft are considered as small size

instances (ALP_1 to ALP_9), while the others are

considered as large size instances (ALP_10 to ALP_18).

The distribution of aircraft classes is either dominated by

large size, medium size or small size aircrafts. The

proposed ABC algorithm was coded in C# language with

visual studio 2015 on a computer with Intel Core i7 3.60

GHz CPU and 16.0 GB ram under Window 7 Enterprise

64-bit operating environment. The proposed algorithm is

compared with IBM CPLEX Optimizer and ABC algorithm

using the same operating system. The processing time of

Mixed Integer Programming (MIP) is limited by 3600

seconds in CPLEX Optimizer. The description of ALP

instances are shown in Table VI.

TABLE VI

The description of aircraft landing problem instances

No.

flight
ID

Landing

LB

Landing

UB
LSF MSF SSF

5 ALP_1 60 600 3 1 1

5 ALP_2 60 600 1 3 1

5 ALP_3 60 600 1 1 3

10 ALP_4 60 1200 6 2 2

10 ALP_5 60 1200 2 6 2

10 ALP_6 60 1200 2 2 6

15 ALP_7 60 1800 9 3 3

15 ALP_8 60 1800 3 9 3

15 ALP_9 60 1800 3 3 9

20 ALP_10 60 2400 12 4 4

20 ALP_11 60 2400 4 12 4

20 ALP_12 60 2400 4 4 12

25 ALP_13 60 3000 15 5 5

25 ALP_14 60 3000 5 15 5

25 ALP_15 60 3000 5 5 15

30 ALP_16 60 3600 18 6 6

30 ALP_17 60 3600 6 18 6

30 ALP_18 60 3600 6 6 18

 The parameter 𝑙𝑖𝑚𝑖𝑡 is equal to SN ∗ n ∗ m . The

number of iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 in our preliminary study is

equal to 1000n . Table VIII describes the experimental

result using modified ABC algorithm, and compared the

performances of MIP and ABC algorithm in terms of

objective value on average. Each instance was run 10 times

to summarize an average performance in objective value

and CPU. For the purpose of comparison, the average gap

of the objective values between solution from proposed

algorithm and optimal solution are indicated in the Table

VII to measure the ability of exploitation and exploration

to global optimal. The experimental results for the solution

obtained by modified ABC algorithm within no deviation

from the true optimal are excluded in the context for the

ease of presentation (% 𝐺𝑎𝑝𝑜𝑝𝑡 = 0.00) . Table VIII

illustrates that the modified ABC algorithm is able to

obtain a better solution in terms of objective value than

MIP model with the processing time requirement of 3600

seconds. The modified ABC algorithm outperforms MIP in

large size instance. The computational time for large size

instance with MIP is normally over than 3600 seconds.

Modified ABC algorithm is able to obtain a better solution

quality within 7 seconds, except the ALP_18 instances with

2 runways.

The original ABC algorithm is not stable to converge to the

optimal. The average deviation from optimal in percentage

for ABC and modified ABC algorithms are 4.44% and -

1.58% correspondingly. In this regard, the results indicate

the importance and contribution of constructive heuristic

for ABC algorithm. In addition, the average computational

time in modified ABC algorithm is less than the original

one (2.08sec < 2.32sec), as shown in Table VII. The result

herein can be interpreted as the number of abandoned

solution, which is significantly reduced and imply a lower

level of unsuccessful update from neighbourhood solution

by constructive heuristic.

TABLE VII

The average performance of experimental results

ABC Modified ABC

Avg. CPU Avg. % Gap

(Opt.)

Avg. CPU Avg. % Gap

(Opt.)

2.32 4.44% 2.08 -1.58%

Min % Gap Max % Gap Min % Gap Max % Gap

-21.08% 23.35% -24.45% 4.18%

TABLE VIII

The experimental result of aircraft landing problem instances

ID

No.

Runwa

y

Ins.

Node

MIP w/ CPLEX ABC Modified ABC

Makespan
CPU

(sec)

GAP

(LB)
Makespan CPU (sec)

Gap

(Opt.)
Makespan

CPU

(sec)

Gap

(Opt.)

