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ABSTRACT
Lead (Pb) is one of the impurities that cause stress corrosion cracking (SCC) of the tubing material in
the steam generator (SG), the corrosion behavior of surface mechanical attrition treatment (SMAT)
treated surface was measured for alloy 690 in simulated SG condition with and without Pb contam-
ination. Even though the polarization curves indicated the corrosion potential of SMAT-processed
specimens shifted negatively, the positive effect of SMAT on resistance of SCC was observed. The
reduced susceptibility to lead-induced stress corrosion cracking may be attributed to the formation
of stable passive film and the significant compressive stress on the surface induced by SMAT.

IMPACT STATEMENT
A significant compressive stress induced by the SMAT process effectively reduced the susceptibility
of the alloys to lead-induced stress corrosion cracking.
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Alloy 690, due to its outstanding robustness against cor-
rosion resistance, is widely used as the steam genera-
tor (SG) tubing material in nuclear power plants. How-
ever, many types of corrosion still happened since it was
exposed to a highly aggressive water chemistry environ-
ment containing someoxidizing impurities.[1–7]Among
the impurities in the SG crevices, Pb has been recognized
as one of the primary contributors to the SCC failure
of SG tubing materials. It is well known that the cor-
rosion resistance of alloy is attributed to the formation
of a protective passive film on its surface. The Pb con-
tamination results in certain changes of the passive films,
and then leads to degradation of the films. The experi-
ments of Lu et al. revealed that PbSCC might dominate
rupture mechanisms in the passive film [8] and passivity
degradation.[9–11] The potentiodynamic measurements
of Pb contamination on the anodic dissolution behavior
of nickel-based alloys indicated that the Pb could increase
the anodic dissolution.[12–15] Kilian and Roth [15] and
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Kim et al. [16] provided the evidence to establish
the relation between PbSCC and an anodic dissolution
mechanism,[11] which is the potential range of the max-
imum PbSCC susceptibility corresponding to the posi-
tion of an anodic current peak. PbSCC behavior highly
depends on the solution pH value, and recent investi-
gation indicated that the effect of Pb contamination on
the passivity degradation of alloy 690 in an alkaline solu-
tion wasmore significant than that observed in the acidic
one.[17] Grain size refinement of the metallic surface
is one of the promising ways to control the corrosion
behavior of alloy 690.

Surface mechanical attrition treatment (SMAT),[18]
in which the repeated multidirectional impacts at high
strain rates onto the specimen surface result in severe
plastic deformation and grain refinement progressively
down to the nanometer regime in the entire specimen
surface, is one of the important ways to significantly
improve mechanical properties of metallic materials.
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Compared with the conventional shot peening method,
SMAT deformation directions are random, which can
activate multi-slip systems. And SMAT can reach higher
kinetic energies to achieve a thicker nanocrystalline
surface layer. The influence of SMAT on the SCC at
room temperature has been investigated and the results
showed that SMAT could improve the corrosion behav-
ior of metallic alloys.[11] However, to our knowledge,
no experimental data are reported so far to investigate
PbSCC of SMAT-processed materials under high tem-
perature and high pressure. To fill the knowledge gap,
it is worth to study the corrosion behavior of SMAT-
processed materials under aggressive environment. In
this work, the effects of SMAT on the corrosion resis-
tance of Alloy 690 with and without Pb contamination
in an alkaline solution have been investigated under high
temperature and high pressure.

Alloy 690 was used as the test material and chemi-
cal composition in weight percent is 0.02C, 30Cr, 10Fe,
0.5Mn, 0.5Si and the balance is Ni. They were degreased
using acetone and subjected to SMAT using 316L stain-
less steel balls for 60min at a fixed frequency 20 kHz at
room temperature. The details of the SMAT process were
described in an earlier paper.[18] The C-ring test speci-
mens were prepared under the ASTM G 38-37 code [19]
and the applied stress was adopted as 414MPa and the
corrosion time is up to 2160 h. The C-ring SCC tests were
performed in simulated alkaline SG crevice chemistries
at 300°C. The corrosive environment was alkaline SG
chemistries with or without 2.2mM (500 ppm) PbOwith
pH at 12.7. All the SCC test solutions were deaerated by
purging with high-purity nitrogen to remove dissolved
oxygen in the test solution for 24 h before testing. An
Ag/AgCl electrode was used as the reference electrode,
and this reference electrode was immersed in 0.65MKCl
solution, which was the same as the Cl− concentration
in the testing solutions. The potential reported has been

