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The role of miR-497-5p in 
myofibroblast differentiation of  
LR-MSCs and pulmonary fibrogenesis
Xiang Chen1,2, Chaowen Shi1,2, Cong Wang1,2, Weilin Liu1,2, Yanhong Chu1,2, Zou Xiang3, 
Kebin Hu4, Ping Dong1,2 & Xiaodong Han1,2

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal fibrotic lung disease characterized 
by profound changes in stem cell differentiation, epithelial cell phenotypes and fibroblast proliferation. 
In our study, we found that miR-497-5p was significantly upregulated both during myofibroblast 
differentiation of lung resident mesenchymal stem cells (LR-MSCs) and in the lung tissues of a 
pulmonary fibrosis model. In addition, as determined by luciferase assays and Western blot analysis, 
reversion-inducing cysteine-rich protein with kazal motifs (Reck) was identified to be one of the target 
genes of miR-497-5p, and Reck could suppress the expression of matrix metalloproteinase-2 (Mmp2) 
and Mmp9, which could activate latent transforming growth factor-β1 (TGF-β1). To test the potential 
therapeutic significance of this miRNA, we modulated the expression of miR-497-5p in LR-MSCs and 
relevant animal models. The results demonstrated that upregulation of miR-497-5p could induce LR-
MSCs to differentiate into myofibroblasts and promote pulmonary fibrogenesis, while inhibition of its 
expression could effectively retard these processes. In conclusion, our work supports that controlling 
pulmonary fibrogenesis via inhibition of miR-497-5p expression may provide a potential therapeutic 
strategy for IPF.

Idiopathic pulmonary fibrosis (IPF), which is featured by deterioration of respiratory functions clinically, is one of 
the most common types of interstitial lung diseases. The pathologic features of IPF include heterogenic injury and 
fibrosis, fibroblast/myofibroblast accumulation beneath flattened alveolar epithelial cells, and inflammation1,2. 
And its morbidity and mortality have ever been estimated to be 42.7 per 100,000 and 16.3 per 100,000, respec-
tively3. To date, pulmonary fibrosis has been demonstrated to be associated with multiple conditions includ-
ing exposure to environmental agents, connective tissue disease, ionizing radiation, and certain medications. 
However, the cause of IPF is still unknown.

IPF is mainly characterized by the activation of fibroblasts and formation of myofibroblastic foci, alveolar 
epithelial cell injury, and excessive accumulation of extracellular matrix (ECM) in the lung parenchyma4–6. In the 
progress of IPF, ECM components are deposited, removed and remodeled, which enables cell migration, neo-
vascularization, and restructuring of the alveolar-capillary7. The ECM is one of the most important cellular and 
tissue function regulators in the body8. Matrix metalloproteinases (MMPs), a family of over 24 zinc-dependent 
endopeptidases, are capable of degrading any component of the ECM9. Dysregulation of MMP activity results 
in functional alterations and tissue damage10. In lungs with usual interstitial pneumonia (UIP), MMP1, MMP2 
and MMP9 are highly expressed. These members of the MMP family may be involved in the deregulation of the 
synthesis and degradation of ECM proteins, which can lead to enlarged ECM deposition in fibrosis11. In addition, 
MMP-mediated degradation of ECM is proposed as a physiological mechanism for the release and activation of 
latent transforming growth factor (TGF)-β by cleaving its latent associated peptide12,13. TGF-β, as a key profibrotic 
agent, is expressed by multiple structural and inflammatory cells in the inflamed airway, including epithelial cells, 
macrophages, mast cells and fibroblasts14. Thus, if we could effectively command dysregulated MMPs, it may 
provide a new strategy for the therapy of IPF.
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microRNAs (miRNAs) are small noncoding RNAs that are directly associated with the developmental process 
of cancer, diabetes, cardiovascular disease, and lung disease through regulating gene expression15–19. To date, 
a large number of miRNAs have been reported to play key roles in the development of IPF. Pandit et al. first 
reported that let-7d is mainly localized to the alveolar epithelium in normal lungs, but is significantly decreased 
in IPF lungs15. miR-21, which was first identified as an oncogenic miRNA targeting many tumor suppressor 
genes20, has been found to be highly increased in myofibroblasts, epithelial cells, as well as the cells surrounding 
the fibrotic foci of human IPF lungs21,22.

