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Abstract:  

Extended partial blockages are common in pressurized water pipelines and can result in the 

wastage of energy, the reduction in system carrying capacity and the increased potential for 

contamination. This paper investigates the transient wave-blockage interaction and its 

application to extended blockage detection in pipelines, where blockage-induced changes to the 

system resonant frequencies are observed. The frequency shifting is first inspected and explained 

in this study through wave perturbation analysis, providing a theoretical confirmation for the 

result that unlike discrete blockages, extended blockages cause resonant frequency shifts in the 

system. Furthermore, an analytical expression is derived for the relationship between the 

blockage properties and the resonant frequency shifts and is used to detect the blockages in this 

study. The obtained results are validated through both numerical applications and laboratory 

experiments, where the accuracy and efficiency of the developed method for extended blockage 

detection are tested. 

                                                           

* Corresponding author. Tel: (+852) 3400 8449; Fax: (+852) 2334 6389.  

E-mail address: hduan@polyu.edu.hk. 

This is the Pre-Published Version.



2 

 

Keywords: Water pipelines; transients; extended blockage; wave-blockage interaction; 

frequency shift; wave perturbation analysis 

 

1. Introduction 

Pressurized conduits transporting fluids such as freshwater, seawater, storm-water, wastewater, 

oil, and blood often experience partial blockages during their lifetime. The blockages begin in 

the form of a small increase in the wall roughness that grows with time from physical or 

chemical processes and can eventually block a sizeable portion of the pipe cross sectional area 

(Stephens, 2008). These blockages result in the wastage of energy, a reduction in the pipe 

carrying capacity and the increased potential for contamination. In addition, the severely 

throttled flows from blockages cause flow redistribution in the pipe network and can result in the 

overpressure of pipes and the development of leaks. It is therefore of paramount importance to 

detect blockages so that they are dealt with in a timely manner.   

Transient-based methods, where a transient signal is injected into the conduit and the 

response measured at specified locations, is a promising approach for detecting defects in pipes 

and have been used in the detection of discrete blockages, leaks, and assessment of pipe wall 

condition (Liggett and Chen, 1994, Brunone, 1999, Brunone and Ferrante, 2001, Vitkovsky et al., 

2000, Wang et al., 2002, Wang et al., 2005, Ferrante and Brunone 2003, Covas et al., 2004, 

Mohapatra et al., 2006, Sattar et al., 2008, Lee et al., 2004, Lee et al., 2006, Lee et al., 2008, 

Stephens, 2008, Duan et al., 2011a, Duan et al., 2011b, Duan et al., 2012, Duan et al., 2013, 

Mohapatra and Chaudhry, 2011, Meniconi et al., 2009, Meniconi et al., 2011 and Meniconi et al., 

2013). The tenet of this approach is that a measured pressure wave signal in a conduit is 

modified by, and thus contains information on, the conduit properties.  
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Stephens et al. (2005), Brunone et al. (2008) and Duan et al. (2012) proposed that 

blockages in pipes are divided into two categories—discrete and extended blockages—according 

to its relative length to the total pipeline length. In the context of discrete blockages, Contractor 

(1965) shows that a discrete partial blockage causes a partial reflection of a waterhammer wave 

where the amplitude of the reflected wave provides information on the severity of the 

constriction and the arrival time of the reflected wave provides the location of the blockage. The 

findings in Contractor (1965) have been confirmed and used for blockage detection by Wang et 

al. (2005) and Meniconi et al. (2009, 2011 and 2012). Wang et al. (2005) showed that a discrete 

blockage in a pipe system introduces a frequency dependent damping to the transient signal and 

developed a technique for locating and sizing discrete blockages based on this damping. 

Mohapatra et al. (2006), Sattar et al. (2008) and Lee et al. (2008 and 2013) found the effect of 

the blockage in time translates to a pattern being imposed onto the amplitudes of the resonant 

responses from the system and this pattern can be used to detect and locate the discrete blockages 

in the frequency domain.  