transformed into the SCE scale. A long Pt coil was used
as the counter electrode. The phase content and resid-
ual stress before and after SMAT processed were carried
out using X-ray diffraction (XRD). The residual stress
with removal of the surface layer by layer was deter-
mined by the sin2ψ method. Peaks measured at higher
2θ were chosen to acquire accurate information on resid-
ual stress. The chemical composition of specimens in the
oxide films was investigated using X-ray photoelectron
spectroscopy (XPS); the SIMS analysis was performed to
compare the concentration profiles before and after the
SMATprocess. The scanning electronmicroscope (SEM)
was used to study the surface profile of SCC cracks.

XRD profiles of the as-received and SMAT-processed
specimens are shown in Figure 1(a). It can be seen that
the untreated specimen consists of complete austenite.
Because of the reduction in crystallite size and then
inducing high compressive residual stresses in near-
surface regions,[20] the Bragg diffraction peaks of the
specimen treated by SMAT were broadened and shift
slightly to high angle. From XRD results, we also see that
the surface layer of the specimen is still mainly composed
of single austenite; no obvious phase transition could be
observed under such an SMAT condition. Residual stress
was measured on the specimen surface before and after
SMAT with (311) diffraction of Cu Kα X-ray. The elec-
trolytic polishing was used to remove layer by layer from
the specimen surface, and depth profiles of the residual
stress with and without SMAT specimens are shown in
Figure 1(b). Compared with as-received annealed spec-
imens, SMAT treatment led to extremely strong com-
pressive residual stress in the near-surface region, which
remain up to a depth of 100 μm.

To investigate the effects of Pb contamination on
the polarization behavior of 690 alloys in alkaline SG
chemistries, the polarization curvemeasurements at high
temperature and high pressure were conducted: the

(a) (b)

Figure 1. (Colour online) (a) XRD profiles of the untreated and SMAT-processed 690 specimens. (b) Residual stress depth profiles before
and after the SMAT process.
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(a) (b)

(c) (d)

Figure 2. (Colour online) (a) Potentiodynamic curves for alloy 690 with and without SMAT treatment in PbO-free and PbO solution at
300°C; Cr 2p peaks of XPS obtained from alloy in solution containing PbO without (b) and with (c) SMAT treatment; (d) Cr2O3 concen-
tration–depth profile of SMAT specimens in solution containing PbO measured by the SIMS technique. The time in (b)-(d) indicates the
duration for SMAT.

specimens with and without SMAT were preconditioned
at −1V(SCE) in (1) Pb-free solution and (2) in the Pb-
containing solution. Typical results are superimposed on
Figure 2(a).

All specimens showed an active–passive behavior in
the Pb-free and Pb-containing solution under the applied
potential. It can be noted in Figure 2(a) that the corro-
sion potential increased for both SMAT and untreated
specimens in Pb-contaminated solution compared with
Pb-free solution. The corrosion potential of SMAT spec-
imens decreased compared with the untreated ones in
the same environment, while the passive current den-
sities are obviously lower for SMAT ones regardless of
the presence of Pb in the solutions. SMAT specimens
have a wider passive range, which means that a more
stable oxide layer was formed on the surface. Accord-
ing to the E-pH diagram at a high temperature,[21]
Pb ions in a solution were electrodeposited during the
cathodic potential scan. Hwang’s study showed that the
corrosion potentials were increased by the addition of
Pb because metallic Pb is stable in alkaline solution at
an elevated temperature.[22] The lower corrosion poten-
tial of SMAT specimens can be explained in terms of
surface roughness, defect density and residual stresses
induced by SMAT.[23–25] In Figure 2(a), a current peak,

named peak 1, appeared on the polarization curve of
untreated specimens in Pb-contaminated solution, which
is also related to the Pb electrodeposition during the
cathodic potential scan. This electrodeposited Pb can be
oxidized and dissolved, leading to the increase in anodic
current.[26] Peak 2 is related to the oxidation of Pb,
which appears at V = 0.48(SCE) in the Pb-containing
solution.[14] But these two peaks were not found in
SMAT-treated specimens.

