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Abstract: The trend towards product miniaturisation and multi-functionality constitutes 

a driving force for the application of complex surfaces in many fields such as advanced 

optics. The precision measurement of these surfaces should be carried out at multiple 

scales, of which process commonly involves several datasets obtained from different 

sensors. This paper presents a weighted least square based multi-sensor data fusion 

method for such measurement. The method starts from unifying the coordinate frames 

of the measured datasets using an intrinsic feature based surface registration method. 

B-spline surface is used to fit linear surface models to each identified overlapping area 

of the registered datasets, respectively. By forming a common basis function, the fitted 

surface models and the corresponding residuals of the datasets are then combined to 

construct a weighted least square based data fusion system which is used to generate a 

fused surface model with improved quality. An analysis of the uncertainty propagation 

in data fusion process is also given. Both computer simulation and actual measurement 

on a machined micro-structured freeform surface is conducted to verify the validity of 
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proposed method, and the results indicate that the proposed method is capable of fusing 

multi-sensor measured datasets with notable reduction of measurement uncertainty. 

Keywords: precision surface measurement, freeform surfaces, data fusion, weighted 

least square, B-spline 

1. Introduction 

The rapid development of the advanced machining technologies allows many 

complex components and devices to be manufactured with high precision [1-3]. The 

trend towards product miniaturisation has further driven the integration of micro scale 

features on macro scale components, and different scales of features are used to realize 

different functionality of products, for instance, in advanced optics and semiconductor. 

The measurement of these components requires to be carried out at multiple scales, 

which challenges current measurement technologies [4, 5].  

Current measuring instruments can generally be divided into 5 categories [6-8], 

including coordinate measuring machines (CMM), topography measuring instruments, 

interferometric based instruments, scanning electron microscopy (SEM), and others, 

which cover a wide measurement range with high precision. Although these instruments 

have their own technical merits, no single instrument is able to fulfill all the required 

tasks and rendering multi-scale 3D measurement with nanometric accuracy. As a result, 

a sophisticated combination of several measuring techniques into a single system seems 

to be an appropriate solution for complex measurement tasks [9]. Multi-sensor 
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techniques have already been utilized in precision surface measurement in recent years 

such as Werth VideoCheck UA 400 [10]. With the combination of several measuring 

sensors, these instruments are capable of performing measurement at multiple scales, 

and measuring complex 3D geometries with nanometric accuracy [9]. Data fusion is a 

further step after the multi sensor combination to produce a unique and improved output 

from the datasets measured by different sensors. In this process, the quality of the 

output largely depends on the data fusion method. This is due to the reason that, in multi 

sensor systems, the measured datasets may come from different spaces and time 

domains with different measurement principles, which imposes a lot of challenges to the 

fusion of these datasets for unique representation of the measured components. 

Although progress has been made in the multi-sensor instrumentation, there is still a 

lack of multi-scale modelling, analyzing, and fusion methods for the comprehensive 

characterization of the complex surfaces [4, 11]. 

Multi-sensor data fusion process involves two core steps including registration and 

fusion [9]. In registration, all the datasets are transformed to a common coordinate 

frame based on rigid motion. Iterative closest point (ICP) and its variants are the most 

widely used to methods in the registration of the discrete datasets [12, 13]. The method 

establishes the corresponding points of the two datasets which are used to determine the 

coordinate transformation matrix by minimizing the sum of the distances of the 

established corresponding pairs. The corresponding pairs of two datasets are iteratively 

decided by choosing the closest point. Due to the non-convexity of the optimization 
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problem, the registration results may be trapped at a local minimum or even become 

divergent if the initial relative position of the two datasets is not provided appropriately 

[13]. Hence, a coarse registration is normally carried out to provide good initial values 

for the ICP iteration. Many coordinate transformation invariant surface features, such as 

local shape features [14] and curvature [15], and geometric moment [16], have been 

served as surface descriptors to aid the registration process. However, for the datasets 

registration in multi-sensor data fusion, most of these methods are difficult to be 

transferred since the surface descriptors are either susceptible to the shape of the 

datasets or not sufficiently representative for geometric details. This is due to the reason 

that, in multi-sensor system, the datasets only overlap certain amount to guarantee the 

measurement efficiency, and the registration would be false if the features are weak in 

the overlapping area.  

