
Abstract – Due to the increase in air transportation 

demand, runway capacity is reaching a bottleneck at the 

international airports, especially during peak hours. 

Managing on aircraft sequencing or sequencing problems in 

airport perspective have become a crucial operation 

nowadays in order to maintain  safety landing and utilize the 

runway facility to handle the schedules for all incoming 

aircraft under congestion. The traditional approach allows 

aircraft to remain an economic speed during approaching to 

the airport.  However, such approach may not be applicable 

in congested air traffic situation. Therefore, the makespan 

minimization is more practical for the rescheduling efforts 

afterwards. This article presents a modified artificial bee 

colony algorithm to obtain nearly optimal solution to support 

the air tower controller in order to obtain last-minute 

decisions of landing sequence. The modified artificial bee 

colony algorithm for aircraft landing problem provides a 

promising optimal search within 6.1 seconds to handle last-

minute disruption.  

Keywords – Aircraft landing problem, Air traffic control, 

Meta-heuristics, Artificial bee colony algorithm 

I. INTRODUCTION

Aircraft Landing Problem (ALP) is one of the major 

attributes in Air Traffic Flow Management to maintain 

smooth air traffic in from airspace to the corresponding 

airport. The runway capacity is the key bottleneck for the 

aircraft landing system. The cost of delays may rise due to 

late departure, reassignment and customer dissatisfaction. 

The current approach in ALP follows the rule of First-

Come-First-Serve (FCFS) to arrange the landing sequence. 

The landing time is not exactly same as the earliest arrival 

time of a flight, as the air tower control must follow the 

standard landing procedure in order to sustain a safe 

landing sequence and schedule. Since aircraft landing 

generates vortices that create adverse effect to the trailing 

aircraft, separation time between two aircraft must be 

considered in the landing schedule. The separation time is 

mainly determined by the flight classes matrix in terms of 

time [1]. In this regard, the total makespan of the runway 

may not necessarily be the optimal solution using the FCFS 

approach. 

In normal traffic situation, the landing decision is 

based on the target landing time of incoming flights. 

Flights remain an economic speed in reaching to the airport. 

The objective in such situation is to minimize the total 

tardiness of all flights from the target landing time, which 

means that a penalty cost will exist with earlier or late 

arrival. In contrast, the total makespan is expected to be 

lengthy, as the airline aims to maintain a low cost in air 

transport [2-4]. Under congested traffic scenario, certain 

runway capacity is omitted if the model has taken tardiness 

as an objective function. In order to reduce the 

deterioration of following flight schedules, makespan 

minimization in airport aspect should be respected [1].   

Meta-heuristics research in ALP model is much more 

preferable in handling last-minute changes under 

congested air traffic, since the computational time using 

exact method is lengthy that could not meet with the near 

time decision in air tower control. Typical examples 

include Genetic algorithm [5], Simulated Annealing [3] 

and Iterated Local Search [4]. This research is the first 

attempt to apply Artificial Bee Colony algorithm in ALP 

model, and the proposed algorithm yields a better optimal 

solution within several seconds.  

TABLE I 

Separation time between two consecutive flights for safe landing [1] 

Following aircraft 

SSF MSF LSF 

Leading 

aircraft 

SSF 82 69 60 

MSF 131 69 60 

LSF 196 157 96 

SSF = Small size flight 

MSF = Medium size flight 

LSF = Large size flight 

II. PROBLEM FORMULATION

The ALP model under congested traffic scenario is to 

minimize the overall completion or makespan of a runway 

with hard constraints in separation requirement.  Table II 

shows the notation and decision variables in this ALP 

model. The proposed algorithm is able to provide a 

promising solution to support the landing decision. 

