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An acoustic vector-sensor consists of three identical but orthogonally oriented acoustic particle-ve-

locity sensors, plus a pressure sensor—all spatially collocated in a point-like geometry. At any point

in space, this tri-axial acoustic vector-sensor can sample an acoustic wavefield as a 3� 1 vector,
instead of simply as a scalar of pressure. This vector, after proper self-normalization, would indicate

the incident wave-field’s propagation direction, and thus the incident emitter’s azimuth-elevation

direction-of-arrival. This “self-normalization” direction-of-arrival estimator is predicated on the spa-

tial-collocation among the three particle-velocity sensors and the pressure-sensor. This collocation

constriction is relaxed here by this presently proposed idea, to realize a spatially distributed acoustic

vector-sensor, allowing its four component-sensors to be separately located. This proposed scheme

not only retains the algorithmic advantages of the aforementioned “self-normalization” direction-of-

arrival estimator, but also will significantly extend the spatial aperture to improve the direction-find-

ing accuracy by orders of magnitude. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4792149]

PACS number(s): 43.30.Yj [ZHM] Pages: 1987–1995

I. INTRODUCTION

A. The acoustic particle-velocity sensor

Customary microphones (or hydrophones) treat the

acoustic wavefield as a space-time field of pressure, which is

a scalar at any specific time instant and any specific spatial

location. Thereby overlooked is the underlying acoustic

“particle-velocity vector”—a three-dimensional vector repre-

senting the pressure-field’s three partial derivatives, taken

with respect to the three Cartesian spatial coordinates. To

physically measure any one such Cartesian component of this

acoustic particle-velocity vector, needed is an acoustic

particle-velocity sensor oriented along that Cartesian axis.

Acoustic particle-velocity sensor technology has been

used in underwater-acoustics and air-acoustics for over a

century,1 and continues to draw interest.2,3 The acoustic

particle-velocity sensor’s various hardware implementations

are discussed in Ref. 4.

B. The customary acoustic vector-sensor: Three
orthogonally oriented particle-velocity sensors
collocating with a pressure sensor

The acoustic vector-sensor (i.e., vector-hydrophone),

consists of three acoustic particle-velocity sensors (identical,

collocated, but oriented orthogonally) plus an acoustic

pressure-sensor—these four component-sensors together con-

stitute one acoustic vector-sensor. Such an acoustic vector-

sensor thereby distinctly measures each Cartesian component

of the particle-velocity vector plus the pressure scalar, all at

the same point in three-dimensional space.

Mathematically, for an acoustic vector-sensor located at

the Cartesian coordinates’ origin, it would have the 4� 1

array-manifold5–8

aðh;/Þ def

uðh;/Þ
vðh;/Þ
wðhÞ

1

2
664

3
775def

sin h cos /
sin h sin /

cos h
1

2
664

3
775 (1)

in response to an incoming unit-power acoustic wave, that

has traveled from the far field through an homogeneous iso-

tropic medium. In the above, h 2 [0, p] symbolizes

the elevation-angle measured from the positive z-axis, /
2 [0, 2p) denotes the azimuth-angle measured from the posi-

tive x-axis, and u(h, /), v(h, /), w(h), respectively, refer to

the direction-cosines along the x-, y-, and z-axis. The first,

second, and third elements in a(h, /) each corresponds to an

acoustic velocity-sensor aligned along the x-, y-, and z-axis,

respectively. The array-manifold’s fourth element corre-

sponds to the acoustic pressure-sensor.

For a literature survey of the acoustic vector-sensor’s

hardware implementations, sea/air trials and associated

direction-finding algorithms, please see Refs. 9–11. Air acous-

tic vector-sensors are commercially available as the “Ultimate

Sound Probe” from Microflown Technologies in the Nether-

lands. Underwater acoustic vector-sensors are commercially

available as the “Uniaxial P-U Probe” from Acoustech Corpo-

ration in the United States.

C. The acoustic vector-sensor’s advantages
in eigen-based direction-finding

The acoustic vector-sensor’s unique array-manifold

is advantageous to eigen-based direction-finding algorithms.

It has been exploited using these various eigen-based
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parameter-estimation algorithms: “Estimation of Signal Pa-

rameters via a Rotation Invariance Technique” (ESPRIT),

the Capon method, “Multiple Signal Classification”

(MUSIC), Root-MUSIC, quaternion-MUSIC, beamspace-

based DOA-estimation, or other subspace-based parameter-

estimation methods. The acoustic vector-sensor has also

been used for source-tracking. Please see Ref. 11 for a com-

prehensive literature review on such eigen-based direction-

finding methods for the acoustic vector-sensor.

