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Herba epimedii (HEP) is one of the most frequently used herbs prescribed for treatment of osteo-

porosis in China. In the present study, the in vivo effects of HEP extract on bone metabolism

were evaluated using 4-month-old ovariectomized (OVX) or sham-operated (Sham) female Sprague-

Dawley rats orally administered with HEP extract (110 mg kg�1d�1), 17ß-estrogen (2 mg kg�1d�1)

or its vehicle for 3 months. HEP extract significantly decreased urinary calcium excretion, suppressed

serum alkaline phosphatase (ALP) activity and urinary deoxypyridinoline levels in OVX rats

(P< 0.05 versus vehicle-treated OVX rats). Histomorphometric analysis indicated that HEP extract

could prevent OVX-induced bone loss by increasing tibial trabecular bone area and decreasing tra-

becular separation in OVX rats (P< 0.05 versus vehicle-treated OVX group). The in vitro effects of

HEP extract were also studied using rat osteoblast-like UMR 106 cells. HEP extract significantly

stimulated cell proliferation in a dose-dependent manner (P< 0.01 versus vehicle-treated) and

increased ALP activity at 200 mg ml�1 (P< 0.01 versus vehicle-treated) in UMR 106 cells. It modu-

lated osteoclastogenesis by increasing osteoprotegrin (OPG) mRNA and decreasing receptor activ-

ator of NF-kB ligand (RANKL) mRNA expression, resulting in a dose-dependent increase in

OPG/RANKL mRNA ratio (P< 0.01 versus vehicle-treated). Taken together, HEP treatment can

effectively suppress the OVX-induced increase in bone turnover possibly by both an increase in

osteoblastic activities and a decrease in osteoclastogenesis. The present study provides the evidence

that HEP can be considered as a complementary and alternative medicine for treatment of post-

menopausal osteoporosis.
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Introduction

Chinese herbal medicine has been widely used for thousands

of years for the treatment of fractures and joint diseases. The

aerial part of Herba epimedii (HEP) is commonly used in tra-

ditional Chinese medicine for ‘strengthening the kidney’ (1,2).
Based on theories of Chinese medicine, the kidney (different

from the organ kidney in a modern sense) is responsible for

the nourishment of bone and supports gonadal functions. Her-

bal formulas classified as kidney-tonifying are thus tradition-

ally used in cases of bone diseases and gonadal dysfunction.

Eight of the 16 species of the Epimedium genus have been

used for centuries in traditional Chinese herbal formulations

to treat a wide range of diseases, including osteoporosis (3).
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In the past, the development of herbal anti-osteoporosis formu-

las was pursued mainly by scientists in Asian countries, includ-

ing China, Japan and Korea (4–6). However, as a result of

recent evidence that estrogen replacement therapy (ERT) is

associated with increased risk of breast, ovarian and endo-

metrial cancer in postmenopausal women (7,8), it is now gen-

erally recognized that alternative approaches to the prevention

and treatment of osteoporosis might be worth exploring.

HEP is one of the most frequently used herbs in formulas

that are prescribed for the treatment of osteoporosis in China

(9). Over the years, numerous scientific studies have been car-

ried out in China on the in vivo as well as in vitro effects of this
herb on bone and mineral metabolism. However, these studies

have been largely inaccessible to international scholars since

they were published in Chinese-language journals. Previous

studies by various scientists in China have repeatedly shown

that HEP extract, either as a single herbal extract or in a com-

posite formula, could reduce bone loss in an ovariectomized

(OVX) rat model (2,10–13) as well as in aged (14) or other

rat (15,16) models. A short-term clinical study involving

postmenopausal women (1) has also demonstrated that HEP

extract could prevent bone loss and increase osteocalcin and

E2 levels. In addition, the total flavonoid fraction of HEP can

improve bone mineral density, enhance the E2 level and

decrease the circulating IL-6 level in OVX rats (13). In vitro
experiments showed that the flavonoid fraction of HEP could

promote cell proliferation and increase alkaline phosphatase

(ALP) activity in primary rat calvarial osteoblasts (17–19).