TABLE II 

Notation and decision variable 

Notations Explanation 

i Aircraft ID i (i = 1,2, … , n) 

n The maximum number of aircraft 

r Runway ID r (r = 1,2, … m) 

m The maximum number of runway 

𝑆𝑖𝑗 The separation time between aircraft 𝑖 and 𝑗 

scheduled on the same runway, 𝑆𝑖𝑗 ≥ 0 

𝑒𝑖  The possible earliest landing time of aircraft 𝑖 
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𝑙𝑖 The possible latest landing time of aircraft 𝑖 
𝑇𝑖𝑟 The assigned landing time for aircraft 𝑖 on runway 𝑟 

M Large number associated with the artificial variable 

Decision 

variables 

Explanation 

𝑥𝑖𝑟 1, if aircraft i is assigned to runway r; 0, otherwise 

𝑦𝑗𝑖𝑟 1, if aircraft j is assigned to before aircraft i in a 

consecutive sequence on the same runway r 

0, otherwise 

𝑇𝑖𝑟 The assigned landing time for aircraft I on the runway 

r in schedule s, 𝑇𝑖𝑟 ≥ 0 

𝐶𝑟 The total makespan of runway r in schedule s, 𝐶𝑟 ≥ 0 

 

min 𝐶𝑟            (1) 

 

s. t. 
 

𝑥𝑗𝑟 + 𝑥𝑖𝑟 ≤ 1 − 𝑦𝑖𝑗𝑟 − 𝑦𝑗𝑖𝑟 , ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟    (2) 

 

𝑦𝑗𝑖𝑟 + 𝑦𝑖𝑗𝑟 ≤ 1, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑟       (3) 

 
∑ 𝑥𝑖𝑟 = 1, ∀𝑖𝑚

𝑟=1           (4) 

 

𝑒𝑖 ≤ 𝑇𝑖𝑟(X) ≤ 𝑙𝑖 , ∀𝑖         (5) 

 

𝑇𝑖𝑟(X) − 𝑇𝑗𝑟(𝑋) ≥ 𝑆𝑗𝑖 × 𝑌𝑗𝑖𝑟 − 𝑀(1 − 𝑌𝑗𝑖𝑟), ∀𝑖, 𝑗, 𝑟  (6) 

 

𝐶𝑟 ≥ 𝑇𝑖𝑟(𝑋) − 𝑀(1 − 𝑥𝑖𝑟𝑘), ∀𝑖, 𝑟      (7) 

 

𝑥𝑖𝑟𝑘 ∈ {0,1}, ∀𝑖, 𝑟, 𝑘            (8) 

 

𝑦𝑗𝑖𝑟 ∈ {0,1}, ∀𝑖, 𝑗, 𝑟          (9) 

 

 

 Objective function (1) is to minimize the competition 

of each runway 𝐶𝑟  by modifying the landing sequence, 

named makespan minimization. In congested airport, the 

runway loading is reaching to the maximum tolerance of 

runway capacity. Makespan minimization is the approach 

to schedule the incoming aircraft according to the earliest 

landing time of each flight and separation time of two 

consecutive aircraft.  The separation time herein follows 

the requirements from the literature [1]. Constraints (2) and 

(3) calculate the consecutive sequence in Boolean value. If 

aircraft 𝑖 and 𝑗 are assigned to runway 𝑟, 𝑦𝑗𝑖𝑟  equals to 1, 

otherwise, 𝑦𝑗𝑖𝑟  equals to 0. Constraint (4) ensures that each 

aircraft can only land on one runway. The landing time 𝑇𝑖  

of each flight must lie on the time window [ 𝑒𝑖 , 𝑙𝑖 ] in 

constraint (5). The separation time between aircraft classes 

is to measure the minimum time requirement of flight 𝑖 and 

𝑗 in terms of their flight classes. The landing time of the 

trailing aircraft must be larger or equal to the summation of 

previous landing time and separation requirement using 

inequality equation (6). The makespan of each runway 

must be larger than the completion landing time of all 

flights 𝑇𝑖𝑟  on runway 𝑟  by constraint (7). The decision 

variable  𝑥𝑖𝑟  and 𝑦𝑗𝑖𝑟  could be either 0 or 1 by the 

constraints (8) and (9). 

 

III. MODIFIED ARTIFICIAL BEE COLONY 

ALGORITHM 

 

 ABC algorithm is classified as a Swarm Intelligence 

(SI) algorithm in optimization, which is proposed by 

Karaboga [6]. The algorithm architecture includes three 

main phases, which are initialization, exploitation phase 

and exploration phase. Employed bees and onlooker bees 

carry the random neighbourhood searching to the previous 

solution so as to obtain better solution quality in the process 

of exploitation, while the scout bee will terminate the 

searching on a solution and replace by an initialized 

solution when a solution is tripped in local optimal. The 

termination criterion is measured by the number of 

unsuccessful update. The detail descriptions are shown as 

follows: 