The above eigen-based algorithms eigen-decompose the

space-time data-correlation matrix, to estimate each incident

source’s steering vector a as â ¼ ca, to within an unknown

complex-value scalar c. Then, normalize â to give
ffiffiffi
2
p

â=kâk,
of which the top three elements will be unambiguous esti-

mates of the three Cartesian direction-cosines u(h, /), v(h, /),

and w(h). Thereby, direction finding is thereby achieved, de-

spite the unknown complex-value c mentioned above.

It is important to recognize that the above “self normal-

ization” approach of direction-finding is predicated on a unity

value for the fourth component regardless of the arrival-

angles of h and /. This fact is used in the subsequently pre-

sented (4) and (14) to (16).

This acoustic vector-sensor “self-normalization” direc-

tion-finding is advantageous in the following ways.

{1} A four-component acoustic vector-sensor exploits infor-

mation in the particle-velocity vector-field, in addition

to the information in the pressure scalar field.

{2} Multiple incident sources’ azimuth-angles and the

elevation-angles may be estimated and automatically

matched, using only one acoustic vector-sensor.12

{3} This self-normalization direction-finding approach may

be creatively synergized with the customary interferom-

etry direction-finding approach (which estimates the

spatial phase delay among the data sets collected at

physically displaced antennas) to offer unusual capabil-

ities: (a) Direction-of-arrival improvement in estimation

accuracy (under idealized scenarios) without additional

microphones/hydrophones;13 (b) no prior knowledge/

estimation is required of the nominal/actual geometric

array-grid and no calibration-source is needed, for direc-

tion-of-arrival estimation;14 and (c) no coarse estimate is

a priori needed to initiate the iteration required by

MUSIC. Instead, MUSIC becomes “self-initiating.”15

D. This work’s contributions

The direction-of-arrival estimation precision of a sensor-

array depends on the spatial extent of the array aperture. The

larger the aperture is, the finer the sensor-array’s resolution

will be for the direction-of-arrival. Unfortunately, the acoustic

vector-sensor’s spatial collocation gives a point-like aperture

in space. While this spatial collocation simplifies the mathe-

matics governing the acoustic vector-sensor’s array manifold,

thereby making possible the “self-normalization” approach of

direction finding, it would be useful if the aperture may be

enlarged without increasing the number of component-

sensors, while retaining the full advantages of {1}–{3} above.

Moreover, hardware-wise, it could be difficult and costly to

physically collocate (or co-center) the four component-

sensors all exactly at one point in space. This work will show

how to displace the four component-sensors, while still retain-

ing the aforementioned algorithmic advantages.

This contribution is nontrivial, as spatially spread
particle-velocity sensors suffer phase-shifts among them,

due to their displacements. Therefore, the array-manifold of

(1) would become inapplicable, and the “self-normalization”

direction-finding approach would apparently be inapplicable.

Nonetheless, this paper succeeds in advancing a class of new

closed-form direction-finding algorithms applicable even

when the four component-sensors spread out arbitrarily in

the three-dimensional space.

Besides retaining advantages {1}–{3} above, the pres-

ently proposed new class of algorithms also provide these

additional advantages.

{4} The spatial resolution is enhanced over the azimuth/ele-

vation, because the four component-sensors now extend

over a larger spatial aperture (instead of co-centered at

one point). That is, the present scheme spatially extends

the geometric aperture, but requires no additional com-

ponent-sensor.

{5} Hardware can be simplified, as the four component-

sensors need no longer be collocated, thereby reducing

the hardware cost.

The remainder of this paper is as follows: The new

approach will be developed first for a simple array-geometry

in Sec. II, as an illustrative case. For the general case of an ar-
bitrary array-configuration of spatially spread particle-

velocity sensors and pressure sensor, the new approach will

be fully developed in Sec. III. Section IV will show how to

adopt this new scheme to an eigen-based parameter-estima-

tion algorithm, in the case of one acoustic vector-sensor,

using12 as a concrete example. Section V will do the same,

but for the case of multiple acoustic vector-sensors, using14 as

a concrete example. Monte Carlo simulations there will verify

the proposed scheme’s efficacy in direction finding, despite

FIG. 1. (Color online) The “pyramid-like” array configuration with four

component-sensors. Illustrated here is the special case of Dpx> 0, Dpy> 0,

and Dpz> 0.
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the spatial non-collocation and the extended aperture of the

acoustic vector-sensor. Section VI will conclude the paper.

II. THE NEW APPROACH—FOR A PARTICULARLY
SIMPLE ARRAY CONFIGURATION, AS ILLUSTRATION

The proposed algorithmic approach allows all four

component-sensors to be arbitrarily located and arbitrarily
oriented. Nonetheless for pedagogical reasons, a particu-

larly simple array-configuration (shown in Fig. 1) will first

be discussed here in this section, to illustrate the proposed

algorithmic philosophy. The arbitrarily general array-

configuration will be discussed in details in Sec. III.