In our study, we observed that miR-497-5p was significantly higher during the myofibroblast differentiation 
of lung resident mesenchymal stem cells (LR-MSCs). And we also verified that miR-497-5p could target the  
3′-UTR of reversion-inducing cysteine-rich protein with kazal motifs (Reck) which could suppress Mmp2 and 
Mmp9 synthesis and secretion, and impact on ECM integrity23,24. We further investigated whether this regulation 
was conserved in mice. In a bleomycin (BLM)-induced pulmonary fibrosis model, miR-497-5p was upregulated, 
and suppressing miR-497-5p expression using a lentiviral agent in vivo reduced the expression of fibrotic markers 
Mmp2, Mmp9 and Tgfb1 via enhancing the expression of Reck, suggesting augmented in vivo lung repair. These 
data reveal a potential new therapeutic approach for IPF and an intimate interplay among miR-497-5p, Reck, 
MMPs, TGF-β1 and pulmonary fibrosis.

Results
miRNAs are differentially expressed in TGF-β1-treated LR-MSCs. To determine the differentially 
expressed miRNAs during the myofibroblast differentiation of LR-MSCs, we performed a miRNA microarray with 
total RNAs isolated from LR-MSCs harvested on day 7 after TGF-β1 treatment. A total of 299 miRNAs were sig-
nificantly differentially expressed (2−ΔΔCT > 2-fold or < −2-fold)25. Among the significantly increased miRNAs, 
11 (miR-877-3p, miR-497-5p, miR-141-3p, miR-1188-5p, miR-135a, miR-541, miR-466J, miR-1956, miR-369-5p, 
miR-342-5p, miR-322-3p) were upregulated over 50 folds, and 4 (miR-450a-5p, miR-450a-3p, miR-326-5p,  
miR-126-5p) were downregulated over 10 folds (Fig. 1A). To validate the results of miRNA profiling, we con-
firmed the differential expression of these miRNAs via Q-PCR both in LR-MSCs treated with TGF-β1 and lung 
tissues from mice that had received BLM intratracheally. We found that miR-497-5p was highly expressed, espe-
cially in BLM treated lung tissues (Fig. 1B and C). Thus, miR-497-5p was chosen for further investigation in this 
study.

Reck is suppressed in TGF-β1-treated LR-MSCs and the lung tissues of a pulmonary fibrosis model.  
Reck is predicted to have a potential conserved binding site with miR-497-5p. We investigated the expression of 
Reck in TGF-β1-treated LR-MSCs and lung tissues administered with BLM. The results showed that Reck was 
dramatically suppressed (Fig. 2A and B), indicating a potential relationship between Reck and miR-497-5p.

miR-497-5p regulates the differentiation of LR-MSCs by targeting Reck. The seed sequence of 
miR-497-5p within the 3′-UTR sequence of mouse Reck was predicted to be a potential conserved binding site 
(Fig. 2C). To confirm whether miR-497-5p could regulate Reck expression, Reck 3′-UTR was cloned into a lucif-
erase reporter system (the GV306 vector). A Reck 3′-UTR mutant with mutations in the predicted miR-497-5p 
site was also cloned into a GV306 vector. The constructs were subsequently transfected into 293 T cells with either 
LV-miR-497-5p or LV-NC. Co-transfection with LV-miR-497-5p, which contained WT-Reck but not MUT-Reck, 
evidently diminished the normalized luciferase activity indicating that miR-497-5p could bind with the 3′-UTR 
of Reck and suppress the transcription of luciferase (Fig. 2D).