Field tests by Stephens et al. (2005) and laboratory experiments by Meniconi et al. (2012) 

found that extended blockages have significantly different impacts on the system responses 

compared to discrete blockages and discrete blockage detection techniques are not applicable for 

extended blockages. Stephens et al. (2005) shows that severe wall deterioration is often 

associated with a reduction in the pipe flow area as well as wavespeed, with nearly 40% 

reduction in both parameters observed in the field. Similarly, extended changes in pipe wall 

thickness and material was found to produce changes in the wavespeed in the laboratory studies 

of Hachem and Schleiss (2011, 2012a and 2012b) and Tuck et al. (2012). Duan et al. (2012) and 

Tuck et al. (2012) show that extended blockage changes the amplitude as well as the position of 
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resonant responses from the system. An analytical expression for the blockage-induced changes 

in the system resonant frequencies was derived in Duan et al. (2012) and was used for detecting 

extended blockages in pipelines. To determine the properties of the blockage, an optimization 

process coupled with a Genetic Algorithm (GA) was used to fit the observed resonant 

frequencies with the theoretical expression. This approach was verified using numerical as well 

as experimental results in Duan et al. (2012, and 2013) and Meniconi et al. (2013). It was found 

from these studies that the solution process is time consuming and its efficiency decreases 

significantly with the number of blockages in the system. A simplified form to the original 

analytical equations was developed in Duan et al. (2013) and the computational efficiency was 

increased by sacrificing the accuracy of the solution. 

This paper further investigates the effect of extended blockages on the system frequency 

response and proposes an improvement to the frequency domain method for detecting extended 

blockage in pipes. The frequency shifts due to wave-blockage interaction is inspected using wave 

perturbation analysis and the expression for the resonant frequencies shifts proposed in Duan et 

al. (2012) is simplified using a first order approximation and the result is validated numerically 

and experimentally. 

 

2. System Frequency Response-Based Extended Blockage Detection 

The analytical expression for the frequency response of extended partial blockage pipeline 

system in Duan et al., (2012) is derived using the transfer matrix method, where the one-

dimensional (1-D) waterhammer equations are linearized in the frequency domain (Chaudhry, 

1987). For the blockage-free pipeline in Fig. 1(a), Chaudhry (1987) defines the system resonant 

frequencies as the solutions to the following equation, 
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  0cos
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where rf0 = resonant frequency of the blockage-free pipe system, f
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the steady and unsteady friction components respectively and the subscript “0” represents the 
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Vítkovský et al. (2003) derived the frequency domain expressions for unsteady friction 

damping for laminar and turbulent flows based on Zielke (1968) and Vardy and Brown (1996). 
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 , Re = Reynolds number and = kinematic viscosity.  

 If neglecting the friction effect (i.e., R=0), the frequency corresponding to the k
th

 resonant 

peak in a blockage-free (uniform) pipeline system in Fig. 1(a) can be obtained as, 

   
00

12
thrf

mm    where m is a real positive integer and 
0

0

0

4
2

L

a
th

   is the theoretical or 

fundamental frequency of the uniform (blockage-free) pipeline system. The result shows that the 

spacing between the resonant peaks in a blockage-free system is a constant and the resonant 

peaks are spaced equally along the frequency axis. 

The resonant frequencies for the system with an extended blockage in Fig. 1(b), are 

determined by Duan et al. (2012 and 2013) as, 
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where 
rfb

fgAR

gA

a
Y


i1  = characteristic impedance of pipeline; rfb = resonant frequencies 

of the blocked pipe case; and subscripts 1, 2, 3 denote pipe sections numbered from upstream to 

downstream. For convenience, the frequency associated with the k
th

 resonant peak,  k
rf

  is 

written as
rf

 .  

The result of Eq. (2) shows that the resonant frequencies of the system with an extended 

blockage are different from the uniform pipe case of Eq. (1). These differences are functions of 

the characteristic impedance Y and the wave propagation constant  of each pipe section, and are 

related to the length, location and severity of the extended blockages. The system frequency 

responses for both blockage-free and blocked systems are obtained using the procedure in Lee et 

al. (2004 and 2008) and the results are plotted in Fig. 2. The figure shows clear differences in the 

resonant peak frequencies as well as the magnitudes of the resonant peak responses between the 

two cases.  