A. The array manifold for a particular
array-configuration in Fig. 1

Referring to the sample array-configuration in Fig. 1:

The pressure sensor lies at the Cartesian origin. The x-axis

oriented particle-velocity sensor lies on the x-axis, at a dis-

tance of Dpx from the Cartesian origin. The y-axis oriented
particle-velocity sensor lies on the y-axis, at a distance of

Dpy from the Cartesian origin. The z-axis oriented particle-

velocity sensor lies on the z-axis, at a distance of Dpz from

the Cartesian origin. Here, Dpx, Dpy, or Dpz may each be posi-

tive or negative. Figure 1 illustrates one special case where

Dpx> 0, Dpy> 0, and Dpz> 0. There in the figure, the

particle-velocity sensors oriented along the x-axis, y-axis,

and z-axis are identified, respectively, as Vx, Vy, and Vz, and

the pressure sensor as P.
This spatially distributed array-configuration’s array-

manifold differs from the spatially collocated array-

manifold in (1), but equals

apyramid¼

uejð2p=kÞDpxu

vejð2p=kÞDpyv

wejð2p=kÞDpzw

1

2
664

3
775: (2)

This new array-manifold in (2) now depends on the incident

signal’s frequency; and the Cartesian direction cosines now

appear in the phases, in addition to the magnitudes in (1).

The presence of u(h, /), v(h, /), w(h) in the magnitudes (not

in the phases) of this array manifold’s entries allows unam-

biguous direction finding over the entire spherical surface

spanned by h 2 [0, p] and / 2 [0, 2p), as will be shown in

Sec. II B. This array configuration is “simple” relative to the

more general arbitrarily spaced configuration to be intro-

duced in Sec. III, in that the first three entries here in (2)

each depends on only one of the three Cartesian direction

cosines u, v, w.

B. A new direction-finding algorithm for a particular
array-configuration in Fig. 1

Eigen-decompose the space-time correlation matrix of

the data collected by the four component-sensors. Then

obtainable, for each incident source, is the steering-vector

estimate16

â � ½px; py; pz; pp�T
def

c apyramid; (3)

where the superscript T denotes transposition. This steering-

vector estimate â is correct with regard to the true value

apyramid to within an unknown complex-value constant c.
With a noiseless condition or with an infinite number of

snapshots, the above approximation becomes equality. To

simplify the subsequent exposition, the following develop-

ment will write all such approximations as equalities.

Normalize the first component of (3) by the fourth com-

ponent, thereby giving

px

pp
¼ uejð2p=kÞðDpxuÞ: (4)

From (4), two complementary estimators of u are obtainable:

{1} An one-to-many relationship exists between ej2pðDpx=kÞu

and u 2 [�1, 1], for the extended aperture case of

ðDpx=kÞ > ð1=2Þ. Hence,

ûphs ¼
1

2p
k

Dpx
/

px

pp
¼ m

k
Dpx
þ u (5)

can estimate u, but ambiguously to within some

(unknown) integer multiple (m�) of the frequency-

dependent entity of 6ðk=DpxÞ, where m refers to a to-

be-determined integer.

{2} The frequency-independent entity

ûmag ¼
���� px

pp

���� ¼ 6u (6)

can estimate u, but also ambiguously, to within a 6 sign.

These two estimates, ûphs and ûmag, can disambiguate each

other as follows:

(a) If ûmag ¼ u, the cyclic ambiguity may be resolved by

m̂þu
def

argmin
m

m
k

Dpx
þ 1

2p
k

Dpx
/

px

pp

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{¼ûphs

0
BBB@

1
CCCA�

���� px

pp

����
zffl}|ffl{¼ûmag

8>>><
>>>:

9>>>=
>>>;

���������

���������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
def
�þu ðmÞ

:

(7)

(b) If ûmag ¼ �u, the cyclic ambiguity may then be

resolved by

m̂�u
def

argmin
m

m
k

Dpx
þ 1

2p
k

Dpx
/
�px

pp

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{¼ûphs

0
BBB@

1
CCCA�� px

pp

� �zfflfflffl}|fflfflffl{¼ûmag

8>>><
>>>:

9>>>=
>>>;

���������

���������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
def
��u ðmÞ

:

(8)

(c) To decide between ûmag ¼ u versus ûmag ¼ �u:

Choose ûmag ¼ u, if if �þu ðm̂þu Þ < ��u ðm̂�u Þ. Choose

ûmag ¼ �u, if �þu ðm̂þu Þ � ��u ðm̂�u Þ.