To further explore if miR-497-5p upregulation was required for the myofibroblast differentiation of LR-MSCs, 
these cells were transfected with either LV-miR-497-5p or LV-NC followed by culture for 7 days. As shown in 
Fig. 3A and B, upregulating miR-497-5p could downregulate the expression of Reck, resulting in increased pro-
tein levels of Mmp2, Mmp9 and Tgfb1. In addition, overexpression of miR-497-5p could also induce α- smooth 
muscle actin (Acta2) and collagen I (Col1a1) expression at both mRNA and protein levels compared with LV-NC, 
along with increased protein levels of Vim (Fig. 3A and B). When LR-MSCs were transfected with either LV-miR-
497-5p-inhibitor or LV-NC-inhibitor and cultured for 72 h followed by treatment with TGF-β1 for another 7 days, 
downregulation of miR-497-5p in LR-MSCs could decrease TGF-β1-induced Acta2, Vim and Col1a1 expression 
by upregulating the expression of Reck, resulting in decreased levels of Mmp2, Mmp9 and Tgfb1 (Fig. 4A and B).  
We also confirmed these findings using immunofluorescence staining (Fig. 4C). These data suggested that miR-
497-5p was sufficient to modulate the differentiation of LR-MSCs and these cells play an important role in pul-
monary fibrogenesis26.

miR-497-5p induces myofibroblast differentiation of NIH/3T3 cells. As miR-497-5p was also 
increased in the lung tissues of the pulmonary fibrosis model, we also sought to illustrate whether miR-497-5p 
could induce myofibroblast differentiation of fibroblasts as this process is believed to play a key role in the devel-
opment of IPF. In NIH/3T3 cells, miR-497-5p could also impair Reck expression and augment the levels of Acta2 
and Vim, suggesting the myofibroblast differentiation of NIH/3T3 cells (Fig. 5A). The migration assay showed 
that miR-497-5p could promote the migration of NIH/3T3 cells (Fig. 5B). In order to further confirm the regu-
lation of Reck by miR-497-5p, we transfected NIH/3T3 cells with miR-497-5p and a mutated form of Reck that 
had a disrupted 3′-UTR sequence followed by functional analysis. Our results found that such co-transfection 
suppressed miR-497-5p-induced downregulation of Reck and upregulation of Mmp2, Mmp9 and Tgfb1, counter-
acting miR-497-5p-induced myofibroblast differentiation of NIH/3T3 cells evidenced by reduced levels of Acta2 
and Col1a1 (Fig. 5C). We also reproduced this finding in LR-MSCs (Fig. 5D). Taken together, these data strongly 
suggest that the profibrotic effect of miR-497-5p was meditated by binding with its target gene Reck.
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Intratracheal delivery of LV-miR-497-5p-inhibitor alleviates BLM-induced pulmonary fibrosis.  
Having demonstrated the profibrotic effect of miR-497-5p in vitro, we next explored whether regulating miR-
497-5p expression may modulate the process of pulmonary fibrosis in vivo. To address this question, we admin-
istered intratracheally either a LV-NC or LV-miR-497-5p or LV-miR-497-5p-inhibitors to mice. At 7 days after 
treatment, the mice were treated intratracheally with BLM or saline. At day 21, the mice that were treated with 
LV-miR-497-5p-inhibitor exhibited decreased lung fibrosis as determined by histological analyses of the lungs 
and the Masson’s trichrome assay for collagen deposition (Fig. 6A and B). Furthermore, LV-miR-497-5p-inhibitor 
blocked BLM-induced miR-497-5p upregulation, while suppressed the mRNA expression of Acta2 and Col1a1 
by elevating its target gene Reck (Fig. 6C). Downregulation of miR-497-5p also dampened Mmp2, Mmp9, Tgfb1, 
Acta2 and Col1a1 protein expression by impairing BLM-induced Reck downregulation (Figs 6D and 7A). 