Duan et al. (2012 and 2013) obtained the properties of the extended blockages by 

inversely calibrating the resonant frequencies calculated in Eq. (2) to data obtained from the 

numerical and experimental tests. Despite its success for detecting extended blockages, the 

inverse calibration procedure demonstrated in Duan et al. (2012 and 2013) using Eq. (2) is time 

consuming and the efficiency is greatly reduced with an increasing number of blockages. 

Moreover, as shown in Eq. (2), the expression for the resonant frequencies in a system with an 

extended blockage is complicated and the effect of the blockage length, location and severity on 

the resonant frequencies cannot be clearly seen from the expression. Further analysis on the 
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result of Eq. (2) is required to address these issues.  

It is necessary to point out that the determination of the resonant frequencies does not 

require the system to be forced into a state of resonance and any signal with a wide range of 

frequencies can give the resonant frequencies through analysis in the frequency domain. Details 

on this frequency domain analysis approach can be found a recent state-of-the-art paper by Lee 

et al. (2013). 

 

3. Understanding the Properties of Extended Blockage Induced Frequency Shifting 

While the blockage-induced shifts in the system resonant frequencies in Fig. 2 have been shown 

in experimental data and numerical simulations (Stephens et al., 2005, Brunone et al., 2008, 

Duan et al., 2012 and Duan et al., 2013), the physical understanding for this change remains 

unclear. This effect is first investigated using wave perturbation analysis followed by the 

quantitative derivation of the expression for the frequency shifting. The 1-D wave equation for a 

conduit with varying pipe cross-sectional area is given in Duan et al. (2011c) as, 
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where P = pressure response in the time domain; x = longitudinal coordinate along the pipeline 

with x = 0 as the centre of the pipe system as well as the extended blockage; and t = time 

coordinate. Note that a frictionless pipe with a constant wave speed is considered in this analysis 

to highlight the interaction between the transient wave and blockage. Eq. (3) is first re-written as, 
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where the difference between the blockage-free (i.e. rhs = 0) and extended blockage situations 

(i.e. rhs ≠ 0) is clearly shown as a function of the spatial variation of the flow cross-sectional area, 
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. Furthermore, by considering an incident pressure wave with a certain frequency () 

impinging on the blockage from the boundary end,   wtxPP ie,ˆ   , where  ,ˆ xP is the 

amplitude of the propagating wave in the pipeline, Eqs. (3) and (4) can now be simplified as, 
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Thus, Eq. (5) is the well-known Sturm-Liouville type equation (Zettl, 2005) and can usually be 

analyzed by the perturbation method (Mei et al., 2005). 

 To investigate the effect of an extended blockage on the wave propagation, the pipeline 

in Fig. 1(b) is used and reflections from the either ends of the pipeline are ignored to highlight 

the effect the blockage on the wave propagation (i.e. reflection-free end boundaries). A similar 

derivation has been carried out by Mei et al. (2005) for open channel flows. Eq. (5) is first solved 

by wave perturbation analysis and for each section of the pipeline, Eq. (5) is satisfied as, 
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where 
j

j

j

a
k


  is wave number, and j = 1, 2, 3 identifies the pipe sections shown in Fig. 1(b). 

Under this condition, the pressure head responses for the three pipe sections from an incident 

wave with amplitude P0 and frequency 0 originating from +∞ are obtained as follows (note that 

x = 0 corresponds to the middle of the extended blockage in Fig. 1b): 
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where l2 here refers to the length of blockage section in Fig. 1(b); I and R are amplitudes of 

incident and reflected waves. Therefore under the conditions of reflection-free end boundaries, I3 

= P0 since the incident wave in this pipe section is the known wave originating from the 

downstream boundary at x = +∞. In addition, since the reflection from the upstream boundary is 

ignored, R1 = 0. This produces four remaining unknowns (I1, I2, R2, and R3) in the solutions given 

by Eq. (8). These unknowns are evaluated from the enforcement of mass and momentum 

conservation at the pipe junctions (i.e., x = 0.5l2 and x = -0.5l2) and leads to:   
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Combining Eq. (8) and Eq. (9) gives, 
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where 
s

  is a measure of the radial constriction imposed by the blockage. It is instructive to 
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consider a blockage with small radial constriction (i.e., 1
s

 ) which simplifies Eq. (11a) to:  
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 .                                                 (11b) 