J. Acoust. Soc. Am., Vol. 133, No. 4, April 2013 Y. Song and K. T. Wong: Spatially spread velocity-sensors/microphone 1989

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  158.132.161.50 On: Fri, 27 Dec 2013 10:38:12



(d) Hence, u can now be unambiguously estimated as

û ¼
m̂þu þ

1

2p
/

px

pp

� �
k

Dpx
; if �þu ðm̂þu Þ < ��u ðm̂�u Þ

m̂�u �
1

2p
/

px

pp

� �
k

Dpx
; if �þu ðm̂þu Þ � ��u ðm̂�u Þ:

8>>><
>>>:

(9)

The estimates, v̂ and ŵ, may be obtained similarly as

for û via Eqs. (4)–(9).

Finally, û, v̂, ŵ together give the angle-of-arrival

estimates,

ĥ ¼ arccos ŵ; (10)

/̂ ¼
�arccos

û

sinðĥÞ

" #
; if

v̂

sinðĥÞ
< 0

arccos
û

sinðĥÞ

" #
; if

v̂

sinðĥÞ
< 0:

8>>>>><
>>>>>:

(11)

This arrival-angle estimates enjoy a support-region over

the entire spherical space spanning h 2 [0, p) and / 2 (�p, p].

Hence, direction finding is achieved unambiguously, despite

the four component-sensors’ non-collocation and despite their

sparse spacings.

Because this “simple” array-configuration in (2) has its

first three entries each dependent on only one of the three

Cartesian direction cosines u, v, w, only one sign-ambiguity

needs be disambiguated above for each velocity-sensor. In

contrast, an arbitrarily spaced array-configuration (to be

introduced in Sec. III) would be shown to require all three

sign-ambiguities be handled for each velocity-sensor.

III. THE NEW SCHEME FOR THE GENERAL
ARBITRARY ARRAY-CONFIGURATION

This section will show how the algorithmic philosophy

in Sec. II can apply to the arbitrarily general array-

configuration of Fig. 2.

A. The array manifold for the general
array-configuration in Fig. 2

Let the pressure sensor be located again at the origin of

the spherical coordinates, without loss of generality. However,

allow the three orthogonally oriented particle-velocity sensors

be placed arbitrarily in three-dimensional space.

For this general configuration of a spatially distributed

acoustic vector-sensor, its 4� 1 array-manifold equals

agenðh;/Þ¼

uejð2p=kÞ½Dpx sinax cosbxuþDpx sinax sinbxvþDpx cosaxw�

vejð2p=kÞ½Dpy sinay cosbyuþDpy sinay sinbyvþDpy cosayw�

wejð2p=kÞ½Dpz sinaz cosbzuþDpz sinaz sinbzvþDpz cosazw�

1

2
6664

3
7775:

(12)

For the new symbols introduced in (13), please refer to

Fig. 2 for their definitions.

B. A new direction-finding algorithm for the general
array-configuration in Fig. 2

Eigen-decompose the space-time data-correlation matrix

of the data collected by the four component-sensors. Then,

obtainable is the steering-vector estimate â for each incident

source, where

â � ½px; py; pz; pp�T
def

c agen: (13)

Normalize each of the first three components of (13) by

the fourth component, thereby producing

px

pp
¼ u ejð2p=kÞDpxhx ; (14)

py

pp
¼ v ejð2p=kÞDpyhy ; (15)

pz

pp
¼ w ejð2p=kÞDpzhz ; (16)

where

hx ¼ u sinðaxÞcosðbxÞ þ v sinðaxÞsinðbxÞ þ w cosðaxÞ;
(17)

hy ¼ u sinðayÞcosðbyÞ þ v sinðayÞsinðbyÞ þ w cosðayÞ;
(18)

hz ¼ u sinðazÞcosðbzÞ þ v sinðazÞsinðbzÞ þ w cosðazÞ
(19)

represent the direction-cosines obtained by projecting the

propagation directional vector onto the axes on which

Dpx, Dpy, Dpz lie, respectively. Please refer to Fig. 3. These

non-Cartesian direction-cosines (hx, hy, hz) are counterpart to

the Cartesian direction-cosines (u, v, w) in the earlier Sec. II,

where the three particle-velocity sensors are located on the

three Cartesian axes.

FIG. 2. (Color online) The acoustic vector-sensor’s four component-sensors

spaced arbitrarily in the three-dimensional space.
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The next Sec. III B 1 will explain how to estimate hx, hy,

hz, from which Sec. III B 2 will show how to estimate u, v, w.

1. Estimation of the non-Cartesian direction-cosines,
hx, hy, hz

Consider first the estimation of hx.