Figure 1. miR-497-5p is upregulated in the myofibroblast differentiation of lung resident mesenchymal 
stem cells (LR-MSCs) and the lung tissues from a mouse pulmonary fibrosis model. (A) A heat map 
represents the differentially expressed miRNAs in TGF-β1-treated LR-MSCs at day 7. The upregulated miRNAs 
are indicated in progressively brighter shades of red, and the down-regulated miRNAs are indicated in 
progressively darker shades of black. (B) Quantitative real-rime polymerase chain reaction analysis validation 
of the microarray results from LR-MSCs administered with TGF-β1 for 7 consecutive days. The data are 
expressed as the mean ± SD. *P < 0.05, **P < 0.01. (C) The mice were injected intratracheally with either saline 
or bleomycin, and sacrificed on day 14 after injection (n = 6 mice in each group). The 11 miRNAs were also 
investigated in a bleomycin-induced pulmonary fibrosis model as determined by the quantitative real-rime 
polymerase chain reaction analysis.
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LV-miR-497-5p-inhibitor could protect cells that express ATP-binding cassette transporter subtype G 2 (Abcg2), 
a marker of LR-MSCs, from degradation (Fig. 7A). On the contrary, when miR-497-5p was upregulated in vivo,  
miR-497-5p could promote pulmonary fibrogenesis (Figs 6 and 7). These results were also supported by immu-
nofluorescence staining (Fig. 7B). Taken together, our work suggests that miR-497-5p can be used as a potential 
therapeutic target for pulmonary fibrosis.

Figure 2. Reck is downregulated in vitro and in vivo as a target gene of miR-497-5p. (A) Lung resident 
mesenchymal stem cells (LR-MSCs) were incubated with TGF-β1 for 7 days. The level of Reck was determined 
by Western blot and quantitative real-time polymerase chain reaction. (B) Mice were administered with 
bleomycin, and the Reck expression of lung tissues was measured by Western blot and quantitative real-rime 
polymerase chain reaction. (C) The position of the miR-497-5p target site in the Reck 3′-UTR and the sequence 
alignment of miR-497-5p and the Reck 3′-UTR from various species are shown. (D) LV-miR-497-5p or negative 
control (LV-NC) was co-transfected with the mouse Reck 3′-UTR-derived GV306 vector, i.e. negative control 
(NC), wild type (WT-Reck) or mutated type (MUT-Reck) in the putative miR-497-5p seed region, into 293 T 
cells. The cells were harvested 48 h after transfection, and luciferase activity was analyzed. The values are 
presented as the means ± SD. The experiments were performed three times with similar results. **P < 0.01.
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Discussion
Crucial new insights into the diagnosis, treatment, prognosis and pathogenesis of various human diseases, includ-
ing tissue fibrosis, have been provided by genome-wide approaches to miRNA expression profiling17,27,28. The 
application of these approaches in IPF has demonstrated that let-7d, miR-21 and miR-199a-5p make critical 
contributions to pulmonary fibrosis15,21,29. In our study, we explored the expression, regulation, and potential role 
of miRNAs in the myofibroblast differentiation of LR-MSCs. Among these significantly upregulated miRNAs, 
we focused on miR-497-5p and observed its high expression in the lung tissues of a pulmonary fibrosis model. 
miR-497-5p is one of the members of the miR-15/107 group with the seed sequence AGCAGC, which is an 
important determinant of target recognition30. It has previously been reported that miR-497-5p is closely related 
with several cancers31,32. However, the relationship between miR-497-5p and fibrosis remains unknown. In our 
investigation, we demonstrated that miR-497-5p could most likely bind with the 3′-UTR of Reck by the luciferase 
assay, strongly suggesting that Reck was a target gene of miR-497-5p. Additionally, we have demonstrated that 
upregulation of miR-497-5p induced myofibroblast differentiation of LR-MSCs and NIH/3T3 cells in vitro. We 
also found that the profibrotic function of miR-497-5p was mainly mediated through the activation of latent 
TGF-β1 anchored in ECM by targeting the 3′-UTR of Reck, which negatively regulates, at least three different 
Mmps, namely, membrane-type 1 matrix metalloproteinase (MT1-Mmp), Mmp2 and Mmp9 (Fig. 8). Secreted 
Mmps (e.g. MT1-Mmp, Mmp2 and Mmp9) have been implicated in the release and activation of TGF-β13,33,34, 
and may also be involved in the deregulation of the synthesis and degradation of ECM protein, a process that 
leads to enlarged ECM deposition in fibrosis11.