According to Okamoto et al.,[27,28] there are gener-
ally three types of bonds in passive films, i.e. O-M, OH-
M, and H2O-M. The distribution of oxide and hydroxide
in the passive film can be identified by XPS and SIMS.
Figure 2(b) and 2(c) showsCr 2p core level spectra of XPS
and their decompositions for passive film formed on alloy
690 without and with SMAT, respectively. It can be seen
that the spectra were decomposed into three peaks after
SMAT and corrosion: the intensity of the signal of Cr2O3
remarkably increased with Cr(OH)3 decreased sharply
and Cr-rich signal appeared, which indicates that SMAT
leads to a significant increase in the amount of Cr oxide in
the passive film. The Cr2O3 level spectra can also reflect
the trend of OH−1/O2–distribution in the films. In the
passive films, Cr oxides increased with SMAT duration
and a large amount of Cr2O3 appeared in the film after
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(a) (b)

(c) (d)

Figure 3. Surface and cross-sectional observations of C-ring with and without SMAT in solution containing PbO. (a) Surface of C-ring
without SMAT before corrosion; (b) surface of C-ring without SMAT after corrosion; (c) cross-sectional observations of C-ring without
SMAT after corrosion; and (d) surface of C-ring with SMAT after corrosion.

60 min SMAT, as illustrated in Figure 2(d). According to
Luo et al., the presence of Pb contamination in alkaline
solutions leads to a significant increase in the amount of
hydroxyl in the passive film,[11,14] while it hardly affects
the ratio of OH−/O2– in the passive films formed with
rich Cr oxide, which results in the fact that the role of Pb
is not pronounced in SMAT specimens compared with
the effect of Pb on the untreated ones. This agrees with
the results from the polarization curve.

Figure 3 shows surface and the cross-sectional obser-
vations of C-ring specimen with and without SMAT after
SCC tests in the solution containingPb. The typical image
of coarse grains was seen on the un-SMAT specimen sur-
face before the SCC test in Figure 3(a). In Figure 3(b) SCC
cracks occurred after the PbSCC test for specimen with-
out SMAT, and a crack with a length of around 200 μm
was observed on the cross-sectional image shown in
Figure 3(c). In contrast, no obvious cracks were observed
on SMAT-treated specimens shown in Figure 3(d).

It has been reported that the crack initiation is closely
relatedwith the property of the surface oxide film.Hwang
et al. [21] reported that Pb was strongly related to crack
initiation on Alloy 690 in an alkaline solution due to
the acceleration of Cr dissolution from the passive oxide
film. If Cr content at these locations was too small to

reach a certain critical value, SCC cracks would initi-
ate with high stress concentration under the oxide films.
Lots of new grain boundaries and a high density of dis-
locations were created on the surface during the SMAT
process. The grain refinement on the surface affects the
content and microstructure of the passivity film, as a
high density of grain boundaries provide a large num-
ber of diffusion pathways for Cr, which contributes to the
formation of stable Cr oxides. The formation of the pro-
tective film with rich Cr oxide on the surface of SMAT
specimens resulted in the improvement of PbSCC resis-
tance. Additionally, the high-level compressive residual
stress generated during the SMAT process increased SCC
resistance regardless of the presence of Pb because the
compressive residual stress prevents both crack initiation
and growth in SMAT specimens. Park [29] also found the
similar phenomena in the shot-peened specimens.

In this work, we have investigated the effect of SMAT
on SCC behavior under high-temperature and high-
pressure condition in the Pb-free and Pb-containing
solutions, respectively. The experimental results showed
that the SMAT treatment leads to strong compressive
residual stresses on the surface of specimens and a sig-
nificant increase in the amount of Cr oxide in the pas-
sive film. SMAT-processed alloy 690 exhibited better
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corrosion resistance in the Pb-free and Pb-containing
alkaline solutions.
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