From (14), two complementary estimators of hx can be

obtained (somewhat like the case in Sec. II):

(1) A many-to-one relationship exists between hx and

ej2pðDpx=kÞhx, for a sparse spacing of ðDpx=kÞ > ð1=2Þ. In

other words,

ĥx;phs ¼
1

2p
k

Dpx
/

px

pp
¼ m

k
Dpx
þ hx (20)

would estimate hx to ambiguously to within some integer

multiple (m�) of the frequency-dependent entity of

6ðk=DpxÞ, where m represents a to-be-determined

integer.

(2) The magnitude ûmag ¼ jpx=ppj; v̂mag ¼ jpy=ppj and

ŵmag ¼ jpz=ppj (all of which are frequency-independ-

ent) could estimate hx to within a 6 sign ambiguity.

That is,

ĥ
ðsu;sv;swÞ
x;mag ¼ suûmag sinðaxÞcosðbxÞ þ svv̂mag sinðaxÞsinðbxÞ þ swŵmag cosðaxÞ; (21)

with su; sv; sw 2 fþ1;�1g:
Next, define

m̂ðsu;sv;swÞ def
argmin

m
m

k
Dpx
þ 1

2p
k

Dpx
/ su

px

pp

� �zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{¼ĥx;phs
2
6664

3
7775� ĥ

ðsu;sv;swÞ
x;mag

8>>>><
>>>>:

9>>>>=
>>>>;

����������

����������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
def
�xðmÞ

: (22)

The sign ambiguity in each of su, sv, sw implies that there

exist altogether eight possible candidates for m̂ðsu;sv;swÞ.
The above procedure in (20)–(22) for hx can be analo-

gously applied for hy and for hz. To choose among the eight

candidates of m̂ðsu;sv;swÞ,17 choose

ðso
u; s

o
v ; s

o
wÞ

def
arg min
ðsu;sv;swÞ

X
n¼x;y;z

�2
n½m̂ðsu;sv;swÞ�: (23)

This allows hx, hy, and hz to be unambiguously estimated

as

ĥx ¼ m̂ðs
o
u;s

o
v ;s

o
wÞ þ 1

2p
/

so
upx

pp

� �
k

Dpx
; (24)

ĥy ¼ m̂ðs
o
u;s

o
v ;s

o
wÞ þ 1

2p
/

so
vpy

pp

� �
k

Dpy
; (25)

ĥz ¼ m̂ðs
o
u;s

o
v ;s

o
wÞ þ 1

2p
/

so
wpz

pp

� �
k

Dpz
: (26)

2. Estimation of the Cartesian direction-cosines u,v,w

To estimate the Cartesian direction-cosines u, v, w:

If r(A)¼ 3 where r(�) denotes the rank of matrix,18 then

û

v̂

ŵ

2
64

3
75 ¼ sinðaxÞcosðbxÞ sinðaxÞsinðbxÞ cosðaxÞ

sinðayÞcosðbyÞ sinðayÞsinðbyÞ cosðayÞ
sinðazÞcosðbzÞ sinðazÞsinðbzÞ cosðazÞ

2
64

3
75
�1

�
ĥx

ĥy

ĥz

2
64

3
75: (27)

The arrival-angles may thus be estimated as

FIG. 3. A geometric illustration of hx, hy, and hz.

J. Acoust. Soc. Am., Vol. 133, No. 4, April 2013 Y. Song and K. T. Wong: Spatially spread velocity-sensors/microphone 1991

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  158.132.161.50 On: Fri, 27 Dec 2013 10:38:12



ĥ ¼ arccos ŵ; (28)

/̂ ¼
�arccos

û

sinðĥÞ

" #
; if

v̂

sinðĥÞ
< 0

arccos
û

sinðĥÞ

" #
; if

v̂

sinðĥÞ
� 0:

8>>>>><
>>>>>:

(29)

Hence, a spatially spread acoustic vector-sensor can be

used with any eigen-based parameter-estimation algorithm

to perform direction finding. This technique may be applied

to a single spatially spread acoustic vector-sensor alone (as

will be demonstrated in Sec. IV), or to an array of multiple
spatially spread acoustic vector-sensors (as will be demon-

strated in Sec. V).

IV. A COMPLETE ALGORITHM TO DEMONSTRATE
SEC. III’s PROPOSED SCHEME FOR A SINGLE
ACOUSTIC VECTOR-SENSOR THAT IS SPATIALLY
DISTRIBUTED

This section will demonstrate how the technique devel-

oped in Sec. III may be applied to a single spatially spread

acoustic vector-sensor alone. This demonstration will be via

adopting the “Uni-Vector-Hydrophone ESPRIT” algorithm of

Ref. 12 (originally developed for an acoustic vector-sensor of

collocated component-sensors) to accommodate a spatially

distributed acoustic vector-sensor, via the technique in Sec. III.