With the recent discovery of the receptor activator of NF-kB
ligand (RANKL)–RANK interaction, the role of osteoblasts in

osteoclast differentiation is now clearly defined (20–23). The

binding of RANKL (the membrane-associated factor) on

osteoblastic cells to RANK on the osteoclast cell surface

results in the induction of osteoclast function. At the same

time, the secretion of osteoprotegrin (OPG, the soluble decoy

receptor of RANKL) (20,21,24) by osteoblasts can interfere

with RANKL–RANK interactions, thereby modulating

osteoclastogenesis. Thus, the effects of HEP on the expression

of RANKL and OPG mRNA in UMR 106 cells can be studied

to assess its potential effects on osteoclastogenesis.

In the present study, we aimed to systematically evaluate the

in vivo and in vitro effect of HEP extract on bone and mineral

metabolism. This study is designed to demonstrate the efficacy

of using HEP extract in the treatment of osteoporosis as well as

to delineate its molecular actions in modulating osteoblastic

and osteoclastic activities.

Methods

Preparation of Crude Extracts of HEP

The dry aerial part of Epimedium brevicornum Maxim was

purchased from Shenyang Northeast Drugstore and authentic-

ated by Prof. Zerong Jiang, Shenyang Pharmaceutical Univer-

sity. It was extracted with boiling water three times. The

decoction was then concentrated and spray-dried, giving a

yield of extraction of �10%. Analysis of the chemical com-

position of HEP found that flavonol glycosides, especially

icarrin, were the major and active components (3,25–27).

The flavonoid components of crude extract powder were

analyzed according to the method given in the Chinese medi-

cine pharmacopoeia (28). The standard solution contains

10 mg ml�1 of icarrin. Total flavonoid content was �9.6 ±

0.3% of HEP crude extract. An HPLC spectrum of the HEP

extract is shown in Fig. 1.

Animal Study

A total of 35 virgin Sprague–Dawley specific-pathogen-free

(SPF) female rats (Laboratory Animal Center, Guangzhou

University of Traditional Chinese Medicine) were used in

this study. The rats were �3 months old upon arrival, and

4 months old upon the commencement of herbal treatment.

The rats were housed in cages under a 12 h light/12 h dark

cycle at 22�C. Deionized water was provided to the animals

ad libitum. During the study, OVX rats were pair-fed with nor-

mal diet based on the average weekly food consumption of the

sham control group. The animals were weighed at bi-weekly

intervals throughout the study period. Husbandry of the ani-

mals was based on the Guide for Care and Use of Laboratory

Animals (29).

The animals were either sham-operated (sham, n ¼ 8) or

ovariectomized (OVX, n ¼ 27). The OVX rats were randomly

divided into three groups: vehicle treated (OVX, n ¼ 8);

estrogen treated (E2, n ¼ 10); and HEP extract treated (HEP,

n ¼ 9). The animals were monitored for 4 weeks before initi-

ation of the therapeutic regime to allow them to recover from

the operation. HEP extract powder was dissolved in deionized

distilled water and was orally administered to rats at a dosage

of 110 mg kg�1 d�1 for 3 months. The dosage of HEP for

rats in this study was determined based on the dosage used in

clinical trials and calculated using the dose conversion table

between human and rats. Oral E2 treatment was given at a dos-

age of 2 mg kg�1 d�1 for 3 months. Twenty-four hour urine

samples were collected using separators by placing animals

in metabolic cages during the last week. Urine samples were

acidified with 2 ml of 1 M HCl and centrifuged at 1015 g for

10 min at 4�C to remove contaminating sediments; aliquots

were stored at �20�C until they were assayed. After 3 month

herbal treatments, the rats were killed under deep ether anes-

thesia, blood samples were collected and the uteri were

weighed. Blood samples were allowed to clot at room temper-

ature and the serum was separated by centrifuging at 1015 g for
20 min. Serum samples were stored at �70�C until analysis.

