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Abstract

Influenza is active during the winter and spring in the city of Beijing, which has a typical tem-

perate climate with four clear distinct seasons. The clinical and laboratory surveillance data

for influenza have been used to construct critical indicators for influenza activities in the

community, and previous studies have reported varying degrees of association between

laboratory-confirmed influenza specimens and outpatient consultation rates of influenza-like

illness in subtropical cities. However, few studies have reported on this issue for cities in

temperate regions, especially in developing countries. Furthermore, the mechanism behind

age-specific seasonal epidemics remains unresolved, although it has been widely dis-

cussed. We utilized a wavelet analysis method to monitor the coherence of weekly percent-

age of laboratory-confirmed influenza specimens with the weekly outpatient consultation

rates of influenza-like illness in Beijing, China. We first examined the seasonal pattern of lab-

oratory-confirmed cases of influenza A (subtyped into seasonal A(H1N1) and A(H3N2) and

pandemic virus A(H1N1) pdm09) and influenza B separately within the period from 2008–

2015; then, we detected the coherence of clinical and laboratory surveillance data in this dis-

trict, specially examining weekly time series of age-specific epidemics of influenza-like ill-

nesses in the whole study period for three age categories (age 0–5, 5–15 and 25–60). We

found that influenza A and B were both active in winter but were not always seasonally syn-

chronous in Beijing. Synchronization between age ranges was found in most epidemic

peaks from 2008–2015. Our findings suggested that peaks of influenza-like illness in individ-

uals aged 0–5 and 5–15 years consistently appeared ahead of those of adults, implying the

possibility that schoolchildren may lead epidemic fluctuations.
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Introduction

In temperate developed regions, seasonal influenza has been well studied and be known as one

of the main causes of substantial morbidity and mortality [1]. By identifying explicit and pre-

dictable annual seasonality, public health interventions can be implemented to prevent and

control influenza. Investigating the seasonal patterns of influenza activity also allows for ade-

quate preparations of preventive measures before the influenza season begins [1, 2]. It is usu-

ally assumed that the reported influenza activity is generally representative of the timing of

influenza activity and that influenza virus infections can be identified in the laboratory. Never-

theless, the surveillance of influenza epidemics cannot only rely on increasing numbers of

influenza-like illness (ILI) cases because non-specific ILI-like symptoms may be caused by

etiologies other than influenza [3]. As a result, many countries collect data on laboratory-

confirmed influenza infection parallel to clinical surveillance to provide more accurate and

timely information about influenza virus activity than information from conducting clinical

surveillance alone. Although there has been important progress in influenza surveillance sys-

tems in recent years, the volume of information on the surveillance of ILI and laboratory-

confirmed virus activity remains too sparse for detailed analyses at the province and city levels

even in developed countries [4, 5].

Many countries now include laboratory-confirmed influenza tests as part of their national

influenza surveillance programs, and this information is communicated through the Internet

to the public health community on a weekly basis [6–8]. In contrast, the surveillance in devel-

oping countries is largely falling behind due to the little data available on the surveillance of

influenza activity in the regions. Because only a small proportion of influenza infections are

confirmed through laboratory findings, empirical data on laboratory-confirmed seasonal

influenza are limited by very low and possibly non-systematic case ascertainment. In general,

little information is available in the literature regarding the association between clinical and

laboratory surveillance data in developing regions. We intend to identify the epidemic activity

in a temperate region of a developing country and explore whether it is recurrent and multi-

phasic in seasonal patterns.

Studies on age-specific epidemic activity curves could provide key evidence on the mecha-

nism of virus transmission and could facilitate the formulation of age-specific control mea-

sures [9, 10]. There is a growing body of evidence supporting that human mobility may drive

the dispersal of influenza virus activity [11–13]. However, this hypothesis has not been sup-

ported consistently; for example, some studies [14–16] questioned the hypothesis that the chil-

dren actually bring about influenza epidemic fluctuations. The objective of this study is to

identify the age groups in which influenza activity first peaks in the community using our

extensive surveillance of ILI cases over eight years and thereby fill a gap in the data available

for temperate developing regions.