Substituting Eq. (11b) into Eq. (8), the pressure head at downstream pipe section (i.e., for 

2
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in which the term (a) represents the wave propagation in a blockage-free pipeline while term (b) 

represents the effect of the extended blockage on the wave field. In particular, the presence of the  

22i2
e

lk
in term (b) clearly shows that the blockage induces a frequency shift, while the  

 presence of 
s

  shows that the blockage induces a change in wave amplitude. In addition, since   

1e 22i2
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 as l2 tends to zero (or more precisely as 

22
lk tends to zero), the expression provides a 

theoretical proof that a discrete blockage (blockage with a negligible length) causes a change in 

the wave amplitude but no phase shift. This result is consistent with Wang et al. (2005), 

Mohapatra et al., (2006), Lee et al. (2008 and 2013) and Sattar et al., (2008), where a blockage of 

a sufficiently short length can be approximated as a lumped local loss (discrete blockage), which 

changes the amplitude of the system resonant responses but not their frequencies. The quantity of 

this frequency shifting by the extended blockage is further analyzed in the next section. 
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small blockage case of 1
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 , and the results are plotted in Fig. 3. The results demonstrate that 

the reflected wave amplitude and frequency varies periodically with 
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 . As a result, it 

is clear that the blockage selectively reflects some waves more than others and highlights that the 

detection methods that focus on using wave generation mechanisms of limited frequency content 

are only effective for blockages with certain lengths. In fact, according to Eq. (11), maximum 

reflection occurs if 
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where m is an integer. This condition is referred to in the gravity waves literature as resonance 

condition (e.g., Mei et al., 2005). 

 

4. Analytical Derivation of Extended Blockage Induced Frequency Shifting 

The numerical and experimental studies in Duan et al. (2012 and 2013) have shown that both 

steady and unsteady friction do not shift the system resonant frequencies and the assumption of R 

= 0 is therefore justified in the following derivation to highlight the effect of the extended 

blockage. The full effect of friction is taken into account for the comparisons with numerical and 

experimental data later in the paper.  For the case of a single extended blockage in Fig. 1(b), 
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By defining the changes in the characteristic impedance and wave propagation coefficient 

imposed by the extended blockage section as
02

YYY   and  
0321
  , the 

following results can be obtained, 
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where 
Y
  and 
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  = the changes of the characteristic impedance and wave propagation coefficient 

relative to the values of original blockage-free case respectively. Furthermore, by defining, 
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where 
A

 , 
L

 , and 
a

  represent the pipe area, pipe length and pipe celerity changes imposed by 

the extended. Previous studies such as Stephens et al. (2005) and Stephens (2008) have found 

that areas of severe wall deterioration are often associated with a reduction in the pipe flow area 

as well as wavespeed, with nearly 40% reduction in both parameters observed in the field. The 

results of Eq. (15) through to Eq. (17) demonstrate that the changes in the system parameters 

imposed by the extended blockage (, a, and L) result in changes in the pipe characteristic 

impedance and wave propagation coefficients (Yand ). That is, a severe blockage that imposes 

a significant change in cross-sectional area (), wavespeed (a) or has a long blockage length (L) 

produces large values of Yand/or . 
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0rfrfbrf

  ) and by combining Eq. (14) through 

Eq. (17) where 
rf

  is the size of the shift in resonant frequency between the uniform and 

blocked cases for a particular resonant peak, the result of Eq. (2) can be rewritten in terms of , 

a, L and 
rf

 . Using a first order approximation and after trigonometric transformations and 

rearrangements, the resonant frequency shift normalized by the theoretical frequency of the 



13 

 

uniform pipeline can be expressed as, 

d

u

rf

C

C
 ,                                                                (18) 

where Cu and Cd are coefficients relating to the extended blockage parameters defined as Eq. (A4) 

in the appendix of the paper.  