Left femora and tibias were removed and wrapped in gauze

saturated with physiological saline and stored at �20�C
until use.

Biochemical Analysis of Serum and Urine Samples

The calcium (Ca) and phosphorus (P) concentrations of both

serum and urine samples were measured using standard colori-

metric methods with commercial kits (ZhongSheng BeiKong

354 Osteoprotective effect of Herba epimedii



Bio-technology and Science Inc., China) and analyzed using

an automatic analyzer (ALCYON 300i, Abbott Laboratories

Ltd, USA). Urinary creatinine (Cr) was determined using the

picric acid method (commercial kit from Shanghai KeHua

DongLing Diagnostic Products Company Ltd, China). ALP

activity was determined using a commercial ALP kit (Zhong-

Sheng BeiKong Bio-technology and Science Inc., China).

Urine deoxypyridinoline (DPD) level was assayed using a rat

DPD enzyme-linked immunosorbent assay (ELISA) kit

(Quidel Corporation, San Diego, CA, USA). The urinary Ca

excretion rate was expressed as the ratio of urinary Ca to Cr

level (Ca/Cr), and urinary DPD levels were expressed as the

ratio of urinary DPD to Cr level (DPD/Cr).

Bone Histomorphometric Measurement

Left tibias were collected, cleaned by removal of adherent

tissue and fixed in chloroform. Upon fixation, diaphyseal seg-

ments of the tibias were dehydrated, defatted in acetone

followed by ether and then embedded in bioplastic. The blocks

were sectioned at a thickness of 5 mm with a Reichert–Jung

supercut microtome (Reichert–Jung, Heidelberg, Germany)

and digitized using a Leica camera (MPS60, Leica Micro-

systems Welzlar GmbH, Bensheim, Germany). Sections

containing the tibio-fibular junction were coupled to an

Olympus AH-2 microscope (Olympus Corporation, Japan)

and were determined using the Leica QW 550 image software

(Leica, Bensheim, Germany). Cancellous bone was measured

in the proximal tibial metaphysis at a standard sampling

site in the secondary spongiosa, as described previously

(30,31). Structural variables such as total tissue area (TV),

trabecular area (TbAr) and trabecular bone surface (BS) were

measured in the spongiosa within a conventional visual field

window whose upper side was centered 1 mm below the

growth plate–metaphyseal junction. TbAr% refers to the

percentage of trabecular bone area within total tissue (meta-

physeal) area. The trabecular thickness and separation were

calculated according to structural variables, as previously

described (32).

Culture of Rat Osteoblast-like UMR 106 Cells

UMR 106 cells (ATCC no. CRL-1661) were routinely cultured

in Dulbecco’s modified Eagle medium (DMEM) supplemen-

ted with 5% fetal bovine serum (FBS), penicillin 100 U ml�1

and streptomycin 100 mg ml�1. DMEM, FBS and penicillin–

streptomycin–glutamine were purchased from Life Technolo-

gies Inc. (Carlsbad, CA, USA). At �80% confluence, cells

were seeded in a 96-well microtiter plate (Falcon, Becton-

Dickison Franklin hakes, USA) or 24-well or 6-well plates at

a density of 2500, 100 000 or 200 000 cells per well, respect-

ively. Upon confluence, the culture medium was switched to

serum-free DMEM for another 24 h. Cells were then treated

with HEP extract at 50, 100 and 200 mg ml�1 for 24 or 48 h.

HEP extract was prepared by dissolving 20 mg of total HEP

extract in 1 ml deionized distilled water and diluting with

DMEM to achieve the final concentration. Cells were cultured

at 37�C in a humidified atmosphere of 95% air and 5% CO2.