Methods

Data sources

ILI is defined as a fever (temperature of 38˚C or greater), cough and/or a sore throat in the

absence of a known cause other than influenza. Weekly district-wide ILI time series from

2008–2015 were obtained from Beijing Medical Institutions in Communicable Disease Surveil-

lance and Early Warning System (collecting data through inquiry and diagnosis by doctors in

each hospital) and were categorized into five age groups (0–5, 5–15, 15–25, 25–60 and greater

than 60 years). Weekly laboratory-confirmed influenza infections for influenza A and B from

January 2008 to December 2015 were obtained from Xicheng District Centers for Disease
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Control and Prevention in Beijing, China. Throat swab specimens were extracted from

patients that had not taken any antiviral drugs and within three days of the onset of symptoms.

The isolation and identification of influenza virus in Madin Darby Canine Kidney (MDCK)

cells were conducted in the laboratory of Xicheng District Centers for Disease Control and

Prevention. As the capital and the second largest city in China, Beijing has a humid continental

climate, and the monthly daily temperature in January is -3.7˚C, while in July it is 26.2˚C. The

core functional area of Beijing and Xicheng District are 92.39 and 50.53 square kilometers, and

population in the areas are 2,203 and 1,298 thousand in 2016, respectively [17]. That is, the

density of the area is about 25 thousand people per square kilometer. As a central district in

Beijing, Xicheng District has ten Grade III Level A hospitals (top-class in China). It should be

stressed that the daily children outpatient visits to Beijing Children’s Hospital affiliated with

Capital Medical University in the district, represent more than half of all of the daily children

outpatient visits to hospitals in the entire city [17, 18]. Given the highly compacted population

and the homogeneity of both climate and geography among all districts in Beijing [17, 19], we

believe that our data can be representative of the entire Beijing population’s influenza activity.

Ethical statement

The collection of data from laboratory-confirmed cases was part of a long-term public health

surveillance effort by the Chinese Centers for Disease Control and Prevention. We utilized

weekly aggregated data that did not include individual patient information.

Wavelet analysis

We utilized wavelet analysis, involving the transformation of a data series with a wavelet, to

determine the timing of epidemics. Employing time-localized waves as basis functions. This

approach can detect non-stationary behavior, which changes over time in both frequency and

amplitude. In the analysis of epidemiological time series data, wavelet analysis has been used

previously to measure synchrony in influenza activity between two locations or between two

incidence proxies [20]. We adopted a global wavelet spectrum to estimate the amplitude of

annual and semi-annual epidemic cycles for subtypes of the weekly percentage of laboratory-

confirmed influenza specimens. As a measure of epidemic coherence between laboratory sur-

veillance data and the weekly percentage of clinical ILI consultation, as well as between differ-

ent age groups, the cross wavelet transform method was employed and high coherence

suggested that one time series was associated with the other one at a particular time and fre-

quency [21]. We estimated the weekly phase angle difference in wavelet-reconstructed time

series after extracting the main annual cycle (52-week period; Morlet continuous wavelet). The

Morlet wavelet is essentially a wavelet consisted of a complex exponential, which can capture

the cyclical fluctuations in local time series [22]. Wavelet analysis and coherence comparisons

were implemented in R version 3.2.4 using the sowas package by [23, 24] and some functions

written by [25] to estimate the amplitude of the annual and semi-annual epidemic cycles in

each wave. Following Maraun et al. [23], we estimated the coherence by smoothing 3 periods

in the time direction and one octave (0.5 in each direction) in scale direction. The following

results were not sensitive by changing these parameters.