 

 Various probabilistic selection processes in the ABC 

algorithm contribute to the ability in exploitation. First, 

arbitrary neighbourhood searching provides randomness 

during searching locally among each food source, which 

enhances the ability to exploit unknown space from a 

known solution by different types of operators. Second, the 

greedy exploitation in the neighbourhood search operation 

is applied in local selection achieved by employed bee and 

onlooker bees when the neighbourhood solution 𝑐𝑖̅ is more 

desirable than the previous solution 𝑐𝑖 . Third, onlooker 

bees will conduct a global probabilistic selection among 

the discovered regions to encourage exploitation of better 

solution by fitness proportionate selection. The fitness 

proportionate selection follows the rule in roulette wheel 

selection with a random number 𝑝. The method of ABC 

algorithm in exploration employs scout bee phase to 

terminate searching in worse candidate solutions, and has 

the ability to escape from local optimum traps. Local 

optima may exist and fail to converge to the global 

optimum when a neighbourhood search is trapped.  

 

TABLE III 

Notation of artificial bee colony algorithm 

 
Notations Explanation 

CS The size of bee colony 

SN The number of colony solution 

MaxIter The maximum number of iteration 

D The dimension of an independent solution 

𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁 The position of each solution in bee colony 

fun(𝑐𝑖) The objective value of solution 𝑐𝑖 

fit(𝑐𝑖) The fitness value of solution 𝑐𝑖 

𝐼𝑛𝑑𝑖𝑃𝑟𝑜𝑏𝑖 The probability of an individual solution 𝑐𝑖 

among the entire colony in term of fitness 

value 

𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑏𝑖 The cumulative probability of an individual 

solution 𝑐𝑖 in ascending order among the entire 

colony in term of fitness value 

𝑐𝑖̅ The neighbour solution of an individual 

solution 𝑐𝑖 

trial(𝑐𝑖) The accumulated trial value of an individual 

solution 𝑐𝑖, which cannot be enhanced the 

quality of solution in terms of its objective 
value 

𝑙𝑖𝑚𝑖𝑡 The maximum tolerance of  trial(𝑐𝑖) 

𝑝 Random number, 0 ≤ 𝑝 ≤ 1 



 

 

 Table III demonstrates the notation of ABC algorithm. 

The size of bee colony is equal to CS. In a bee colony, half 

of the bees are functioned as employed bees, and the 

remaining are onlooker bees. Therefore, the number of 

colony solutions SN equals half of the CS. The pseudo code 

of ABC algorithm is illustrated in Table IV.  

TABLE IV 

Pseudo code of artificial bee colony algorithm 

 

Algorithm Architecture 

Initialization 

 Generate the initial solution randomly for each individual 

solution 𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁 

Compute the objective value fun(𝑐𝑖) and fitness value 

fit(𝑐𝑖) of each solution 𝑐𝑖 

𝑓𝑖𝑡(𝑐𝑖) = {

1

1 + 𝑓𝑢𝑛(𝑐𝑖)
, 𝑖𝑓 𝑓𝑢𝑛(𝑐𝑖) ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑢𝑛(𝑐𝑖)), 𝑖𝑓 𝑓𝑢𝑛(𝑥𝑖) ≤ 0

, ∀𝑖 

set Loop = 0 

set MaxIter = Number of Aircraft × 1000 

Exploitation Phase 

do  

Employed Bee Phase 

Adopt neighbourhood operation for each solution 𝑐𝑖 , ∀𝑖 to 

generate a neighborhood solution 𝑐𝑖̅ 

Calculate the objective value fun(𝑐𝑖̅) and fitness value fit(𝑐𝑖)̅̅̅̅  

IF the neighbourhood solution 𝑐𝑖̅  is better than original 

solution 𝑐𝑖 

     THEN 

                 𝑐𝑖 ← 𝑐𝑖̅ 

     ELSE 

                trial(𝑐𝑖) = trial(𝑐𝑖) + 1 

Onlooker Bee Phase 

Calculate the selective probability of individual solution 

𝑐𝑖 , ∀𝑖 

𝐼𝑛𝑑𝑖𝑃𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡(𝑐𝑖)

∑ 𝑓𝑖𝑡(𝑐𝑖)𝑆𝑁
𝑖=1

, ∀𝑖 

Compute the cumulative probability of each solution  
𝐶𝑢𝑚𝑢𝑃𝑟𝑜𝑏𝑖 in ascending order 

Rand generate a number 𝑝 in roulette wheel selection, and 

select one solution 𝑐𝑖. The selected 𝑐𝑖 pass to employed bee 

phase again. 