Fusion is responsible for processing the redundant data in the overlapping area of the 

datasets so as to produce a unique representation. Although multi-sensor data fusion is 

widely used in the fields such as signal processing and image fusion, limited research 

work has been found in coordinate measurements. Wang et al. [4] recently gave a 

comprehensive literature review of multi sensor data fusion in surface topography 

measurement, and summarized the data fusion method into four categories, including 

repeated measurements, stitching, range image fusion, and 3D data fusion. In these 

categories, the 3D data fusion is the most difficult task which involves registration and 

fusion of complex surfaces, and tackles datasets on different scales. Ramasamy et al. 
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[17] presented several data fusion strategies to deal with measurement data from 

different magnifications in multi scale measurement using white light interferometer. 

However, the uncertainty propagation in fusion process is unclear. Gaussian process 

was recently applied in data fusion of coordinate datasets [18, 19]. The method 

establishes a Gaussian process model to describe the mean and the covariance function 

via Bayesian inference, and the fusion results are estimated based on maximum 

marginal likelihood estimation. The application of the method is still limited to 

relatively simple surfaces，and the time for the computation becomes infeasible when a 

large amount of data is involved. Forbes et al [20] presented a weighted least square 

based multi-sensor data fusion method which used a general Bayesian approach to 

balance the noise parameters by introducing weights to each datasets. Kalman filter [21] 

has similar fusion process with weighted least square method, but has superior 

efficiency when there are a lot of datasets to be fused. However, the methods rely on the 

fitting accuracy of the linear surface model, and have limited application in multi-sensor 

data fusion. 

As a result, this paper presents a weighted least square based multi-sensor data fusion 

method for the measurement of freeform surfaces. To address the key problems in data 

fusion, an intrinsic feature based surface registration method is proposed to unify the 

coordinate frame of the measured datasets, and the B-spline surface is used to 

approximate each identified overlapping area of the registered datasets respectively 

based on a common basis function. The fitted surface models and corresponding 
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residuals of the datasets are then combined to construct a weighted linear data fusion 

system which is used to generate a fused surface model with improved quality. 

Experimental work is presented to verify the effectiveness of the proposed method. 

2. Weighted Least Square Based Data Fusion Method 

2.1 Overview of the fusion method 

Datasets measured by multi-sensor system may possess different resolutions, 

different levels of uncertainties, and embed in different coordinate systems. To address 

the key issues in data fusion, the proposed method performs the data fusion in three 

steps, including preprocessing, registration and fusion. Fig.1 shows the framework of 

the proposed method. In the first step, all the measured datasets are transferred into a 

common and appropriate representation format and filtering techniques are used to 

eliminate the outliers which may be included in each measured datasets. In the second 

step, an intrinsic feature based registration method is introduced to unify the coordinate 

frames of the measured datasets and to identify the overlapping areas among the 

datasets. In the third step, B-spline surface is used to fit a linear model to approximate 

the overlapping area of the datasets, and a weighted linear fusion system is established 

to fuse these datasets in a least square fashion.  
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Fig. 1: Framework of Weighted Least Square Based Data Fusion Method 

2.2 Intrinsic feature based data registration 

Surface representation is the first step towards the goal of correspondence 

searching/surface registration. The commonly used freeform surface representation 

methods, such as parametric surfaces (e.g. NURBS) or points cloud, are highly 

dependent on the implicit parameterization and the embedded coordinate system, which 

leads difficulty in surface registration. In the present study, an intrinsic feature pattern 

(IFP) is used to represent the geometry of the measured datasets [15]. Surface intrinsic 

features refer to those surface features whose values are invariant under the 

transformation of the embedded coordinate frame and are free to the implicit 

parameterization of the surface. Taking Gaussian curvature as an example, it is an 
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intrinsic property of a surface used to describe how “curve” is the surface, and is 

invariant under the transformation of the coordinate system.  