Results

Differences in weekly percentage of specimens positive for influenza

with influenza A and B from 2008 to 2015

Table 1 summarized the annual numbers of laboratory-confirmed influenza infections and ILI

in the Xicheng District of Beijing from 2008–2015. Fig 1A showed the weekly percentage of
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laboratory-confirmed cases of influenza A. The mean was 7.8% and ranged between 0% to

67%. There were no clear epidemic periods after 2012, despite two sharp spikes around the

winters of 2009 and 2010. Fig 1B showed the wavelet power spectrum of the weekly percentage

of laboratory-confirmed positive specimens of influenza A. A high power indicates frequency-

and time-specific periodicity. As shown in Fig 1B, although annual influenza epidemics were

Table 1. Annual numbers of specimens tested for influenza infection, number of positive specimens (including type A, type B and uncategorized),

averaged weekly percentage (AWP) of influenza cases and averaged weekly consultation rates of influenza-like illness, 2008–2015.

Time No. Laboratory No. A No. B No. Positive AWP Rates ILI

2008 338 43 75 118 0.123 0.048

2009 1429 430 3 499 0.265 0.041

2010 1964 111 0 480 0.232 0.044

2011 1406 39 27 66 0.039 0.036

2012 2028 183 134 317 0.152 0.038

2013 2089 83 11 94 0.045 0.029

2014 2085 216 86 302 0.144 0.023

2015 2860 44 113 159 0.067 0.019

Total 14253 1149 449 2035 0.143 0.034

doi:10.1371/journal.pone.0169199.t001

Fig 1. Wavelet analysis of weekly percentage of positive laboratory-confirmed cases of influenza A and B. (A) Weekly

percentage of laboratory-confirmed cases of influenza A; (B) Power spectrum of time series of percentage of confirmed cases of influenza

A; (C) Weekly percentage of laboratory-confirmed cases of influenza B; (D) Power spectrum of time series of percentage of confirmed

cases of influenza B. The black solid contour lines indicate the regions of power significant at the 95% confidence level which can be

assumed to be a true feature. The region outside the black-curved cone indicates the presence of edge effects and is not the evidence for

conclusions. The power values were shown in the panel on the right.

doi:10.1371/journal.pone.0169199.g001
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identifiable in most years (not colored as pure blue), the wavelet analysis revealed that the

influenza activities for type A showed a statistically significant annual pattern with one peak in

winter in the years 2009–2010. Fig 1C showed weekly percentage of laboratory-confirmed

cases of influenza B. The mean was 2.9% and ranged from 0 to 90%. In Fig 1C, influenza B

showed one peak in the winter in 2012, 2014 and 2015, which was consistent with the annual

cycle detected in Fig 1D. Only an annual seasonal pattern was noticeable in Beijing.

Coherence in weekly percentage of specimens positive for influenza and

percentage of ILI consultations from 2008 to 2015

The time series of weekly percentage of laboratory-confirmed influenza specimens (LAB) and

weekly percentage of clinical consultations for ILI were normalized with mean and standard

deviations as zero and one, respectively. After normalizing and aligning the curves of the

weekly laboratory-confirmed rates and ILI consultation rates from 2008 to 2015, the irregular

shapes of the epidemic curves for Xicheng District, Beijing, are illustrated in Fig 2A, showing

both the level of synchronization as well as a similarity in shape. The results of wavelet coher-

ence analysis between LAB and ILI are shown in Fig 2B. The LAB data presented a consistently

significant coherence with ILI for the annual cycle during 2009–2011 and 2014–2015 on 95%

significance level. For the semiannual cycle, high coherence was found only in the year 2014.

To compare the timing of LAB and ILI, we calculated their phase angle difference for the

annual cycle that was most clearly observed throughout the study. The mean of the phase

angle difference was 0.328 in radians as shown in Fig 2C, which implied that LAB was esti-

mated to follow ILI with an average delay of 2.716 weeks. ILI consistently preceded LAB from

2008 to early 2011 and approached the latter thereafter.