A. A review of the Uni-Vector-Hydrophone ESPRIT
algorithm, which is for one acoustic vector-sensor
consisting of only collocated component-sensors

Suppose that K number of acoustic waves have traveled

through an isotropic homogeneous medium, and impinge on

an acoustic vector-sensor of spatially collocated component-

sensors placed at the origin of the Cartesian coordinates. Sup-

pose that the kth incoming signal sk(t) has power Pk, a tempo-

rally monochromatic frequency fk (which is distinct from all

other incident signals’ frequencies), and an initial phase uk.
19

The 4� 1 data-vector (observed at time t) equals

zðtÞ ¼
XK

k¼1

ffiffiffiffiffiffi
Pk

p
akej2pfktþuk þ nðtÞ; (30)

where ak¼ a(hk, /k) symbolizes the kth incident source’s

steering vector from (1), and n(t) denotes the additive noise.

The Uni-Vector-Hydrophone ESPRIT algorithm12 would

form two time-delayed data-subsets, fzðtnÞ; 8n ¼ 1;…;Ng
and fzðtn þ DTÞ; 8n ¼ 1;…;Ng, out of the observed data. In

the above, DT represents the time-delay between the two data-

subsets.

The Uni-Vector-Hydrophone ESPRIT algorithmic steps

are highlighted below. Their underlying motivations are

explained in the detailed exposition in Ref. 12 itself.

{1} Form two M�N data-matrices Z1¼½zðt1Þ;zðt2Þ;…;zðtNÞ�
and Z2¼½zðt1þDTÞ;zðt2þDTÞ;…;zðtNþDTÞ�. Form a

2M�N data-matrix Z¼½ZT
1 ;Z

T
2 �

T
.

{2} Eigen-decompose ZZ
H to give a 2 M�K signal-

subspace eigenvector matrix Es¼½ET
1 ;E

T
2 �

T
, whose K

columns contain the K principal eigenvectors corre-

sponding to the K largest-magnitude eigenvalues.

{3} Compute a K�K matrix,

W
def ðEH

1 E1Þ�1ðEH
1 E2Þ ¼ T�1UT;

whose kth eigenvalue may be denoted as W equals

½U�k;k ¼ ej2pfkDT , with the kth column of T being the cor-

responding right-eigenvector, for all k¼ 1,…, K.
{4} These K impinging sources’ steering-vectors are esti-

mated as

½â1;…; âK� ¼
1

2
fE1T�1 þ E2T�1U�1g;

each to within an unknown complex-value multiplicative

scalar, which arises from the eigen-decomposition of W.

{5} From âk, the direction cosines may be estimated as

ûk
def ½âk�1
½âk�4

; (31)

v̂k
def ½âk�2
½âk�4

; (32)

ŵk
def ½âk�3
½âk�4

; (33)

where [v]j symbolizes the jth entry of the vector v. The

kth source’s two-dimensional direction-of-arrival may

finally be estimated as

ĥk ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
û2

k þ v̂2
k

q� �
¼ arccosðŵkÞ; (34)

/̂k ¼ arctanðv̂k=ûkÞ: (35)

B. Applying Sec. III’s proposed scheme to the
Uni-Vector-Hydrophone ESPRIT algorithm for
one acoustic vector-sensor with spatially
spread component-sensors

Consider the spatially spread acoustic vector-sensor of

Sec. III, instead of the spatially collocated acoustic vector-

sensor in Ref. 12. The only change in the data-model of (30)

is that now ak¼ agen(hk, /k) of (13). Then, Sec. IV A’s algo-

rithmic steps {1}–{4} remain valid with no change, step {5}

of Sec. IV A now needs be replaced by the procedure in

Sec. III.

Monte Carlo simulations below will demonstrate the

proposed scheme’s direction-finding efficacy and extended-

aperture capability, despite the irregular array-configuration.

The following settings are used for the array-configuration in

Fig. 2: {ax¼ 80�, bx¼ 15�}, {ay¼ 85�, by¼ 70�}, {az¼ 10�,
bz¼ 40�}, D ¼ Dpx ¼ ð20=7ÞDpy ¼ ð20=9ÞDpz. Two pure-

tone signals at digital frequencies (i.e., the actual frequencies

divided by the time-sampling frequency) f 01 ¼ 0:45 and

f 02 ¼ 0:3, impinge, respectively, from (h1, /1)¼ (60�, 140�)
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and (h2, /2)¼ (125�, �40�). All incident signals have unity

power. The complex-phases u1 and u2 are deterministic.