It is necessary to note that under most practical situations the blockage causes a reduction 

in the pipe celerity and 
a

 is normally much smaller than 1 with a ~ 0.4 observed in the literature 

for extreme cases (e.g., Hachem and Schleiss, 2012a, Hachem and Schleiss, 2012b, Stephens et 

al., 2005 and Stephens, 2008). Based on a <<1, Eq. (18) can be further simplified with regard to 

A and L as,  
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,                    (19a) 

Or in terms of the resonant peak number (m) as, 
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 (19b) 

The detailed derivations for Eq. (19), Eq. (19a) and Eq. (19b) are shown in the appendix 

of the paper. The simplified result of Eq. (19) shows that the resonant frequencies are shifted in a 

periodic pattern and that the pattern is dependent on the size, length and location of the extended 

blockage (A,Land ). This result is consistent with the findings of Duan et al. (2012 and 

2013). Furthermore, when the longitudinal length of the blockage is very small (i.e., l2 ~ 0) such 

that L tends to zero, the magnitude of the frequency shift also approaches zero according to Eq. 
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(19b) and is a further confirmation for the behavior of discrete blockages previously shown using 

Eq. (12). Moreover, once its accuracy is confirmed, Eq. (19) provides an efficient alternative to 

the complicated Eq. (2) for determining the blockage properties through an inverse calibration 

process. In the following sections numerical and laboratory experiments are conducted and used 

for the verification of Eq. (19). 

 

5. Numerical Validation and Results Analysis 

The single pipeline systems in Figs. 1 (a) and (b) are used for validating the results of Eq. (19a) 

and Eq. (19b). The reservoir head at the upstream end of the system is fixed at 50m and the valve 

at downstream end is initially fully open. The reservoir and boundary valve are connected by a 

single pipeline of 1000m length and 0.5m diameter. The steady state flowrate in the pipeline is 

0.1m
3
/s and the transient signal is caused by the sudden and full closure of the end boundary 

valve. The pressure head trace is measured at the upstream face of the valve. A total of 6 

blockage cases (labeled as cases no. N1 through to N6) with a wide range of  and L values are 

tested numerically and the parameter settings are shown in Table 1.  

To initially highlight the impact of different blockage constriction severities on the shift 

pattern of Eq. (19), the wavespeeds for all sections (original and constricted) are fixed at 

1000m/s (i.e., a=0 but L ≠0). That is, the effect of  is first inspected in this section while the 

effect of a will be tested later in the paper. The numerical tests are conducted by a 1-D method 

of characteristics (MOC) model (Wylie et al., 1993 and Ghidaoui et al., 2005), with the pipeline 

discretized into 200 sections. The Darcy-Weisbach formula with friction factor f =0.015 and the 

weighting function based unsteady friction model by Vardy and Brown (1996) are used for 

representing the steady and unsteady components of wall shear during the transient events. The 
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time domain head traces collected at the upstream face of the valve are converted into frequency 

response functions using the technique described in Lee et al. (2006 and 2008). The frequencies 

of the resonant peaks are then extracted from the resultant spectrum, normalized by the 

fundamental frequency of the original uniform pipe and plotted in Figs. 4 and 5 for all cases. 

Note that Fig. 4 shows the impact of small blockage severities (with <0.5) whereas Fig. 5 

shows the impact of large blockage severities (>0.5). The results are labeled as “numerical - 

MOC” in the figures and they display shifting patterns for the resonant frequencies that are 

consistent with the periodic form of Eq. (19). 

To examine the validity of Eq. (19), the extended blockage properties are determined by 

inversely fitting the observed resonant peak shifts with the analytical form of Eq. (19). The fitted 

result for each case is plotted and labeled as “predicted - Eq. (19)”. The relative error of the 

estimated blockage parameters is calculated for each case and listed in Table 2. The relative error 

of prediction in Table 2, , is defined as the difference between the predicted result and the real 

value normalized by the real value.  

The results from Table 2 show that Eq. (19) can be used in an inverse procedure to 

accurately locate and size the blockage in the pipeline for a wide range of , with the maximum 

prediction errors for the blockage location, length and severity at 0.3%, 2.3% and 4.9% 

respectively. It is also important to note that the computation efficiency has been increased in 

this procedure using Eq. (19) compared to original Eq. (2).  The usage of Eq. (19) only requires 

10% of the computation time needed when Eq. (2) is used and yet Figs. 4 and 5 demonstrate that 

the Eq. (19) can correctly reproduce the patterns of frequency shift. 