Cell Proliferation Assay

The 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bro-

mide (MTT; Amersham Pharmacia Biotech, Little Chalfont,

UK) assay was used as an indirect measure of growth, as

Figure 1. Reverse-phase HPLC for the quantification of icarrin in HEP. The mobile phase was MeOH:H2O ¼ 55:45 at 1 ml min�1. Peaks eluting at 18.5 min are

icarrin.
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described previously (33). Briefly the medium was removed

and replaced with 100 ml of MTT reagent (5 mg ml�1) in

PBS. The plates were incubated for 4 h at 37�C, and 100 ml
DMSO was added to dissolve formazan crystals. The

multi-well plates were shaken for 15 min and the signals

were detected using a POLARstar Galaxy spectrophotometer

(BMG Labtechnologies GmbH, Germany) at a wavelength of

570 nm. The results of the MTT assay were expressed as cell

numbers upon conversion of absorbance into cell numbers

using a calibration curve. The calibration curve was prepared

by seeding an assigned number of UMR 106 cells into a

96-well plate for 24 h before adding MTT solution.

ALP Activity Assay

Cells were washed with ice-cold PBS and scraped in 10 nM of

Tris–HCl solution containing 2 mM of MgCl2 and 0.05%

TritonX-100, pH 8.2. The cell suspension was sonicated on ice.

Aliquots of supernatants were subjected to protein assay using

a Bio-Rad kit (Hercules, CA, USA) according to Bradford’s

method, and ALP activity was measured using commercial

ALP reagent (StarbioLaboratory, Sigma, Texas, USA). Briefly,

the assay mixture containing 16 mM of p-nitrophenyl phos-
phate in 350 mM aminomethyl propanol AMPbuffer, pH

10.5, supplemented with 2 mM of MgCl2 was incubated at

37�C. The amount of p-nitrophenol liberated was measured

using an ALCYON Analyzer (ALCYON� 300i, Abbott

Laboratories, USA).

RNA Extraction and RT–PCR

Total RNA was isolated from cells cultured in a 6-well plate

using TRIzol reagent according to the manufacturer’s instruc-

tions (Life Technologies Inc., Carlsbad, CA, USA). Total

RNA (2 mg) was used to generate cDNA in each sample using

SuperScript II reverse transcriptase (Invitrogen Corporation,

Carlsbad, CA, USA) with 0.5 mg oligo(dT)15 primers. One

microliter of total cDNA was amplified in each PCR reaction

mixture containing 0.5 mM of sense and antisense primers

(Genemed Synthesis, Inc., South San Francisco, CA, USA) of

selected genes (Table 1). The PCR reaction mixture (in a total

volume of 20 ml) contained 1· Taq reaction buffer, 0.2 mM

of deoxynucleoside triphosphate (dNTP), 1.5 mM of MgCl2,

0.5 mM of each primer and 0.5 U of Taq DNA polymerase

(Invitrogen Corporation, Carlsbad, CA, USA). PCR amplifica-

tion was performed on a GeneAmp 9600 PCR system (Perkin

Elmer, Foster City, CA, USA). The PCR was carried out as fol-

lows: denaturation program (94�C, 4 min), amplification for

30 cycles (94�C for 30 s; 55�C for 30 s; and 72�C for 60 s)

and final extension at 72�C for 7 min. The PCR products were

analyzed using agarose gel electrophoresis. Optical densities

of ethidium bromide-stained DNA bands were quantified using

Bio-Rad image scanning software and the mRNA expression

levels were normalized to the expression of a housekeeping

gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Statistical Analysis

Data are reported as mean ± SEM. Data were statistically ana-

lyzed by one-way analysis of variance (ANOVA) with the

level of significance set at P < 0.05. Critical differences

between means were evaluated by Dunnett’s multiple com-

parison test set at P < 0.05.

Results

Body Weight and Uterine Weight in OVX Rats

As shown in Fig. 2, the body weights of the OVX and sham

rats were not significantly different at the start of the study.