Age-specific epidemic waves of influenza in Beijing

In Fig 3A, we found that influenza virus activity was synchronized across age groups through-

out the whole study period. The figure showed that consistent peak patterns were observed for

the epidemic peak times of ILI among the three groups, especially for three obvious peaks in

years 2013–2015. The composite epidemic pattern was also remarkably similar in the waves

for the age groups 0–5, 5–15, and 25–60. One noticeable distinction between the curves of ages

0–5 and 5–15 and that of ages 25–60 during the pandemic in 2009–2011 was that the peak in

the 5–15-year-old age group appeared much sharper than that of the adults of aged 25–60, and

the influenza pandemic patterns appeared highly heterogeneous at each age scale. This phe-

nomenon only appeared during the pandemic, but not in any other peak of the year, such as

those in 2011 and 2013–2015. To compare the timing across various age groups, we calculated

their phase angle difference for the annual cycle that was consistently observed throughout the

study in Fig 3B. The 25–60 age group was found to follow the 0–5 group, with an average delay

of 4.1 weeks, ranging from the delay of 2.0 to 6.4 weeks, and to follow the 5–15 group, with an

average delay of 1.1 weeks, ranging from 1.0 week ahead to 3.9 weeks’ delay.

Discussion

Influenza epidemics in temperate latitudes are usually characterized by the dominance of

influenza B or one of two subtypes of influenza A, A/H3N2 or A/H1N1. Goldstein et al. [26]

found that the epidemic sizes of influenza A/H3N2, A/H1N1, and B infections varied from

year to year in temperate regions and discovered that type A was the most virulent of the three

types of influenza virus and was associated with seasonal epidemics in temperate regions.

Rambaut et al. [27] confirmed that the epidemiological data on influenza A demonstrated an

inconsistent seasonal pattern of influenza virus infection across years, with high activity during

Coherence of Influenza Surveillance Data in Beijing
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Fig 2. Association between normalized weekly percentages of ILI consultations (ILI) and weekly

proportion of positive laboratory-confirmed cases of influenza A and B (LAB). (A) Normalized weekly

percentage of ILI consultations and laboratory-confirmed cases of influenza (A and B); (B) Cross wavelet

transform of the LAB and ILI time series. The power values were colored in Fig 2B. The black solid contour

lines indicate the regions of power significant at the 95% confidence level which can be assumed to be a true

feature. The region outside the black-curved cone indicates the presence of edge effects and is not drawn as

the evidence for conclusions. (C) Phases of LAB and ILI time series (solid lines, colors as in Fig 2A) and their

phase difference (black dashed lines).

doi:10.1371/journal.pone.0169199.g002
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the winter. As shown in Fig 1A, the shape of the epidemic curve in Beijing was irregular when

compared to the typical epidemic curve described by epidemic models, which raised unique

challenges. Unlike in most temperate regions [28, 29] the influenza circulation in Beijing pre-

sented a less well-defined seasonality when compared with developed countries. One possible

reason for this finding is that our study started around the period of the influenza pandemic

when the appearance of H1N1pdm09 interrupted the regular variations of influenza A and

this might have lasted for several years. The laboratory-confirmed cases of influenza B, how-

ever, turned out to be seasonal in the post-pandemic period, possibly because they were less

influenced by the pandemic.

Fig 3. Association between weekly percentage of ILI consultations in the Age 0–5, 5–15 and Age 25–

60 groups. (A) Age-specific normalized weekly ILI time series for Ages 0–5 (red), Ages 5–15 (green), and

Ages 25–60 (black); (B) Phase differences between Ages 0–5 and Ages 25–60 (red dashed lines) and

between Ages 5–15 and Ages 25–60 (green dashed lines).