The relationship between the amplitude of the frequency shift patterns and the severity of 

the blockage constriction,  is plotted in Fig. 6 for values of  from mild blockages (e.g., 
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~0.0) to severe blockages (e.g., ~1.0). The results show that the shift pattern amplitudes of all six 

cases are monotonously increasing with the value of  and is consistent with Eq. (19) where the 

maximum frequency shift size (i.e., 












 

0

.max
th

rf




) is increasing with a factor of 

A

A





2
.  

Another impact from an extended blockage on the pressure response is the change in the 

pipe wave celerity within the blockage section. The variation of wavespeed in water piping 

system from pipe deterioration has been studied in the field and up to 37% reduction in 

wavespeed is observed in extreme cases (Stephens et al., 2005). From this point of view, the a 

values for most practical cases are expected to be significantly smaller than 1 (i.e., a<<1) and 

the impact of a large wavespeed variation is studied to test the accuracy of Eq. (19) under 

extreme conditions. Two different cases (cases N2 and N5 in Table 1) are used for this 

illustration. The wavespeed of the blockage section for case N2 is changed by 20% and 50% for 

case N5. Other parameters of the blockage are kept the same as in Table 1. The size of the 

wavespeed change covers the range of extreme cases presented in the literature (Stephens et al., 

2005, Stephens, 2008, Hachem et al., 2011, Hachem et al., 2012a and Hachem et al., 2012b). The 

results are shown in Fig. 7. Compared to the previous results with a = 0, Fig. 7 shows that 

despite a small difference in the magnitude of the shifting pattern, the variation of a value (from 

0 to 0.5) caused by the extended blockage has little influence on the accuracy of Eq. (19). This 

result also validates the first order simplification with regard to a in deriving Eq. (19). 

 

6. Experimental Verification and Discussion 

The experimental data used for the verification of Eq. (19) are retrieved from Duan et al. (2013) 

and Tuck et al. (2012, 2013). Details of the experimental system information are shown in Table 
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3 and in total 6 experimental tests are considered, labeled as cases no. E1 to E6. Detailed 

descriptions of the experimental system and measurement procedures can be found in the 

original publications. The results of the resonant frequency shifts for cases E1 to E3 are shown in 

Fig. 8 and cases E4 to E6 are shown in Fig. 9.  

The predicted results from Eq. (19) are also plotted for comparison. The results show that 

Eq. (19) can accurately capture the phases of the frequency shift patterns but significant errors 

exist for capturing the amplitudes of some resonant peaks. This error is due to the violation of the 

linear approximation by the large blockage severities used in these experimental cases (e.g., A = 

0.91 and 0.56) and the inability of the current models for capturing the frequency dependent 

behaviors at higher modes.  

Table 4 shows the accuracy for predicting the location and length of an extended 

blockage (l1~l3) is higher than the accuracy for predicting the constriction severity (A). The 

maximum errors in predicting the blockage lengths and locations are 5.8% and 7.9%, while this 

value increases for blockage severity to 22.6%. In other words, the prediction of blockage 

severity is easily affected by the model uncertainties and experimental errors. Moreover, the 

prediction accuracy was found to decrease with the blockage length and is likely caused by the 

highly unsteady and multiple dimensional turbulence effect at the blockage junctions. These 

effects, which are currently approximated as quasi-steady in 1-D models, play a more significant 

role as the blockage length decreases (Zhao et al., 2013). 

The experimental tests also show that a high number of resonant frequency peaks is 

required for the application of the proposed method. For example, to obtain the frequency shift 

pattern for these experimental cases, at least 6 peak points have to be retrieved from the 

frequency response data (e.g., case E2). The number of resonant peaks observed in the data is a 
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function of the speed of the original valve operation and the results indicate that rapid maneuvers, 

with broad frequency content is most appropriate for the application of the blockage detection 

technique. 

 

7. Conclusions 

This paper investigates the effect of transient wave-blockage interaction on the system frequency 

responses and confirms the possibility of using the changes (shifts) of resonant frequencies for 

extended blockage detection in pipes. Particularly, the wave-blockage interaction process and 

physical insights for resonant frequency shifting in blockage pipe system are inspected using 

wave perturbation analysis in the paper. Further analytical analysis is conducted in this study to 

produce a simplified relationship between the blockage parameters and the nature of the shifting 

pattern. Both numerical and experimental tests with a wide range of blockage constriction 

severities are used to validate the analytical results. These numerical and experimental tests 

confirm the ability of the proposed method to be used to detect extended blockages provided a 

sufficient number of resonant responses are obtained from the test data.  