One month after surgery, OVX rats weighed 11% more than

sham rats (P < 0.01) despite the fact that these animals were

pair-fed the same amount of food as the sham group. The

body weight of the OVX group continued to be significantly

higher throughout the study. Treatment with E2 but not HEP

extract prevented the OVX-induced weight gain (Fig. 2A).

Uterine weight was significantly reduced in the vehicle-

treated OVX group (P < 0.05, versus sham group) (Fig. 2B).

Treatment of OVX rats with E2 but not with HEP extract

significantly stimulated the growth of the atrophic uterus

(P < 0.01, versus vehicle-treated OVX group).

Serum and Urine Biochemical Markers in OVX Rats

The effects of HEP extracts on serum and urine biochemical

markers are summarized in Table 2. OVX appeared to lower

serum Ca and P levels in rats, but the changes did not reach

statistical significance (P ¼ n.s., versus sham group); simil-

arly, treatment of OVX rats with HEP extract or E2 did not

significantly alter serum Ca and P levels. Urinary Ca levels

increased significantly in response to OVX (P < 0.05, versus

sham group). Treatment with either HEP extract or E2 preven-

ted the OVX-induced increase in urinary Ca levels (P < 0.01,

versus vehicle-treated OVX group). OVX appeared to lower

Table 1. Primers for reverse transcription–polymerase chain reaction
(RT–PCR)

Primer Sequence Product

Orientation Size
(bp)

Annealing
temperature (�C)

OPG GACGAGATTGAG-
AGAACGAG

Sense 502 55

GGTGCTTGACTTT-
CTAGGTG

Antisense

RANKL TCAGGAGTTCCAG-
CTATGAT

Sense 298 55

CCATCAGCTGAAG-
ATAGTCC

Antisense

GAPDH TACATTTTGCTGAT-
GACTGG

Sense 202 55

TGAATGGTAGGAG-
CTTGACT

Antisense
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urinary P levels, but treatment of OVX rats with either HEP

extract or E2 appeared to raise urinary P levels; however,

none of these changes reached statistical significance. These

results indicate that treatment of OVX rats with either HEP

extract or E2 could reverse OVX-induced changes in Ca and

P homeostasis in these animals.

The effects of HEP extract on bone formation and bone

resorption in vivo were determined by the measurement of

ALP activity and urinary DPD (a breakdown product of colla-

gen during bone resorption) level. Serum ALP activity and

urinary DPD levels increased in response to OVX (P < 0.05,

vehicle-treated OVX group versus sham group), indicating an

increase in the bone turnover rate in OVX rats. Treatment of

OVX rats with HEP extract or E2 suppressed the increase in

serum ALP activity (P < 0.05 and P < 0.01, respectively,

versus vehicle-treated OVX group). Similarly, the increase in

urinary DPD level induced by OVX was prevented by treat-

ment with either HEP extract or E2 (P < 0.05, versus

vehicle-treated OVX group). These results suggest that treat-

ment of OVX rats with HEP extract as well as E2 can prevent

the OVX-induced increase in bone turnover rate.

Bone Architecture in Rat Tibia

The effects of HEP extract on rat trabecular bone architecture

are shown in Fig. 3 and the measured structure variables are

summarized in Table 3. As shown in Fig. 3, OVX altered the

trabecular architecture in rat tibia, but E2 or HEP extract

reduced the alteration of the trabecular architecture induced

by OVX. TbAr% decreased and trabecular separation (TbS)

increased significantly in OVX rats (P < 0.01, versus sham

group, Table 3), suggesting that OVX induced significant

loss of trabecular bone in rat tibia. Treatment of OVX rats

with either E2 or HEP extract prevented the decrease in

TbAr% and increase in TbS induced by OVX (P < 0.05, ver-

sus vehicle-treated OVX group, Table 3). The thickness of all

slides was similar (as show in Table 3) during the comparison

of trabecular bone area and trabecular separation among

groups.