The additive noise is zero-mean, Gaussian, white spatio-

temporally, with a known power of r2¼ 20 dB.

Figure 4(a) plots a composite root-mean-square-error

(CRMSE)20 of the first source’s three Cartesian direction-

cosine estimates, versus the inter-antenna spacing parame-

ter D=k, with k referring to the shortest wavelength among

all incident sources’ wavelengths. Figure 4(b) does the

same for the second source. This CRMSE is defined as

ð1=IÞ
PI

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2

u;k;i þ d2
v;k;iÞ=2

q
, where du,k,i (dv,k,i) symbol-

izes the error in estimating the kth source’s x-axis (y-axis)

direction-cosine during the ith Monte Carlo experiment.

Each data-point thereon consists of I¼ 500 statistically in-

dependent Monte Carlo experiments, each of which

involves 200 temporal snapshots.

Figures 4(a) and 4(b) clearly demonstrate the pro-

posed scheme’s success in resolving the incident sources,

even if the acoustic vector-sensor’s four component-

sensors are non-collocated and indeed very sparsely dis-

tributed in space. The collocated case (i.e., D¼ 0) has its

estimation error indicated in these figures by a dash-dot

line, to ease comparison with the proposed scheme’s per-

formance. Note that the proposed scheme’s estimation-

error variance drops by about 1.5 orders-of-magnitude, as

D increases (for the proposed scheme) by 2 orders-of-mag-

nitude. Incidentally, this ESPRIT-based estimation approxi-

mates the Cram�er-Rao lower bound, to the extent that

ESPRIT does so.

V. A COMPLETE ALGORITHM TO DEMONSTRATE
SEC. III’s PROPOSED SCHEME FOR SEVERAL
ACOUSTIC VECTOR-SENSORS, EACH OF WHICH IS
SPATIALLY DISTRIBUTED

This section will demonstrate how the technique devel-

oped in Sec. III may be applied to a several spatially spread

acoustic vector-sensors. This demonstration will be via

adopting Wong and Zoltowski’s algorithm of Ref. 14 (origi-

nally developed for acoustic vector-sensors each consisting

of collocated component-sensors) to accommodate a spa-

tially distributed acoustic vector-sensor, via the technique in

Sec. III.

A. A review of Wong and Zoltowski’s algorithm, which
is for several acoustic vector-sensors each consisting
of collocated component-sensors

Suppose that there exist L acoustic vector-sensors (with

L>K) at arbitrary and possibly unknown locations. Let the

lth acoustic vector-sensor’s unknown location be (xl, yl, zl).

All else remains the same as in Sec. IV A.

The 4 L� 1 array manifold for the entire

L-element acoustic vector-sensor array is ak
def

aðhk;/kÞ
	qðhk;/kÞ, where the spatial phase factor

qðhk; /kÞ
def ½ej2pðx1ukþy1vkþz1wkÞ=kk ; …; ej2pðxLukþyLvkþzLwkÞ=kk �T ,

and 	 symbolizes the Kronecker-product operator.

The 4 L� 1 data-vector (observed at time t) equals

zðtÞ ¼
XK

k¼1

ffiffiffiffiffiffi
Pk

p
akej2pfktþuk þ nðtÞ: (36)

Define a 4 L�K array matrix A
def ½a1;…; aK� which

may be partitioned into four L� 4 subarray data blocks

{A1,…, A4}. Aj
def

JjA and Jj
def ½0L;L�ðj�1Þ;IL; 0L;L�ðJ�jÞ;� is a

L� JL subarray-selection matrix, where 0 M,N denotes a

M�N zero matrix and IM denotes an M�M identity matrix.

Thus, the subarray data blocks {A1,…, A4} are interrelated as

A1 ¼
u1

. .
.

uK

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
def

UðuÞ

A4; A2 ¼
v1

. .
.

vK

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
def

UðvÞ

A4;

A3 ¼
w1

. .
.

wK

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
def

UðwÞ

A4:

The algorithmic steps of Ref. 14 are highlighted below.

Their underlying motivations are explained in the detailed

exposition in Ref. 14 itself.

FIG. 4. (Color online) Monte Carlo simulations verifying the efficacy of the

proposed scheme for a single acoustic vector-sensor alone.
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{1} Form two M�N data-matrices Z¼ [z(t1), z(t2),…,

z(tN)]. Eigen-decompose ZZH to give a 4 L�K signal-

subspace eigenvector matrix Es, whose K columns con-

tain the K principal eigenvectors corresponding to the K
largest-magnitude eigenvalues.