It is also necessary to point out that the study is conducted on a single extended blockage 

of uniform characteristics. While the findings of this study are validated by numerical tests and 

preliminary laboratory experiments in this paper, more verification work will be required in the 

future to identify practical issues associated with the application of this technique in the field, 

such as the problem of data measurement and pre-processing, the detection of multiple extended 

blockages and the impact of other system complexities. 
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Appendix – Analytical Derivation for Eq. (19) 

By applying Eq. (13) and Eq. (14), Eq. (2) can be rewritten as, 
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  ,             (A1) 

where 
rfrfrfb

 
0

 with 
0

,
rfrfb

  = resonant frequency of the blocked section and the 

uniform pipeline respectively, 
rf

  = magnitude of the resonant frequency shift between the 

uniform and blocked cases, Y,  = extended blockage induced variations of characteristic 

impedance and wave propagation coefficients in the pipeline. 

By considering the first order approximation using the Taylor series expansion, the co-

sinusoidal functions in Eq. (A1) can be expanded about rf0 in general form as, 

         
2

00
sincoscos

rfrfrfrfrfb
O  ,                       (A2) 

where   = coefficient of the resonant frequency terms in the co-sinusoidal functions of Eq. (A1). 

Expanding the co-sinusoidal function related terms and substituting Eq. (14) through Eq. (16), 

and carrying out trigonometric transformations and rearrangements give, 

d

u

rf

C

C
 ,                                                                       (A3) 

where Cu and Cd are coefficients relating to the extended blockage parameters, and 
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Published literature has shown that the variation of wavespeed (a) imposed by an 

extended blockage in most practical pipelines is usually much smaller than 1. Therefore, the 

coefficients of Cu and Cd in Eq. (A4) can be simplified by assuminga <<1. By consideringa 

<<1 in Eq. (4A), Cu and Cd becomes,  
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Result of Eq. (15) shows that the frequency shift size (
rf

 ) is dependent on the blockage 

constriction severity (A), blockage length (L) and blockage location (). Furthermore, since 

A<1, 1<0 and 3 <0, Cd in Eq. (A5) can be approximated as, 

 2

0
2

Ad
C   .                                                                (A6) 

Therefore, the resultant frequency shift size in dimensionless form (i.e., normalized by the 

fundamental frequency of blockage free case, th0) becomes, 
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Or in terms of the resonant peak number (m) as, 
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Notations 

The following symbols have been used in the paper: 

a = wavespeed; 

A = pipe cross-sectional area;  

C
*
 = shear decay coefficient in unsteady friction model; 

Cn =  amplitude of boundary wave; 

Cp =  amplitude of incident pressure wave; 

D  = pipe diameter;  

f =  friction factor; 

g = gravitational acceleration;  

i  = imaginary unit for complex number;  

I = amplitude of incident wave; 

k  = wave number;  

L = pipe length;  

m  = integer number; 
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P = pressure head; 

Q = discharge; 

R = amplitude of reflection wave; 

Rf = friction damping factor;  

Re = Reynolds number; 

t =  time; 

x =  longitudinal distance;  

Y = characteristic impedance of pipeline;  

 = relative error of prediction;  

  = operator of variation;  

a  = change of wavespeed;  

A  = change of pipe cross-sectional area;  

L = longitudinal blockage range; 

Y  = change of characteristic impedance; 

  = change of wave propagation coefficient;  

 =  wave number;  

 =  wave propagation coefficient;  

 =  kinematic viscosity;  

 = coefficient relating to the blockage size;  

 = density of fluid;  

rf  = resonant frequency of pipe transients;  

th = theoretical frequency of a pipe system;  

rf = shift size of resonant peak frequency;  
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Subscripts and Superscripts 

b = quantity of blockage pipe case;  

S, U = quantity of steady and unsteady state;  

0 = quantity of uniform pipe case;  

1, 2, 3  = section indexes of blockage pipeline.  
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