doi:10.1371/journal.pone.0169199.g003
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Annual cycles were observed in both the laboratory-confirmed influenza and ILI activity

data, and both disease indicators were highly synchronous for most of the study period. Peak

timing provides a complementary measure of synchrony between influenza surveillance sys-

tems. Yang et al. [30] mentioned that although the weekly percentage of laboratory-confirmed

influenza specimens appeared to be temporally representative of the level of influenza activity

at the community level, this was not the case during the 2009 pandemic, when laboratory prac-

tices varied in response to the public health needs. During the pandemic period, clinical and

laboratory testing procedures varied in response to public health and clinical needs and labora-

tory capacity, and thus the detection rates were not constant over this period. We showed that

the percentages of ILI consultations were in synchrony with laboratory surveillance findings in

the period of the pandemic and therefore can be adopted as a reliable indicator of influenza

epidemics during special periods.

In our study, during both the pandemic period and peak timing from 2008–2015, labora-

tory surveillance and clinical surveillance data showed high retrospective correlation in captur-

ing season-to-season epidemic timing and magnitude. However, we noticed that from 2008 to

early 2011, these data sources were not exactly synchronous, and thus significant phase differ-

ences were captured by wavelet analysis. Yang et al. [30] stated that other common respiratory

viruses had no obvious epidemic peaks and were delayed during the pandemic of A/H1N1

2009 pandemic. Additionally, competition and interference between influenza A viruses and

other respiratory viruses existed. Therefore, we suspected that other viruses were active during

the period, which could lead to clinical surveillance being less specific to influenza. Although

laboratory data are considered to be more rigorous and accurate than clinical data, the surveil-

lance system was constructed only since 2007 in China [5] and therefore limits the length of

time series we can obtain so far. Further research is required to determine which time series

can be trusted to demonstrate and predict influenza activity in Beijing.

Past work suggested there was essentially no lead between reference laboratory surveillance

system and ILI cases in Hong Kong in 2009 [6]. Other published studies have indicated that

ILI surveillance was usually 2–3 weeks ahead of laboratory surveillance in public health prac-

tices [2, 31]. Our findings regarding surveillance data in Beijing are consistent with these stud-

ies, and thus support that clinical ILI consultation rates could be a reliable and timely indicator

of changes in influenza virus activities in Beijing, a city with temperate climate. The detection

of the coherence between the confirmed influenza cases and ILI can be applied to other tem-

perate regions to provide insights into the seasonality of influenza viruses in temperate regions.

Meanwhile, laboratory confirmation will likely play an increasingly important role in the

development of better methods of early detection and summary measures of influenza activity

in key times. Our study provides certain evidence of the seasonality and periodicity of both

surveillance and clinical data, such as the local features of a single time series and the local

coherence between two time series. In practice, when ILI is consistently detected ahead of lab-

oratory-confirmed cases, it can bring up an early warning for influenza epidemic, for suscep-

tive populations to improve their self-protection, and for the government to allocate medical

resources timely. These results will need to be verified by future research with access to greater

number of laboratory-confirmed influenza cases. It is hoped that the size of laboratory samples

can be increased to provide better evidence to facilitate the surveillance of both clinical and

laboratory samples, both of which can be of great use in public influenza activity prediction.

When divided by age groups, clinically-diagnosed ILI indicators accurately capture weekly

fluctuations in influenza activity during inter-pandemic and pandemic seasons and can be uti-

lized to assess the effects of age on trends in epidemic activity. Using wavelet coherence analy-

sis to compare these time series, we did not observe large differences in susceptibility from

season to season. In the pandemic of 2009, the peak of the ILI wave for age 5–15 was extremely

Coherence of Influenza Surveillance Data in Beijing
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high for two possible reasons. The weak immune system of teenagers may not have been able

to resist the substantial threats presented by new viruses. Additionally, schoolchildren had few

ways to avoid cross-infections because classes were suspended for only a short period of time.