Figure 3. miR-497-5p induces the myofibroblast differentiation of lung resident mesenchymal stem cells 
(LR-MSCs). (A) LR-MSCs were transfected with either 5 × 107 TU/ml negative control (LV-NC) or LV-miR-
497-5p. At day 7, the levels of miR-497-5p, Reck, Acta2 and Col1a1 were measured by quantitative real-rime 
polymerase chain reaction. Three independent experiments were performed, and the values are expressed as the 
means ± SD. *P < 0.05 and **P < 0.01. (B) The experiments were performed as in (A). The expression of Reck, 
Mmp2, Mmp9, Tgfb1, Fn1, Col1a1, Vim and Acta2 were determined by Western blot. The expression levels 
of protein were quantified by densitometry and normalized to the expression of β-actin. Three repeats were 
performed. *P < 0.05 and **P < 0.01.
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Figure 4. Inhibition of miR-497-5p suppresses TGF-β1-induced myofibroblast differentiation of lung 
resident mesenchymal stem cells (LR-MSCs). (A) LR-MSCs were transfected with either 5 × 107 TU/ml 
negative control inhibitor (LV-NC-inhibitor) or miR-497-5p inhibitor (LV-miR-497-5p-inhibitor), followed 
with treatment either with or without 10 ng/ml TGF-β1 for 7 days. The levels of miR-497-5p, Reck, Acta2 and 
Col1a1 were measured by quantitative real-rime polymerase chain reaction. Three independent experiments 
were performed, and the values are expressed as the means ± SD. *P < 0.05 and **P < 0.01. (B) The experiments 
were performed as in (A). The expression of Reck, Mmp2, Mmp9, Tgfb1, Fn1, Col1a1, Vim and Acta2 was 
determined by Western blot. The expression levels of protein were quantified by densitometry and normalized 
to the expression of β-actin. Three repeats were performed. *P < 0.05 and **P < 0.01. (C) LR-MSCs were treated 
as explained in (Figs 3A and 4A), the expression of Acta2 and Col1a1 was measured by immunofluorescence. 
Acta2 and Col1a1were revealed with secondary 594-labeled antibodies; nuclei were revealed by DAPI staining.
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Pulmonary fibrosis is characterized by increased deposition of ECM and aberrant fibroblast proliferation35. 
LR-MSCs undergo injury-induced phenotypic modulation to become α-SMA positive myofibroblasts, which is a 
crucial step in the repair process that facilitates collagen secretion following lung injury. The collagen deposition 
and the proliferation of myofibroblasts at the site of injury result in scar formation, which helps to maintain alveolar 
structural integrity and function36. Activation of the TGF-β1 pathway is a significant event in the fibrogenic response, 
as it contributes to myofibroblast differentiation of LR-MSCs and pulmonary fibroblasts, and triggers the synthesis 
of ECM proteins37,38. In vivo, intratracheal inhalation of a miR-497-5p hairpin inhibitor was sufficient to induce the 
expression of Reck and decrease the release of activated TGF-β1 by suppressing Mmp2 and Mmp9 expression, which 
attenuated the fibrotic process. In contrast, upregulating the expression of miR-497-5p could induce the expression 
of Acta2 and Col1a1 and contribute to the phenotype of pulmonary fibrosis by activating the Mmps/TGF-β pathway.

Moreover, as miRNAs could regulate more than one mRNA, some other miR-497-5p-predicted target genes, 
such as Smad7, a negative regulator of TGF-β signaling39, were also implicated in the phenotype of pulmonary 
fibrosis40. Considerable data have suggested that miRNAs play key roles in the development of pulmonary fibrosis 
and may be explored as promising therapeutic targets for pulmonary fibrosis. For example, Liu et al. demon-
strated that miR-21 is overexpressed in the lungs of both mice with BLM-induced fibrosis and patients with IPF21. 
Pandit et al. found that let-7d is downregulated in the lungs of IPF patients and the number of epithelial cells that 
express let-7d is correlated with pulmonary function15. In addition, miR-29, miR-31 and miR-200 each plays an 
anti-fibrotic role in the lungs41–43. However, prior to our study, no experimental evidence had shown that miR-
497-5p could contribute to lung fibrosis. To our knowledge, our current work represents the first report arguing 
that administration of a miR-497-5p inhibitor may attenuate the fibrotic processes both in vitro and in vivo. Our 
data supported that miR-497-5p modifying drugs may have a therapeutic benefit for IPF.