Generally, there are two basic mathematical entities that are considered in the 

differential geometry of a surface S , i.e. the first and second fundamental forms of a 

surface [22], as given by Eq. (1) and Eq. (2).  
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u v( , )  are the parameters of the surface S . 

The IFP representation is inspired from the uniqueness theorem proposed by Besl 

[22]. That is, if two surfaces possess same fundamental forms at every point on the 

surfaces, then they have the same shape. The theorem implies that an arbitrary smooth 

3D surface shape is completely captured by six scalar functions, i.e. E, F, G, L, M, and 

N, i.e. an arbitrary smooth 3D surface can be uniquely represented by the six scalar 

functions. Although these scalar functions depend on the surface parameterization or the 

embedded coordinate frame, there are several combinations of these functions that yield 

specific features of surface shape, which are invariant surface features, such as Gaussian 

curvature and mean curvature as given by Eq. (3) and Eq. (4).  
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where ( )det ⋅  and ( )tr ⋅  denote the determinant and trance of a matrix, respectively. In 

the present study, Gaussian curvature and mean curvature are extensively used as 

intrinsic surface features for describing the surface geometry for generality and 

simplicity. 

The main process of the method is as follows. A grid of points is sampled on each 

datasets and their curvatures are mapped to a 2D plane to form two bitmap images, 

respectively. This bitmap images are used to represent the geometry of the datasets. It is 

anticipated that the layout of a two dimensional texture onto a general surface inevitably 

creates distortion. Hence, in the present study, a spring mesh model [23] is used to fit 

the freeform surface such that the texture distortion of the mesh can be minimized by 

minimizing the spring energy of the model. An example of the IFP generation is given 

in Fig. 2.  

         

Fig. 2: Generation of invariant feature pattern 

spring 
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The surface registration problem is then converted to intrinsic feature pattern 

registration. That is, the corresponding searching is performed in 2D space rather than 

in 3D space. Registration problems involving translation and rotation are recovered by 

applying Fourier-Mellin transform and phase correlation method [24]. By registering 

two intrinsic feature patterns, point-to-point correspondence pairs are established 

between two surfaces. The established correspondence pairs can then be used to 

estimate the coordinate transformation of the two coordinate systems. There are several 

factors would influence the accuracy of the established correspondence by the proposed 

method including the texture distortion during the mapping, the error of the texture 

registration and so on. Hence, the established correspondence is considered as a result 

of semi-fine registration and is refined using ICP method [12]. The calculation of the 

intrinsic surface features like curvature is sensitive to the noise and the surface 

roughness contained in the measured data. Hence in practice, a proper smoothing should 

be conducted before the calculation of the curvature [25]. Furthermore, IFP is a kind of 

range image which composed of a set of curvatures of the surface. Even with certain 

level of noise, the robustness of the registration can well be maintained via the image 

registration process. 

2.3 Weighted least square data fusion method 

Fusion is responsible for producing a unique representation of the data at the 

overlapping area of the registered datasets, which can be casted as a regression problem 

of the form Z(x) = f(x) + ε𝑚𝑚 , in which Z(x) are the measured data, “f( )” is an 
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unknown model function which represents the shape of the datasets, ε𝑚𝑚  are the 

associated measurement error which are normally considered as identically distributed 

normal noise vector with ε𝑚𝑚~N(0,σ𝑚𝑚I) for well calibrated instruments. The objective 

of the problem is to evaluate a putative form of “f( )” so that predictions can be made at 

arbitrary position over the measured area as accurate as possible. In the present study, 