Exploration Phase 

 Scout Bee Phase 

IF the trial of a solution 𝑐𝑖 , trial(𝑐𝑖)  over the maximum 

tolerance of neighbourhood searching 𝑙𝑖𝑚𝑖𝑡 

     THEN 

                Generate a new solution to replace solution 𝑐𝑖 

                trial(𝑐𝑖) = 0 

Find the best solution from the bee colony, 𝑐𝑖,𝑖 = 1,2, … , 𝑆𝑁 

Record the current best solution as global solution 

Stopping Criterion 

 

while 

Loop = Loop + 1 

loop < MaxIter 

Return the global solution 

 

 The convergence from a random initial solution in 

ABC algorithm to a promising region may take several 

thousand iterations. The solution space may be too large to 

coverage to global optimal using random assignment. 

Certain promising solution may be abandoned as it overs 

the maximum tolerance in searching optimal. One of the 

easiest ways to solve this problem is to increase the 

tolerance of searching, but this will further deteriorate the 

ability of exploration, and limit the search coverage in a 

solution space. Therefore, a constructive heuristics is 

applied to provide a solution quality. The ABC algorithm 

can further improve the solution without spending extra 

effort to converge to a promising solution region. The 

aircraft sequence is sorted based on their earliest landing 

time. Each aircraft is randomly assigned to a runway, until 

all flights are assigned. The random number in runway 

assignment is to ensure the diversity between solutions so 

as to avoid convergence problem in population-based 

meta-heuristics. The pseudo code of constructive heuristic 

is shown in Table V.  

 

TABLE V 

Constructive heuristics for initialization in aircraft landing problem 

 
Modified Initialization Phase 

Store the earliest landing time in permutation array 𝑝𝑒𝑟𝑚𝑢 and create 

an ascending flight number in sequential array 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

 

𝑝𝑒𝑟𝑚𝑢 = (𝑒1, 𝑒2, … , 𝑒𝑛−1, 𝑒𝑛) 

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = (𝑖1, 𝑖2, … , 𝑖𝑛−1, 𝑖𝑛) 

 

Sort the aircraft landing sequencing in ascending order based on the 

target landing time 𝑒𝑖  in permutation array 𝑝𝑒𝑟𝑚𝑢  and revise the 

corresponding sequential order in sequential array 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  

 

Create a runway assignment using random number r, r = (1,2, … , m), 

and take the first flight ID in 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and remove it afterwards. 

 

Assign the flight ID to corresponding runway array 
 

Until all the flight ID are assigned 

 

 The employed bee phase adopts several 

neighbourhood operators 𝑁𝑂 to generate a neighbourhood 

solution iteratively in discrete ABC algorithm. This 

operator randomly selects one or two elements to measure 

the feasible revision in solution quality by objective value.  

 

𝑁𝑂𝑆𝑤𝑎𝑝 : This neighbourhood operator randomly selects 

two flights and swap their sequence and position. The swap 

method can be applied on the same or different runways. 

 

𝑁𝑂𝑖𝑛𝑠𝑒𝑟𝑡 : This neighbourhood operator randomly selects 

one flight and insert to another position. The insert method 

can be applied on the same or different runways. 

 

𝑁𝑂𝑟𝑒𝑣𝑒𝑟𝑠𝑒 : This neighbourhood operator selects a 

sequential range using random number, which is smaller 

than the dimension of the solution size. Reverse order to 

the selected region will be applied. Same position will be 

filled up by a reversed sequence. 

IV. EXPERIMENTAL RESULT AND DISCUSSION 

 

 The proposed ABC algorithm is evaluated with a 

randomly generated 18 ALP instances under high traffic 

situation. The number of runway is ranged from 1 to 4. The 

landing time is randomly generated within the landing time 

window [ LandingLB, LandingUB ]. The instances with 

equal or less than 15 aircraft are considered as small size 

instances (ALP_1 to ALP_9), while the others are 

considered as large size instances (ALP_10 to ALP_18). 