Proliferation and Differentiation of Rat Osteoblast-like

UMR 106 cells

Treatment of UMR 106 cells with HEP extract for 24 or 48 h

stimulated cell proliferation in a dose-dependent manner

(Fig. 4A). HEP 100 and 200 mg ml�1 significantly increased

osteoblastic cell numbers at 24 h by 1.4-fold (P < 0.01)

and 1.6-fold (P < 0.01), respectively. A similar trend was

observed at 48 h of treatment. To determine whether HEP

could alter osteoblastic cell differentiation, its effect on ALP

activity was studied. Treatment of UMR 106 cells with HEP

extract for 24 h stimulated ALP activity in a dose-dependent

manner (Fig. 4B). ALP activity in UMR 106 cells was signific-

antly increased by 1.5-fold (P < 0.01) with 200 mg ml�1 HEP

extract. These results indicate that HEP extract can induce

UMR 106 cell proliferation and differentiation in a dose-

dependent manner.

mRNA Expression of OPG and RANKL in Rat

Osteoblast-like UMR 106 cells

As shown in Fig. 5A, HEP extract significantly increased OPG

mRNA expression in UMR 106 cells in a dose-dependent

manner (P < 0.01). On the other hand, the expression of

RANKL mRNA in these cells was significantly downregulated

by treatment with 200 mg ml�1 of HEP extract (P < 0.05)

(Fig. 5B). The ratio of mRNA expression of OPG to RANKL

(OPG/RANKL) was calculated to assess its effect on osteo-

clastogenesis. As shown in Fig. 5C, the OPG/RANKL ratio in

UMR 106 cells increased when they were treated with HEP

extract at 100 mgml�1 (P < 0.05) and 200 mgml�1 (P < 0.01).
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Figure 2. Effect of HEP extract on body weight and uterine weight in OVX

rats. (A) Body weight was measured during the experimental period in the

sham group (diamonds), OVX group (squares) and OVX rats with oral admin-

istration of HEP extract at 110 mg kg�1 d�1 (open triangles) or 17-b estradiol

at 2 mg kg�1 d�1 (filled triangles). (B) Uterine weight was measured in the

baseline group and 4 months after operation in the sham group, OVX group,

OVX rats treated with 110 mg kg�1 d�1 of HEP extract and OVX rats treated

with 2 mg kg�1 d�1 of 17-b estradiol. Data are expressed as mean ± SEM.

*P < 0.05, **P < 0.01, versus sham control; ##P < 0.01, versus OVX group.
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The increase in OPG/RANKL ratio suggests that HEP can

inhibit osteoclastogenesis by decreasing the direct interaction

between RANKL expressed on osteoblast and RANKL

expressed on osteoclast cell surface.

Discussion

The current approach to the design of anti-osteoporotic drugs

is directed along the two basic processes of bone remodeling.

These are agents aimed at preventing bone resorption

(estrogen, calcitonin, bisphosphonates, calcium, vitamin D,

raloxifene) and agents that stimulate bone formation (fluoride,

anabolic steroids) (34). Among these, ERT used to be a pop-

ular regime for prevention and treatment of postmenopausal

osteoporosis. However, recent evidence suggests that ERT is

associated with increased risk of breast, ovarian and endo-

metrial cancer (7,8). In addition, the most frequently used

anti-osteoporotic drugs are developed in affluent countries

and the costs are too high to benefit the ordinary people in

developing or even developed countries. Thus, alternative

approaches for managing osteoporosis are needed.

HEP and other kidney-tonifying Chinese herbal medicines

have been widely used in China for thousands of years to treat

bone disease. These herbal medicines will undoubtedly con-

tinue to be used as a cost-effective alternative to commercial

pharmaceutical products by the Chinese. However, the interna-

tional acceptance of these herbal extracts as an alternative

therapeutic regime for the management of osteoporosis is

hampered by poor understanding of their actions in vivo and

in vitro, an ill-defined mechanism for their actions and their

unidentified active ingredients.