linear model function is used to construct the fusion system so that: 
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where Zi  (i = 1,2, … , k) is the ith measured datasets; Ci  is the matrix of the ith 

dataset which arises from the model function; 𝜶𝜶  is the matrix of the unknown 

parameters of the model function; ε𝑟𝑟𝑟𝑟 is the fitting residual error of the ith dataset. It is 

noted that ε𝑟𝑟𝑟𝑟 is no longer the same as the 𝜺𝜺𝑚𝑚, but a combination of the fitting error 

and the measurement error since the fitting error is inevitable in actual measurement. 

If ε𝑟𝑟𝑟𝑟 is still a identically distributed normal noise vector with ε𝑟𝑟𝑟𝑟~𝑁𝑁(0,𝝈𝝈𝑟𝑟𝑟𝑟𝑰𝑰), 

the model parameter 𝜶𝜶 can be obtained by minimizing the following equation: 

( ) ( )1
2

TF = − −Z Cα Z Cα                     (6) 

where 𝒁𝒁 = [𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑘𝑘], 𝑪𝑪 = [𝑪𝑪1,𝑪𝑪2, … ,𝑪𝑪𝑘𝑘]. Considering different fitting residuals 

ε𝑟𝑟𝑟𝑟 would have different variances, weights can be given to each individual model 

based on its standard variance to eliminate the heteroscedasticity so that unbiased 

estimation can be achieved, as given in Eq. (7).  
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where 𝒘𝒘𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[1 𝑉𝑉𝑟𝑟2⁄ , … , 1 𝑉𝑉𝑟𝑟2⁄ ] is 𝑑𝑑𝑑𝑑𝑟𝑟 × 𝑑𝑑𝑑𝑑𝑟𝑟  matrix, Vi  is the variance of the 

fitting residual ε𝑟𝑟𝑟𝑟, 𝑑𝑑𝑑𝑑𝑟𝑟 is the number of the points contained in the 𝑑𝑑th dataset. 𝜶𝜶 

can then be determined by vanishing the partial derivative of Eq. (7) to 𝜶𝜶 as follows.  
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Obviously, the linear model forms the beating heart of the proposed method.  

Due to the practically unlimited degree of geometric freedom and simple 

mathematics, B-spline surface is used to approximate the surface geometry. A B-spline 

surface 𝑺𝑺 is defined as [26]: 
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= ∑ ∑S P                 (10) 

where 𝑷𝑷𝑟𝑟,𝑗𝑗 is the control point controlling the shape of the surface; 𝑑𝑑𝑢𝑢 and 𝑑𝑑𝑣𝑣 are the 

numbers of control points; u and v are surface parameters identifying the location of 

point 𝑺𝑺; 𝑁𝑁𝑟𝑟,𝑝𝑝(𝑢𝑢) and 𝑁𝑁𝑗𝑗,𝑞𝑞(𝑣𝑣) are the normalized B-spline functions uniquely defined 

by the degrees (𝑝𝑝, 𝑞𝑞) and knot vectors (𝑈𝑈,𝑉𝑉) respectively. Eq. (10) can further be 

simplified to Eq. (11) as follows: 
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Substituting Eq. (11) to Eq. (5) and Eq. (9), a B-spline based linear fusion system 

can be constructed, and the control points of the fusion model can be evaluated as 

follows: 

( ) 1T T−
=P N WN N WZ                    (12) 

where 𝑵𝑵 is ∑ 𝑑𝑑𝑑𝑑𝑘𝑘
𝑟𝑟=1 𝑟𝑟 × 𝑑𝑑𝑐𝑐  matrix of base function, 𝑷𝑷�  is 𝑑𝑑𝑐𝑐 × 3 matrix of control 

points.. It is inferred from previous discussion that the effectiveness of the linear fusion 

system largely depends on the fitting quality of the model function. To obtain a best 

linear unbiased estimation of the model parameters, the fitted B-spline surface model 

should guarantee that the fitting residuals of each measured datasets can fairly be 

considered as identically distributed normal noise, and the variance of the residuals can 

also be used to design the weight for each dataset in fusion system.  