The distribution of aircraft classes is either dominated by 



 

large size, medium size or small size aircrafts. The 

proposed ABC algorithm was coded in C# language with 

visual studio 2015 on a computer with Intel Core i7 3.60 

GHz CPU and 16.0 GB ram under Window 7 Enterprise 

64-bit operating environment. The proposed algorithm is 

compared with IBM CPLEX Optimizer and ABC algorithm 

using the same operating system. The processing time of 

Mixed Integer Programming (MIP) is limited by 3600 

seconds in CPLEX Optimizer. The description of ALP 

instances are shown in Table VI.  

 

TABLE VI 

The description of aircraft landing problem instances 

 
No. 

flight 
ID 

Landing 

LB 

Landing 

UB 
LSF MSF SSF 

5 ALP_1 60 600 3 1 1 

5 ALP_2 60 600 1 3 1 

5 ALP_3 60 600 1 1 3 

10 ALP_4 60 1200 6 2 2 

10 ALP_5 60 1200 2 6 2 

10 ALP_6 60 1200 2 2 6 

15 ALP_7 60 1800 9 3 3 

15 ALP_8 60 1800 3 9 3 

15 ALP_9 60 1800 3 3 9 

20 ALP_10 60 2400 12 4 4 

20 ALP_11 60 2400 4 12 4 

20 ALP_12 60 2400 4 4 12 

25 ALP_13 60 3000 15 5 5 

25 ALP_14 60 3000 5 15 5 

25 ALP_15 60 3000 5 5 15 

30 ALP_16 60 3600 18 6 6 

30 ALP_17 60 3600 6 18 6 

30 ALP_18 60 3600 6 6 18 

 

 The parameter 𝑙𝑖𝑚𝑖𝑡  is equal to SN ∗ n ∗ m . The 

number of iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 in our preliminary study is 

equal to 1000n . Table VIII describes the experimental 

result using modified ABC algorithm, and compared the 

performances of MIP and ABC algorithm in terms of 

objective value on average. Each instance was run 10 times 

to summarize an average performance in objective value 

and CPU. For the purpose of comparison, the average gap 

of the objective values between solution from proposed 

algorithm and optimal solution are indicated in the Table 

VII to measure the ability of exploitation and exploration 

to global optimal. The experimental results for the solution 

obtained by modified ABC algorithm within no deviation 

from the true optimal are excluded in the context for the 

ease of presentation (% 𝐺𝑎𝑝𝑜𝑝𝑡 = 0.00) . Table VIII 

illustrates that the modified ABC algorithm is able to 

obtain a better solution in terms of objective value than 

MIP model with the processing time requirement of 3600 

seconds. The modified ABC algorithm outperforms MIP in 

large size instance. The computational time for large size 

instance with MIP is normally over than 3600 seconds. 

Modified ABC algorithm is able to obtain a better solution 

quality within 7 seconds, except the ALP_18 instances with 

2 runways.  

 

The original ABC algorithm is not stable to converge to the 

optimal. The average deviation from optimal in percentage 

for ABC and modified ABC algorithms are 4.44% and -

1.58% correspondingly. In this regard, the results indicate 

the importance and contribution of constructive heuristic 

for ABC algorithm. In addition, the average computational 

time in modified ABC algorithm is less than the original 

one (2.08sec < 2.32sec), as shown in Table VII. The result 

herein can be interpreted as the number of abandoned 

solution, which is significantly reduced and imply a lower 

level of unsuccessful update from neighbourhood solution 

by constructive heuristic.  

 

TABLE VII 

The average performance of experimental results 
 

ABC Modified ABC 

Avg. CPU Avg. % Gap 

(Opt.) 

Avg. CPU Avg. % Gap 

(Opt.) 

2.32 4.44% 2.08 -1.58% 

Min % Gap Max % Gap Min % Gap Max % Gap 

-21.08% 23.35% -24.45% 4.18% 

 

TABLE VIII 

The experimental result of aircraft landing problem instances 

 

ID 

No. 

Runwa

y 

Ins. 

Node 

MIP w/ CPLEX ABC Modified ABC 

Makespan 
CPU 

(sec) 

GAP 

(LB) 
Makespan CPU (sec) 

Gap 

(Opt.) 
Makespan 

CPU 

(sec) 

Gap 

(Opt.) 