Materials and Methods
Ethics statement. The animal experiments were performed according to the Guide for the Care and Use 
of Laboratory Animals (The Ministry of Science and Technology of China, 2006) and all experimental protocols 

Figure 5. miR-497-5p induces myodifferentiation and migration of fibroblasts. (A) Mouse fibroblasts 
(NIH/3T3 cells) were transfected with either 5 × 107 TU/ml of negative control (LV-NC) or LV-miR-497-5p. 
At day 7 after transfection, the levels of Vim, Reck and Acta2 were measured. (B) Fibroblast migration was 
measured after transfection. (C) NIH/3T3 cells were transfected with either 5 × 107 TU/ml of LV-NC or LV-
miR-497-5p. Some of the cells were co-transfected the pGCL mutant Reck (LV-Reck). The levels of Acta2, 
Col1a1, Reck, Mmp2, Mmp9 and Tgfb1 were measured by Western blot. (D) Lung resident mesenchymal stem 
cells were treated as in (C). The levels of Acta2, Col1a1, Reck, Mmp2, Mmp9 and Tgfb1 were measured by 
Western blot. Data represented three independent experiments.
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were approved under the animal protocol number SYXK (Su) 2009-0017 by the Animal Care and Use Committee 
of Nanjing University.

miRNA microarray. Total RNA was isolated from LR-MSCs incubated with TGF-β1 (PeproTech, Rocky Hill, 
NJ) for 7 days using Trizol Reagent (Ambion, Foster, CA). miRNA profiling was performed using a low-density 
miRNA Taqman array service (Invitrogen, Shanghai, China). The miRNAs exhibiting an expression fold change 
(log2) greater than 1 or less than -1 were deemed to be differentially expressed. We validated a series of abundantly 
and differentially expressed miRNAs via quantitative reverse transcription polymerase chain reaction (Q-RTPCR).

Figure 6. miR-497-5p regulates fibrogenesis in a mouse pulmonary fibrosis model. (A) A paradigm of the 
experiment for miR-497-5p lentivirus treatment is shown. Lentiviral vector was delivered intratracheally at day 
0. After 7 days, mice were treated with bleomycin or saline intratracheally. Mice were sacrificed at day 21 after 
lentiviral vector instillation. (B) The lung sections were stained using H&E (100x magnification) and Masson’s 
trichrome (100x magnification). (C) Expression of miR-497-5p, Reck, Acta2 and Col1a1 was determined by 
quantitative real-rime polymerase chain reaction. (D) Levels of Col1a1, Reck, Mmp2, Mmp9, Tgfb1 and Acta2 
were measured by Western blot. Data represented three independent experiments.
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Figure 7. Inhibition of miR-497-5p suppresses bleomycin-induced pulmonary fibrosis. Mice were treated 
as in Fig. 6. (A) Immunohistochemistry assays were performed to measure Mmp2, Acta2 and Abcg2 expression 
(100x magnification). The positive areas were quantified by densitometry and normalized to LV-NC. 
(B) Expression of Acta2 and Col1a1 was determined by immunofluorescence staining. Acta2 and Col1a1 was 
revealed with secondary 594-labeled antibodies; nuclei were revealed by DAPI staining. The results shown are 
representative of three independently performed experiments.
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Antibodies. Mouse monoclonal antibody against mouse β-actin (ab8277), mouse monoclonal antibody 
against mouse Mmp2 (ab86607), rabbit polyclonal antibody against mouse Mmp9 (ab38898), rabbit polyclonal 
antibody against mouse Acta2 (ab5694), rabbit monoclonal antibody against mouse Vim (ab92547), rabbit pol-
yclonal antibody against mouse Col1a1 (ab34710), mouse monoclonal antibody against mouse Tgfb1 (ab27969), 
and rabbit polyclonal antibody against mouse Fn1 (ab2413) were purchased from Abcam (Cambridge, MA). Rabbit 
monoclonal antibody against mouse Reck (D8C7) was purchase from Cell Signaling Technology (Beverly, MA).