{2} Construct the signal-subspace matrix pencil {Es1, Es4},

{Es2, Es4}, and {Es3, Es4}, where Es1¼ J1Es, Es2¼ J2Es,

Es3¼ J3Es, and Es4¼ J4Es. Compute a K�K matrix,

WðuÞ
def ðEH

s1Es1Þ�1ðEH
s1Es4Þ ¼ ½TðuÞ��1UðuÞTðuÞ;

WðvÞ
def ðEH

s2Es2Þ�1ðEH
s2Es4Þ ¼ ½TðvÞ��1UðvÞTðvÞ;

WðwÞ
def ðEH

s3Es3Þ�1ðEH
s3Es4Þ ¼ ½TðwÞ��1UðwÞTðwÞ;

where T(u), T(v), and T(w) are nonsingular matrices.

{3} These K impinging sources’ steering-vectors are esti-

mated as

½âk�1 � ½UðuÞ�k;k;

½âk�2 � ½UðvÞ�k;k;

½âk�3 � ½UðwÞ�k;k;

for k¼ 1,…, K, where [M]i,j symbolizes the (i, j)th entry

of the matrix M.

{4} From âk, the direction cosines may be estimated as

ûk
def ½âk�1; (37)

v̂k
def ½âk�2; (38)

ŵk
def ½âk�3: (39)

The kth source’s two-dimensional direction-of-arrival

may finally be estimated as

ĥk ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
û2

k þ v̂2
k

q� �
¼ arccosðŵkÞ; (40)

/̂k ¼ arctanðv̂k=ûkÞ: (41)

B. Applying Sec. III’s proposed scheme to Wong and
Zoltowski’s algorithm for multiple acoustic vector-
sensors each with spatially spread component-
sensors

Consider an array of several spatially spread acoustic

vector-sensor, instead of the spatially collocated acoustic

vector-sensor in Ref. 14. The only change in the data-model

of (36) is that now ak ¼ agenðhk;/kÞ 	 qðhk;/kÞ. Then, Sec.

V A’s algorithmic steps {1}–{3} remain valid with no

change, step {4} of Sec. V A now needs be replaced by the

procedure in Sec. III. Monte Carlo simulations below will

verify the efficacy of this synergy.

Here, L¼ 5, at the locations of (3.9k, 2.1k, 1.8k), (2.1k,

0.9k, 1.5k), (4.5k, 3.6k, 5.7k), (2.1k, 3.3k, 1.5k), (6.0k, 5.4k,

3.3k). Each acoustic vector-sensor follows the spatial

distribution array-configuration in Fig. 2, with {ax¼ 15�,
bx¼ 75�}, {ay¼ 40�, by¼ 45�}, {az¼ 35�, bz¼ 85�},

D ¼ Dpx ¼ ð20=7ÞDpy ¼ ð20=9ÞDpz.

Two pure-tone signals at digital frequencies f 01 ¼ 0:4 and

f 02 ¼ 0:3, impinge, respectively, from (h1, /1)¼ (60�, 135�)
and (h2, /2)¼ (150�, �40�). All incident signals have unity

power. The complex-phases u1 and u2 are deterministic.

Figure 5(a) plots a CRMSE of the first source’s three

Cartesian direction-cosine estimates, versus the signal-to-

noise ratio SNR when D=k ¼ 3. Figure 5(b) does the same

for the second source. Each data-point thereon consists of

I¼ 500 statistically independent Monte Carlo experiments,

each of which involves 100 snapshots. Noticeably lower esti-

mation errors are offered by the spatially spread constitution

of each acoustic vector-sensor, relative to the case of collo-

cated component-sensors within each acoustic vector-sensor.

VI. CONCLUSION

Many advantages are advanced by the recent synergy

between customary interferometry-based direction finding

and the new self-normalization approach of direction finding.

This paper further generalizes this synergy, by proposing a

FIG. 5. (Color online) Monte Carlo simulations verifying the efficacy of the

proposed scheme for multiple acoustic vector-sensors.
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new direction-finding algorithm to allow the acoustic vector-

sensor’s four component-sensors may be spatially displaced

over a general array-grid, perhaps with a much extended

spatial aperture, thereby improving direction-finding

accuracy by orders of magnitude, while mitigating hardware-

implementation difficulties in spatially collocating the four

component-sensors at one point in space.

An electromagnetic counterpart exists in Ref. 21 for this

proposed acoustic vector-sensor scheme. Both the electro-

magnetic and the acoustic schemes are predicated on how

each component-sensor’s magnitude relates to the incident

sources’ unknown but to-be-estimated parameters. Due to

the fundamental differences between acoustics and electro-

magnetics, these magnitudes take on entirely different math-

ematical forms. Hence, the proposed algorithmic steps (and

the applicable array configurations) are fundamentally differ-

ent here from.21
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