The main limitation of the approach we used to study influenza epidemics is that we need to

be cautious when interpreting distinctions because it is hard to determine whether it was the

epidemic activities among school children that drove the pandemic after 2009 or whether the

pandemic itself acted as a major destructive effect on school children in the following two

years. Slight but consistent age-specific differences became apparent after identifying phase

difference. We found that the peaks of influenza-like illness in the time series of groups aged

0–5 and 5–15 consistently appeared ahead of those of adults, implying the possibility that

schoolchildren may lead epidemic fluctuations of clinical ILI consultations. Further research is

needed to confirm this subtle difference. Beyond the analysis presented here, it is plausible that

a thorough understanding of age-specific driving forces of seasonal epidemics will require

additional long-term data from other temperate regions.
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M. Influenza-like illness criteria were poorly related to laboratory-confirmed influenza in a sentinel sur-

veillance study. Journal of Clinical Epidemiology. 2005; 58(3):275–9. PMID: 15768487

4. Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating the use of high-volume

electronic medical claims data to monitor local and regional influenza activity in the US. PloS one [Inter-

net]. 2014 2014; 9(7):[e102429 p.].

Coherence of Influenza Surveillance Data in Beijing

PLOS ONE | DOI:10.1371/journal.pone.0169199 December 30, 2016 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169199.s001
http://dx.doi.org/10.1093/infdis/jis467
http://dx.doi.org/10.1093/infdis/jis467
http://www.ncbi.nlm.nih.gov/pubmed/22829641
http://dx.doi.org/10.1111/j.1750-2659.2009.00077.x
http://dx.doi.org/10.1111/j.1750-2659.2009.00077.x
http://www.ncbi.nlm.nih.gov/pubmed/19496841
http://www.ncbi.nlm.nih.gov/pubmed/15768487


5. Peng Y, Wei D, Min L, Weixian S, Xiaoming P, Xiaomei W, et al. Review of an Influenza Surveillance

System, Beijing, People’s Republic of China. Emerging Infectious Disease journal. 2009; 15(10):1603.

6. Yang L, Wong CM, Lau EH, Chan KP, Ou CQ, Peiris JS. Synchrony of clinical and laboratory surveil-

lance for influenza in Hong Kong. PLoS One. 2008; 3(1):e1399. doi: 10.1371/journal.pone.0001399

PMID: 18167558

7. Shih SR, Chen GW, Yang CC, Yang WZ, Liu DP, Lin JH, et al. Laboratory-based surveillance and

molecular epidemiology of influenza virus in Taiwan. J Clin Microbiol. 2005; 43(4):1651–61. doi: 10.

1128/JCM.43.4.1651-1661.2005 PMID: 15814980

8. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidem-

ics using search engine query data. Nature. 2009; 457(7232):1012–4. doi: 10.1038/nature07634 PMID:

19020500

9. Dushoff J, Plotkin JB, Viboud C, Simonsen L, Miller M, Loeb M, et al. Vaccinating to protect a vulnerable

subpopulation. PLoS Med. 2007; 4(5):e174. doi: 10.1371/journal.pmed.0040174 PMID: 17518515

10. Zhou H, Thompson WW, Viboud CG, Ringholz CM, Cheng PY, Steiner C, et al. Hospitalizations associ-

ated with influenza and respiratory syncytial virus in the United States, 1993–2008. Clin Infect Dis.

2012; 54(10):1427–36. doi: 10.1093/cid/cis211 PMID: 22495079

11. Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F. Monitoring the impact of influ-

enza by age: emergency department fever and respiratory complaint surveillance in New York City.