Cell culture. Mouse fibroblast cells (NIH/3T3) was obtained from the American Type Culture Collection 
(Manassas, VA). The cells that were frozen down at an early passage were cultured for a maximum of eight pas-
sages. The cells were maintained at 37 °C with 5% v/v CO2 in Dulbecco’s modified Eagle’s medium (DMEM, Life 
Technologies/Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS, Gibco).

Isolation of LR-MSCs was performed as previously reported44. Freshly isolated LR-MSCs were cultured at a 
concentration higher than 105 cells/ml with DMEM (Gibco) containing 15% FBS (Gibco), 4% L-glutamine, 1% 
nonessential amino acids, and 1% penicillin and streptomycin, and maintained in a humidified atmosphere of 
95% air, 5% CO2 at 37 °C. The cells were passaged 1:2 using 0.25% trypsin when they reached 70-90% confluence.

Vector transfection. Cells at 60% confluence were transfected with lentiviral vectors at the concentration of 
5 × 107 TU/ml that contained the GV369 miRNA precursor of miR-497-5p (LV-miR-497-5p), the GV280 miR-
497-5p inhibitor (LV-miR-497-5p-inhibitor) or the pGCL mutant Reck (LV-Reck). In all experiments, an equal 
concentration of non-targeting sequence GV369 miRNA precursor negative control (LV-NC), GV280 miRNA 
inhibitor negative control (LV-NC-inhibitor) or the pGCL mutant Reck negative control was used. The lentiviral 
vector was purchased from GENECHEM (Shanghai, China).

Luciferase assays. For luciferase assays, the sequence of the Reck 3′-UTR and the Reck 3′-UTRs in which 
the putative binding sites had been mutated were amplified with specific primers, and verified by DNA sequenc-
ing. These gene fragments were then subcloned into the GV306 vector (GENECHEM) to generate the wild-type 
Reck plasmid (WT-Reck) and the mutant Reck plasmid (MUT-Reck). 293 T cells were transiently co-transfected 
with 125 ng GV306 vector and 5 × 107 TU/ml LV-miR-497-5p or LV-NC lentivival vector. Luciferase assays were 
performed 48 h later using the Dual-Luciferase Reporter System (Promega, Madison, WI). The Renilla and firefly 
luciferase signals were detected using a GloMax®-Multi + Detection System (Promega). The activity of an inter-
nal firefly luciferase was normalized by the Renilla luciferase activity.

Induction and treatment of pulmonary fibrosis. All animal procedures were conducted in accordance 
with humane animal care standards approved by the Nanjing University Ethics Committee (Nanjing, China) and 
maintained under specific pathogen-free conditions. The animals were acclimated to the environment for 1 week 
prior to treatment.

The mice were administered with BLM (Nippon Kayaku, Tokyo, Japan) intratracheally at a dose of 5 mg/kg  
dissolved in a total of 50 μl sterile saline. The control group was similarly treated with 50 μl of sterile saline. The 
lentiviral vector of LV-miR-497-5p and LV-NC (LV-miR-497-5p-inhibitor and LV-NC-inhibior, respectively) 
were purchased from GENECHEM. Mice were administered with the lentiviral vector intratracheally at a dose 

Figure 8. Proposed mechanism of pulmonary fibrosis induced by upregulated miR-497-5p. miR-497-5p 
targets Reck, which leads to myofibroblast differentiation of lung resident mesenchymal stem cells and 
pulmonary fibrosis through activating latent TGF-β1.
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of 2 × 108 TU/ml diluted by sterile saline. Seven days later, the LV-miR-497-5p-inhibitor and LV-NC-inhibitor 
groups were administered with BLM intratracheally at a dose of 5 mg/kg dissolved in a total of 50 μl sterile saline. 
The LV-miR-497-5p and LV-NC groups were similarly treated with 50 μl sterile saline. The mice were sacrificed 
for lung collection at day 14 after BLM administration (n = 6 for each time point).