ALP_1 1 1 514 <1 0.00% 541.0 <1 5.25% 514.9 <1 0.18%

ALP_3
1 9 507 <1 0.00% 526.0 <1 3.75% 528.2 <1 4.18%

2 10 420 <1 0.00% 423.0 <1 0.71% 421.8 <1 0.43%

ALP_5 1 17 1271 45.38 0.00% 1448.0 <1 13.93% 1314.2 <1 3.40%

ALP_6 1 21 1088 >3600 6.25% 1342.0 <1 23.35% 1116.2 <1 2.59%

ALP_7
1 25 1963 >3600 13.70% 2314.0 <1 17.88% 1982.1 <1 0.97%

3 27 1699 >3600 0.29% 1783.0 1.17 4.94% 1699.3 1.19 0.02%

ALP_9 1 33 2055 >3600 14.89% 2311.0 <1 12.46% 1936.7 <1 -5.76%

ALP_10 1 37 2581 >3600 12.55% 3080.0 1.44 19.33% 2470.8 1.24 -4.27%

ALP_11 1 41 2641 >3600 11.85% 3095.0 1.54 17.19% 2594.3 1.412 -1.77%

2 42 2388 >3600 2.51% 2581.0 2.11 8.08% 2381 1.87 -0.29%

3 43 2388 >3600 2.51% 2418.0 2.76 1.26% 2328 2.28 -2.51%

ALP_12 1 45 2410 >3600 2.66% 2915.0 1.53 20.95% 2348.6 1.27 -2.55%

ALP_13
1 49 3229 >3600 7.31% 3829.0 2.22 18.58% 2993 1.75 -7.31%

4 52 3341 >3600 10.42% 2993.0 4.87 -10.42% 2993 4.29 -10.42%

ALP_14

1 53 3133 >3600 10.61% 3764.5 2.21 20.16% 2974.1 1.91 -5.07%

2 54 2861 >3600 2.10% 3094.5 3.00 8.16% 2801 2.78 -2.10%

3 55 2903 >3600 3.51% 2906.2 3.96 0.11% 2801 3.55 -3.51%

4 56 2937 >3600 4.63% 2831.9 4.71 -3.58% 2801 4.26 -4.63%

ALP_15 1 57 2868 >3600 3.24% 3534.9 2.03 23.25% 2775 1.83 -3.24%

ALP_16

1 61 4232 >3600 18.71% 4892.9 2.56 15.62% 3680.9 2.62 -13.02%

2 62 3882 >3600 11.39% 3881.8 4.21 -0.01% 3440 3.78 -11.39%

3 63 3536 >3600 2.71% 3607.4 5.71 2.02% 3440 4.96 -2.71%

ALP_17

1 65 3576 >3600 1.68% 4285.1 3.02 19.83% 3516 2.68 -1.68%

3 67 3678 >3600 4.40% 3516.0 5.84 -4.40% 3516 4.92 -4.40%

4 68 3516 200.75 0.00% 3516.0 6.61 -4.40% 3516 5.86 -4.40%

ALP_18

1 69 4714 >3600 26.28% 4958.7 2.78 5.19% 3868.1 2.51 -17.94%

2 70 3416 >3600 19.49% 3942.3 4.04 15.41% 3534.1 3.56 3.46%

3 71 4650 >3600 25.27% 3669.7 5.00 -21.08% 3512.9 4.38 -24.45%

V. CONCLUSION

 In this article, the constructive heuristic for ABC

algorithm is proposed to meet the near time decision

making in aircraft landing problem under congested traffic

situation. The research focus has been revised in airport

aspect rather than in airline aspect under high level of

traffic in surface operation. The re-schedule can be done

within several seconds to reduce the impact of transient

queueing congestion with limited runway capacity. The

experimental results indicate the modified ABC algorithm

outperforms the MIP and original ABC to achieve better

results with limited computational requirement. The

further work in aircraft landing problem with congested

situation may refer to the development of robust landing

schedule. The consideration of unknown variable under

congested air traffic is a more realistic representation of

landing operation. The main concern is shifted to construct

a robust schedule that is able to examine all possible worst

scenarios with an analysis of flight time delay.

ACKNOWLEDGMENT

 The research is supported by The Hong Kong

Polytechnic University. The authors would like to thank the

research committee and the Department of Industrial and

Systems Engineering of the Hong Kong Polytechnic

University for support of this project (RU8H).

REFERENCES

[1] H. Balakrishnan and B. G. Chandran, "Algorithms

for scheduling runway operations under

constrained position shifting," Operations

Research, vol. 58, pp. 1650-1665, 2010.

[2] H. Pinol and J. E. Beasley, "Scatter search and

bionomic algorithms for the aircraft landing

problem," European Journal of Operational

Research, vol. 171, pp. 439-462, 2006.

[3] A. Salehipour, M. Modarres, and L. M. Naeni,

"An efficient hybrid meta-heuristic for aircraft

landing problem," Computers & Operations

Research, vol. 40, pp. 207-213, 2013.

[4] N. R. Sabar and G. Kendall, "An iterated local

search with multiple perturbation operators and

time varying perturbation strength for the aircraft

landing problem," Omega, vol. 56, pp. 88-98,

2015.

[5] J. Beasley, J. Sonander, and P. Havelock,

"Scheduling aircraft landings at London

Heathrow using a population heuristic," Journal

of the operational Research Society, pp. 483-493,

2001.

[6] D. Karaboga, "An idea based on honey bee swarm

for numerical optimization," Technical report-

tr06, Erciyes university, engineering faculty,

computer engineering department2005.