In the present study, the in vivo and in vitro effects of HEP

extract on bone and mineral metabolism were systematically

evaluated. Our results indicate that oral administration of

Table 2. Effects of HEP extract on serum and urinary biochemical markers in OVX rats

Group Dose
(mg kg�1 d�1)

Serum Ca
(mg l�1)

Serum P
(mg l�1)

Urinary Ca/Cr
(mg/mg)

Urinary P/Cr
(mg/mg)

Serum ALP
(U l�1)

Urinary DPD/Cr
(nmol mg�1)

Sham — 11.0 ± 0.2 3.18 ± 0.11 0.81 ± 0.13 5.65 ± 0.54 74.0 ± 10.5 4.9 ± 0.6

OVX — 10.4 ± 0.1 3.01 ± 0.08 1.35 ± 0.15* 5.22 ± 024 101. ± 9.8* 8.7 ± 0.8*

E2 2 10.8 ± 0.4 3.13 ± 0.16 0.51 ± 0.13## 6.43 ± 1.02 48.8 ± 2.7## 6.3 ± 1.1#

HEP 110 10.7 ± 0.2 2.98 ± 0.23 0.45 ± 0.06## 5.68 ± 0.24 79.2 ± 6.9# 5.9 ± 0.9#

F-value 0.526 1.093 11.563 0.702 8.493 4.316

P >0.05 >0.05 <0.05 >0.05 <0.05 <0.05

Measurement of serum Ca, P, ALP and urinary Ca, P, DPD levels in the sham- and OVX-operated rats upon E2 and HEP treatment. The rats were orally
administrated with HEP extract (110 mg kg�1 d�1), 17-b estradiol (E2, 2 mg kg�1 d�1) or its vehicle for 3 months. Serum and urine samples were collected
and analyzed as described in ‘Methods’. Urinary Ca, P and DPD levels were corrected with the urinary Cr level and expressed as a ratio to the Cr level. Data
were expressed as mean ± SEM.
*P < 0.05; **P < 0.01, versus sham control.
#P < 0.05; ##P < 0.01, versus OVX group.
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Figure 3. Bone histomorphometric analysis of rat tibia. The images of the

metaphyseal trabeculae of the sham (A), OVX (B), E2 (C) and HEP (D) groups.

Table 3. Effect of ovariectomy, estradiol and HEP on trabecular bone
architecture in the proximal tibial metaphysis

Group Dose
(mg kg�1 d�1)

TbAr
(%)

TbS
(mm)

TbTh
(mm)

Sham — 40.8 ± 10.1 229.7 ± 28.8 55.8 ± 4.0

OVX — 13.8 ± 8.2** 728.5 ± 199.5** 55.3 ± 6.5

E2 2 21.0 ± 6.1# 297.9 ± 58.5# 59.8 ± 4.1

HEP 110 20.9 ± 5.8# 396.6 ± 41.1# 56.6 ± 8.3

F-value 10.369 5.684 1.012

P <0.05 <0.05 >0.05

Measurement of trabecular bone architecture in proximal tibial metaphysis in
the sham- and OVX-operated rats upon E2 and HEP treatment. The rats were
orally administrated with HEP extract (110 mg kg�1 d�1), 17-b estradiol (E2,
2 mg kg�1 d�1) or its vehicle for 3 months. Rat tibia were collected and ana-
lyzed as described in ‘Methods’. The percentage of trabecular area (TbAr%),
trabecular separation (TbS) and trabecular thickness (TbTh) were determined.
Data were expressed as mean ± SEM.
*P < 0.05; **P < 0.01, versus sham control.
#P < 0.05; ##P < 0.01, versus OVX group.
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HEP extract for 3 months lowered serum ALP activity, urinary

Ca excretion and urinary DPD levels in OVX rats, suggesting

that HEP extract can prevent an OVX-induced increase in

bone turnover rate in rats. In addition, HEP extract could

increase trabecular bone area as well as decrease trabecular

separation in rat tibia. These osteoprotective effects were sim-

ilar to those of E2 as reported in the present study as well as in

studies by others (35). Despite the similarity of their effects in

bone, our results showed that HEP extract did not mimic the

effect of E2 on body and uterus weight. The latter is of particu-

lar interest as it indicates that HEP extract exerts its beneficial

effects on bone without inducing potentially harmful prolifer-

ative effects in reproductive tissues.