ALP_1 1 1 514 <1 0.00% 541.0 <1 5.25% 514.9 <1 0.18% 

ALP_3 
1 9 507 <1 0.00% 526.0 <1 3.75% 528.2 <1 4.18% 

2 10 420 <1 0.00% 423.0 <1 0.71% 421.8 <1 0.43% 

ALP_5 1 17 1271 45.38 0.00% 1448.0 <1 13.93% 1314.2 <1 3.40% 

ALP_6 1 21 1088 >3600 6.25% 1342.0 <1 23.35% 1116.2 <1 2.59% 

ALP_7 
1 25 1963 >3600 13.70% 2314.0 <1 17.88% 1982.1 <1 0.97% 

3 27 1699 >3600 0.29% 1783.0 1.17 4.94% 1699.3 1.19 0.02% 

ALP_9 1 33 2055 >3600 14.89% 2311.0 <1 12.46% 1936.7 <1 -5.76% 

ALP_10 1 37 2581 >3600 12.55% 3080.0 1.44 19.33% 2470.8 1.24 -4.27% 

ALP_11 1 41 2641 >3600 11.85% 3095.0 1.54 17.19% 2594.3 1.412 -1.77% 



 

2 42 2388 >3600 2.51% 2581.0 2.11 8.08% 2381 1.87 -0.29% 

3 43 2388 >3600 2.51% 2418.0 2.76 1.26% 2328 2.28 -2.51% 

ALP_12 1 45 2410 >3600 2.66% 2915.0 1.53 20.95% 2348.6 1.27 -2.55% 

ALP_13 
1 49 3229 >3600 7.31% 3829.0 2.22 18.58% 2993 1.75 -7.31% 

4 52 3341 >3600 10.42% 2993.0 4.87 -10.42% 2993 4.29 -10.42% 

ALP_14 

1 53 3133 >3600 10.61% 3764.5 2.21 20.16% 2974.1 1.91 -5.07% 

2 54 2861 >3600 2.10% 3094.5 3.00 8.16% 2801 2.78 -2.10% 

3 55 2903 >3600 3.51% 2906.2 3.96 0.11% 2801 3.55 -3.51% 

4 56 2937 >3600 4.63% 2831.9 4.71 -3.58% 2801 4.26 -4.63% 

ALP_15 1 57 2868 >3600 3.24% 3534.9 2.03 23.25% 2775 1.83 -3.24% 

ALP_16 

1 61 4232 >3600 18.71% 4892.9 2.56 15.62% 3680.9 2.62 -13.02% 

2 62 3882 >3600 11.39% 3881.8 4.21 -0.01% 3440 3.78 -11.39% 

3 63 3536 >3600 2.71% 3607.4 5.71 2.02% 3440 4.96 -2.71% 

ALP_17 

1 65 3576 >3600 1.68% 4285.1 3.02 19.83% 3516 2.68 -1.68% 

3 67 3678 >3600 4.40% 3516.0 5.84 -4.40% 3516 4.92 -4.40% 

4 68 3516 200.75 0.00% 3516.0 6.61 -4.40% 3516 5.86 -4.40% 

ALP_18 

1 69 4714 >3600 26.28% 4958.7 2.78 5.19% 3868.1 2.51 -17.94% 

2 70 3416 >3600 19.49% 3942.3 4.04 15.41% 3534.1 3.56 3.46% 

3 71 4650 >3600 25.27% 3669.7 5.00 -21.08% 3512.9 4.38 -24.45% 

V.  CONCLUSION 

 

 In this article, the constructive heuristic for ABC 

algorithm is proposed to meet the near time decision 

making in aircraft landing problem under congested traffic 

situation. The research focus has been revised in airport 

aspect rather than in airline aspect under high level of 

traffic in surface operation. The re-schedule can be done 

within several seconds to reduce the impact of transient 

queueing congestion with limited runway capacity. The 

experimental results indicate the modified ABC algorithm 

outperforms the MIP and original ABC to achieve better 

results with limited computational requirement. The 

further work in aircraft landing problem with congested 

situation may refer to the development of robust landing 

schedule. The consideration of unknown variable under 

congested air traffic is a more realistic representation of 

landing operation. The main concern is shifted to construct 

a robust schedule that is able to examine all possible worst 

scenarios with an analysis of flight time delay.  
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