In the present study, the quality of each individual fitting is controlled by enforcing 

a fitting error threshold which is given in accordance to the magnitude of the 

measurement error associated in the measured dataset. By enforcing the fitting error 

threshold, the individual fitting of each measured dataset is performed in such a way 

that the constructed models accurately represent the shapes of the datasets while the 
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fitness can also be controlled as well to exclude the measurement noise from the model. 

In practice, it is almost impossible to guess number of the control points necessary to 

given fitting error threshold. As a result, the boundaries of the dataset are fitted to 

construct an initial surface which is used to assign good parameters values, i.e. (𝑢𝑢, 𝑣𝑣) 

in Eq. (10) to each point in the dataset, and to estimate the minimal degree of the 

freedom of the B-spline model, i.e. the number of the control points needed to 

characterize the shape of the dataset. Iteration process is then carried out to improve the 

fitting quality by increasing the number of the control points via knot insertion process. 

In the construction of the linear fusion system, all the individual models must be 

made compatible by forming a common knot vector via knot insertion and removal of 

the knot vectors of the individual models. This is accomplished in three steps. Firstly, 

the B-spline model of the dataset with lower resolution is constructed. Secondly, the 

model of the dataset with higher resolution is constructed by taking the knot vector of 

the firstly constructed model as input. Lastly, the two knot vectors are made compatible 

via knot insertion of the prior knot vector. The process is continued upon processing all 

the datasets. To avoid the explosion of control points in constructing the linear fusion 

system, a candidate knot vector should also be passed in modelling each measured 

datasets. In this way, the generated common knot vector will ensure the number of the 

control points necessary for each individual fitting as well as for the linear fusion 

system. 
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2.4 Uncertainty analysis 

The error associated in the measured datasets would inevitably propagate to the 

fusion results. In the present study, the knot vectors of the fused model are 

pre-determined from each individual fitting of the measured datasets, and the fusion 

process can be considered as a process of optimizing the distribution of the control 

points. Therefore the uncertainty propagation from the measured datasets to the fusion 

results can be determined by the covariance of the estimated model parameters, i.e. the 

control points 𝑷𝑷 of the B-spline surface. The covariance of the 𝑷𝑷 can be determined 

by Eq. (13) as follows: 

( ) ( )( )( )cov
T

E= − −P P P P P                  (13) 

where 𝑷𝑷� is the best estimate of the 𝑷𝑷 which is determined by Eq. (12) in previous 

section.  

Left multiplying (NTWN)−1(NTWN) to P, the (P − P�) is calculated as follows 
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where 𝜺𝜺 is the associated measurement error as given in Eq. (5). Substituting Eq. (14) 

to Eq. (13), the following preserve 
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Considering the design of the weights as given in Eq. (7), Eq. (15) can further be 

simplified to 
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( ) ( ) 1
cov T −

=P N WN                      (16) 

Therefore, the expectation and the variance of an arbitrary point S on the fused model 

can be determined based on the covariance of the control points, as given in Eq. (17) 

and Eq. (18). 

( ) ( ) 1T TE
−

=S N N WN N WZ                      (17) 

( ) ( ) 1T TV
−

=S N N WN N                      (18) 

 

3. Experimental study 

3.1 Computer simulation 

To examine the performance of the proposed method, a sinusoidal freeform surface 

is designed as given by Eq. (8). 

sin(0.5 ) cos(0.5 )z x y= +                      (19) 

where [ ], 2 , 2x y π π∈ −  (unit in mm). A set of points is uniformly sampled on the entire 

surface with spacing 0.4 mm and is added Gaussian noise with standard deviation 5µm, 

and denoted as D1. Another set of points is sampled from a portion ( [ ], ,x y π π∈ − ) of 

the designed surface with spacing 0.2 mm and is added Gaussian noise with standard 

deviation 15µm, and denoted as D2. D2 is then moved to an arbitrary position so that 

the two datasets are no longer embedded into a common coordinate frame. Hence, the 

two datasets now possess different resolutions with different level of associated 
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uncertainties and are embedded in different coordinate frames. Fig. 3 shows the 

produced D1 and D2 in a common coordinate frame. 