PLoS Med. 2007; 4(8):e247. doi: 10.1371/journal.pmed.0040247 PMID: 17683196

12. Khiabanian H, Farrell GM, St George K, Rabadan R. Differences in patient age distribution between

influenza A subtypes. PLoS One. 2009; 4(8):e6832. doi: 10.1371/journal.pone.0006832 PMID:

19718262

13. Tan Y, Lam TT, Wu C, Lee SS, Viboud C, Zhang R, et al. Increasing similarity in the dynamics of influ-

enza in two adjacent subtropical Chinese cities following the relaxation of border restrictions. J Gen

Virol. 2014; 95(Pt 3):531–8. doi: 10.1099/vir.0.059998-0 PMID: 24310518

14. Yang L, Chan KH, Suen LK, Chan KP, Wang X, Cao P, et al. Impact of the 2009 H1N1 Pandemic on

Age-Specific Epidemic Curves of Other Respiratory Viruses: A Comparison of Pre-Pandemic, Pan-

demic and Post-Pandemic Periods in a Subtropical City. PLoS One. 2015; 10(4):e0125447. doi: 10.

1371/journal.pone.0125447 PMID: 25928217

15. Schanzer D, Vachon J, Pelletier L. Age-specific differences in influenza A epidemic curves: do children

drive the spread of influenza epidemics? Am J Epidemiol. 2011; 174(1):109–17. doi: 10.1093/aje/

kwr037 PMID: 21602300

16. Turbelin C, Souty C, Pelat C, Hanslik T, Sarazin M, Blanchon T, et al. Age distribution of influenza like ill-

ness cases during post-pandemic A(H3N2): comparison with the twelve previous seasons, in France.

PLoS One. 2013; 8(6):e65919. doi: 10.1371/journal.pone.0065919 PMID: 23755294

17. Beijing Statistical Yearbook [Internet]. China Statistics Press. 2015. http://www.bjstats.gov.cn/nj/main/

2015-tjnj/zk/indexch.htm.

18. Xicheng District Statistical Yearbook [Internet]. 2015. http://www.xc.bjstats.gov.cn/cms/others/njxs.jsp?

nh=2014.

19. Wang J, Meng B, Zheng X, Liu J, Han W, Wu J, et al. Analysis on the multi-distribution and the major

influencing factors on severe acute respiratory syndrome in Beijing. Chinese J Epidemiol. 2005;

26(3):164–8.

20. Torrence C, Compo GP. A practical guide to wavelet analysis. Bulletin of the American Meteorological

Society. 1997; 79:61–78.

21. Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue—El Nino southern

oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data

analysis. PLoS Med. 2009; 6(11):e1000168. doi: 10.1371/journal.pmed.1000168 PMID: 19918363

22. Grenfell BT, Bjornstad ON, Kappey J. Travelling waves and spatial hierarchies in measles epidemics.

Nature. 2001; 414(6865):716–23. doi: 10.1038/414716a PMID: 11742391

23. Maraun D, Kurths J. Cross wavelet analysis: significance testing and pitfalls. Nonlin Processes Geo-

phys. 2004; 11(4):505–14.

24. Maraun D, Kurths J, Holschneider M. Nonstationary Gaussian processes in wavelet domain: Synthesis,

estimation, and significance testing. Physical Review E. 2007; 75(1):016707.

25. Liu Y, San Liang X, Weisberg RH. Rectification of the Bias in the Wavelet Power Spectrum. Journal of

Atmospheric and Oceanic Technology. 2007; 24(12):2093–102.

26. Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M. Predicting the epidemic sizes of influenza

A/H1N1, A/H3N2, and B: a statistical method. PLoS Med. 2011; 8(7):e1001051. doi: 10.1371/journal.