SDS-PAGE and immunoblotting. Briefly, whole cell or tissue lysates were separated on 12% 
SDS-polyacrylamide gels and transferred to a polyvinylidene fluoride (PVDF) membrane (Roche, Germany) 
by standard procedures. Membranes were blocked by incubation for 1 h with 5% non-fat milk in PBS containing 
0.5% Tween-20 (PBST) and blotted with specific antibodies at 4 °C for 12 h. After three washes in PBST, the mem-
branes were incubated with the secondary antibody at 37 °C for 1 h. Immunoreactive protein bands were detected 
using an Odyssey Scanning System (LI-COR, Lincoln, NE).

Q-RTPCR. For Q-RTPCR analysis of mRNAs and mature miRNAs, total RNA was extracted using Trizol 
Reagent (Ambion). An amount of 0.05 μg total RNA was reverse-transcribed using the Taqman MicroRNA 
Reverse Transcription Kit (Applied Biosystems, Foster, CA). Comparative quantitative PCR (Q-PCR) was per-
formed in triplicate using Taqman Universal PCR Master Mix (Applied Biosystems) on the 7300 Real-Time PCR 
System (Applied Biosystems). Mature miR-497-5p probes were alternatively obtained from Applied Biosystems. 
Normalization was performed by using RNU6B probes (Applied Biosystems). Relative expression was calculated 
by using the comparative Ct (ΔΔCt) method.

For analysis of mRNA, HiScript 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China) was used for reverse 
transcription polymerase chain reaction (RT-PCR). Q-PCR was performed using the SYBR Green Q-PCR Kit 
(Roche, Germany). Specific primers for mRNAs are listed in Table 1. The Ct values were analyzed using the ΔΔCt 
method and relative changes of mRNA levels were obtained by normalization to glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) relative to the control.

Histopathology. The mouse lungs were inflated with a neutral buffered formalin solution overnight and 
embedded in paraffin before sectioning into 5 μm-thick slices. The sections were stained with hematoxylin-eosin 
(H&E) and Masson’s trichrome to assess the degree of fibrosis.

Immunohistochemistry. Five μm-thick paraffin-embedded sections were deparaffinized with xylene (twice 
for 5 minutes each) before being rehydrated in water using an ethanol gradient. After washing with water, antigen 
retrieval was performed in a steamer using citrate buffer (pH 6.0, DAKO) for 20 minutes, and the samples were 
then cooled to room temperature. The sections were then washed with PBST, incubated with 3% H2O2 for 10 
minutes and blocked with the avidin/biotin blocker and the serum-free blocking reagent. The sections were sub-
sequently incubated with mouse anti-Mmp2, rabbit anti-Mmp9, rabbit anti-Abcg2 or rabbit anti-Acta2 antibod-
ies overnight at 4 °C. The DAB Substrate System (DAKO) was used to reveal the immunohistochemical staining.

Immunofluorescent staining. The immunofluorescence analysis was performed as described44. Rabbit 
anti-Col1a1 and rabbit anti-Acta2 were employed as the primary antibody. Alexa Fluor 594-conjugated goat 
anti-rabbit IgG (Invitrogen) was used as the secondary antibody. Nuclei were stained with 1 μg/ml DAPI (Sigma). 
The images were captured using a confocal fluorescence microscope (Olympus, Tokyo, Japan).

Statistical Analysis. The data are presented as mean values ± SD. Differences were analyzed for significance 
(P < 0.05) by one-way ANOVA using SPASS for windows version 11.0 (SPASS, Chicago, IL).

Supplement files for low-density miRNA Taqman array. The raw data of profiled miRNA in lung 
resident mesenchymal stem cells following TGF-β1-induced myofibroblast differentiation was uploaded in the 
supplement file.
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