    

Fig. 3: Simulated multi-sensor datasets 

The proposed method is then used to fuse the two datasets for producing a fusion 

dataset with improved quality. Firstly, intrinsic feature patterns are sampled from the 

two datasets. Image registration is then conducted to establish the correspondence 

between two datasets and identify the overlapping area, as shown in Fig. 4. Coordinate 

transformation is conducted to unify the coordinate frame of the two datasets. Secondly, 

at the identified overlapping area, B-spline surface is used to construct linear model to 

represent the geometry of the datasets. Finally, two established linear surface models are 

used to construct a weighted fusion system so as to fuse the two datasets based on the 

proposed method.  
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(a) IFP registration               (b) correspondence establishment 

Fig. 4: IFP based surface registration 

The accuracy of the fusion results are characterized by the peak-to-valley error (PV) 

root-mean-square error (RMS) of reconstructed surface comparing with the theoretical 

designed surface. To analyse the robustness of the proposed method, a total of 100 

simulations are conducted to study the effectiveness of the proposed fusion method. In 

each simulation, the RMS of the surface models of the datasets and the fused model are 

evaluated. A summary of the comparisons among the results are given in Table. 1. 

Comparing with the added errors, the RMS of the established B-spline models, i.e. the 

model 1 and model 2 are dramatically reduced to 2.1µm and 3.3µm respectively, as 

shown in Table 1. This is due to the reason that appropriate fitting error thresholds have 

been enforced to the individual fitting of each measured dataset so that the constructed 

models accurately represent the shapes of the datasets while the fitness can also be 

controlled as well to exclude the measurement noise from the model. In addition, much 

reduction has been found in model 2 comparing with model 1. This is due the reason 

that the model 2 contains more data than model 1 so that shrank uncertainty of the 

model parameters can be achieved. It is also seen from the results that RMS of the fused 

IFP of D1 

IFP of D2 
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model is smaller than that of the lowest individual dataset. This implies that the 

proposed fusion method is capable of improving the fidelity of the reconstructed surface 

model via weighted fusion process.  

Table 1: Error analysis of the surface model 

 Mean of RMS Std of RMS Mean of PV Std of PV 

Model 1 2.1 µm 0.13 µm 15.7 µm 2.3 µm 

Model 2 3.3 µm 0.21 µm 28.5 µm 4.1 µm 

Fused model 1.8 µm 0.10 µm 12.7 µm 1.2 µm 

3.2 Actual measurement 

Actual measurements on two different kinds of freeform surfaces are presented to 

further examine the performance of the proposed method. A sinusoidal structured 

surface defined by Eq. (20) has been machined and is measured by Zygo Nextview 

optical profiler, as shown in Fig. 5.  

( )0.015* sin(15 ) cos(15 )z x y= +                      (21) 

The workpiece was measured by 5.5x and 20x objectives in two steps to fully capture 

the geometric information. The two datasets are considered possessing approximately 

same level of uncertainties according to the specifications of the instrument. However 

they possess different resolutions and are embedded in different coordinate frames, 

which require data fusion method to generate unique representation of the surface. The 
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proposed method is used to fuse the datasets which are measured by two different 

objectives.  