pmed.1001051 PMID: 21750666

Coherence of Influenza Surveillance Data in Beijing

PLOS ONE | DOI:10.1371/journal.pone.0169199 December 30, 2016 10 / 11

http://dx.doi.org/10.1371/journal.pone.0001399
http://www.ncbi.nlm.nih.gov/pubmed/18167558
http://dx.doi.org/10.1128/JCM.43.4.1651-1661.2005
http://dx.doi.org/10.1128/JCM.43.4.1651-1661.2005
http://www.ncbi.nlm.nih.gov/pubmed/15814980
http://dx.doi.org/10.1038/nature07634
http://www.ncbi.nlm.nih.gov/pubmed/19020500
http://dx.doi.org/10.1371/journal.pmed.0040174
http://www.ncbi.nlm.nih.gov/pubmed/17518515
http://dx.doi.org/10.1093/cid/cis211
http://www.ncbi.nlm.nih.gov/pubmed/22495079
http://dx.doi.org/10.1371/journal.pmed.0040247
http://www.ncbi.nlm.nih.gov/pubmed/17683196
http://dx.doi.org/10.1371/journal.pone.0006832
http://www.ncbi.nlm.nih.gov/pubmed/19718262
http://dx.doi.org/10.1099/vir.0.059998-0
http://www.ncbi.nlm.nih.gov/pubmed/24310518
http://dx.doi.org/10.1371/journal.pone.0125447
http://dx.doi.org/10.1371/journal.pone.0125447
http://www.ncbi.nlm.nih.gov/pubmed/25928217
http://dx.doi.org/10.1093/aje/kwr037
http://dx.doi.org/10.1093/aje/kwr037
http://www.ncbi.nlm.nih.gov/pubmed/21602300
http://dx.doi.org/10.1371/journal.pone.0065919
http://www.ncbi.nlm.nih.gov/pubmed/23755294
http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm
http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm
http://www.xc.bjstats.gov.cn/cms/others/njxs.jsp?nh=2014
http://www.xc.bjstats.gov.cn/cms/others/njxs.jsp?nh=2014
http://dx.doi.org/10.1371/journal.pmed.1000168
http://www.ncbi.nlm.nih.gov/pubmed/19918363
http://dx.doi.org/10.1038/414716a
http://www.ncbi.nlm.nih.gov/pubmed/11742391
http://dx.doi.org/10.1371/journal.pmed.1001051
http://dx.doi.org/10.1371/journal.pmed.1001051
http://www.ncbi.nlm.nih.gov/pubmed/21750666


27. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. The genomic and epide-

miological dynamics of human influenza A virus. Nature. 2008; 453(7195):615–9. doi: 10.1038/

nature06945 PMID: 18418375

28. Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. Global influenza seasonality: recon-

ciling patterns across temperate and tropical regions. Environ Health Perspect. 2011; 119(4):439–45.

doi: 10.1289/ehp.1002383 PMID: 21097384

29. Schanzer DL, Langley JM, Dummer T, Viboud C, Tam TW. A composite epidemic curve for seasonal

influenza in Canada with an international comparison. Influenza Other Respir Viruses. 2010; 4(5):

295–306. doi: 10.1111/j.1750-2659.2010.00154.x PMID: 20716158

30. Yang Y, Wang Z, Ren L, Wang W, Vernet G, Paranhos-Baccala G, et al. Influenza A/H1N1 2009 pan-

demic and respiratory virus infections, Beijing, 2009–2010. PLoS One. 2012; 7(9):e45807. doi: 10.

1371/journal.pone.0045807 PMID: 23029253

31. Earn DJD, Dushoff J, Levin SA. Ecology and evolution of the flu. Trends in Ecology & Evolution. 2002;

17(7):334–40.

Coherence of Influenza Surveillance Data in Beijing

PLOS ONE | DOI:10.1371/journal.pone.0169199 December 30, 2016 11 / 11

http://dx.doi.org/10.1038/nature06945
http://dx.doi.org/10.1038/nature06945
http://www.ncbi.nlm.nih.gov/pubmed/18418375
http://dx.doi.org/10.1289/ehp.1002383
http://www.ncbi.nlm.nih.gov/pubmed/21097384
http://dx.doi.org/10.1111/j.1750-2659.2010.00154.x
http://www.ncbi.nlm.nih.gov/pubmed/20716158
http://dx.doi.org/10.1371/journal.pone.0045807
http://dx.doi.org/10.1371/journal.pone.0045807
http://www.ncbi.nlm.nih.gov/pubmed/23029253