      

Fig. 5: Measurement of a sinusoidal structured surface on optical profiler 

It starts from transforming the dataset captured by 20x objectives to the coordinate 

frame of the dataset captured by 5.5x objective based on the proposed intrinsic surface 

feature based data registration method. The overlapping area of the two datasets is then 

identified and is fused using the proposed weighted least square based method. Firstly, 

the B-spline model of the dataset captured by 5.5x objective is constructed. The 

generated knot vector is used as initial condition to construct the B-spline model of the 

dataset captured by 20x objective. Secondly, the generated basis functions are then used 

to establish the fusion system. The fused model is then used to evaluate the form error 

of the measured surface based best fitting method [16]. Fig. 6 shows the form error 

evaluation process. The result is also compared with that are obtained by the original 

two measured datasets. The RMS error of the measured surface are identified to be 

0.102 µm, 0.097 µm, and 0.085 µm by 5.5x, 20x, and fusion dataset, respectively. It is 
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noted that the fusion dataset possesses improved accuracy than both two measured 

datasets. 

 

Fig. 6: Form error evaluation of the measured freeform surface 

Another case study was conducted on a more complicated surface which is 

generated by superimposing sinusoidal waves on a parabola as defined by Eq. (22).  

2 20.01 0.01 0.015cos(2 ) 0.015cos(2 )z x y y y= − − + + +          (22) 

where x, y ∈ [−10, 10]mm. To perform both high efficiency and high accuracy, two 

kinds of different measurement instruments including a high precision CMM and a 

Keyence LK-laser scanner are cooperatively used to measure the surface. Fig.7 shows 

the measurement of the machined surface on a CMM. The uncertainty of the laser 

scanner is identified to be u=3.4μm (1σ, normal) by a reference ball. The CMM 
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possesses length measurement uncertainty with U=(0.6+L/500, L in mm) μm, and the 

probing error with u=0.9μm (1σ, normal).  

 

Fig. 7: Measurement of a multi-scaled complex surface 

The measurement has been conducted in two steps. In the first step, CMM is used to 

measure the workpiece with 0.5 mm spacing. A total of 1600 points were measured 

with uniform sampling over the entire surface. Secondly, the laser scanner was used to 

measure the workpiece. Approximately 10000 points were uniformly sampled with 

spacing 0.2mm in both X and Y direction.  

    

(a) CMM measured dataset         (b) laser scanner measured dataset 

Fig. 8: Measured datasets by CMM and laser scanner 
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The two datasets possess different resolutions and different levels of associated 

uncertainties and are embedded in different coordinate frames. The proposed method is 

then used to perform the multi-sensor data fusion. Fig. 9 shows the established fused 

surface model and the evaluated form error. The results are also compared with that is 

obtained by the original measured datasets, as summarized in Table 2. It is seen from 

the results that the form error evaluated by the dataset measured by CMM possesses 

highest error than the others. This is due to the insufficient sampling of the workpiece 

which leads to large error in representing the form of the surface. It is noted from the 

comparison that the fusion dataset possesses better results than both the two datasets in 

evaluating the form error of the workpiece. This demonstrates the capability of the 

proposed method in fusing multi-sensor datasets which have complex geometry.  

    

(a) Reconstructed surface                 (b) evaluated form error 

Fig. 9: Reconstructed measured surface and the evaluated form error 

Table 2: A summary of the evaluated form error 

 CMM dataset Laser dataset Fused model 

PV 20.6 µm 17.9 µm 13.1 µm 
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RMS 2.6 µm 2.8 µm 2.4 µm 

4. Conclusion 

This paper presents a data fusion method for measurement of freeform surfaces on 

multi-sensor systems. To address the key issues in multi-sensor data fusion, two 

algorithms were presented, including intrinsic feature based data registration and 

B-spline based weighted least square data fusion. A theoretical analysis of the 

uncertainty propagation in data fusion process is also given in detail. Both computer 

simulation and actual measurement has been conducted to examine the validity of the 

proposed method. The results imply that the proposed fusion method is capable of 

improving the fidelity of the reconstructed surface model via weighted fusion process. 
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