Our in vitro studies further demonstrated direct beneficial

effects of HEP extract on bone cells. It was found to stimulate

osteoblastic cell proliferation and differentiation in UMR 106

cells. These results are in agreement with both in vivo and

A Treatment
100   200 

Ctrl  µg/ml  µg/ml 

OPG   

GAPDH  

B

C

Treatment
100   200 

Ctrl  µg/ml  µg/ml 

RANKL

GAPDH 

0
Ctrl 100 µg/ml 200 µg/ml

Ctrl 100 µg/ml 200 µg/ml

Ctrl 100 µg/ml 200 µg/ml

0.5

1

1.5

2

O
P

G
/G

A
P

D
H

 o
f 

co
nt

ro
l

0

0.2

0.4

0.6

0.8

1

1.2

R
A

N
K

L
/G

A
P

D
H

 o
f 

co
nt

ro
l

*

0

0.5

1

1.5

2

2.5

O
P

G
/R

A
N

K
L

 o
f 

co
nt

ro
l (

%
)

Figure 5. Effect of HEP on OPG and receptor activator of NF-kB ligand

(RANKL) mRNA expression in rat osteoblast-like UMR 106 cells. UMR

106 cells were treated with 100 mg ml�1 and 200 mg ml�1 HEP extract or its

vehicle (ctrl) for 48 h. Total RNA was isolated and subjected to semi-

quantitative RT–PCR analysis of OPG (A) and RANKL (B) mRNA expression

under the conditions described in ‘Methods’. (C) The ratio of OPG/RANKL

was normalized by an internal control gene glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). Results were obtained from two independent

experiments and expressed as mean ± SEM. *P < 0.05, **P < 0.01, versus

control for n ¼ 3.
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Figure 4. Effects of HEP extracts on cell proliferation and ALP activity in rat

osteoblast-like UMR 106 cells. (A) Cell proliferation of UMR 106 cells upon

HEP extract treatment. UMR 106 cells were seeded in a 96-well plate at a dens-

ity of 2500 cells per well. After starvation for 24 h, different concentrations

(50, 100 and 200 mg ml�1) of HEP extract were added, and treated for 24 or

48 h. Vehicle-treated cells served as control (ctrl). Cell number was determined

by MTT assay. Results were obtained from two independent experiments and

expressed as mean ± SEM. **P < 0.01, versus control for n ¼ 6. (B) ALP

activity of UMR 106 cells upon HEP extract treatment. UMR 106 cells were

seeded in 24-well plates at a density of 100 000 cells per well. After starvation,

50, 100 and 200 mg ml�1 of HEP were added, and treated for 24 h before

ALP activity determination. Vehicle-treated cells served as control (ctrl).

The ALP activity was corrected for the amount of protein used and expressed

as U l�1 mg�1. Results were obtained from two independent experiments and

expressed as mean ± SEM. **P < 0.01 versus control for n ¼ 3.
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in vitro studies reported by others (5–19). In addition, our

study is the first to report that HEP extract stimulated the

expression of OPG mRNA but suppressed the expression of

RANKL mRNA in the UMR 106 cell line, resulting in a

dose-dependent increase in the OPG/RANKL ratio. These res-

ults suggest that HEP extract might inhibit osteoclastogenesis

via the modulation of the OPG/RANKL system in osteoblastic

cells.

This study was originally designed to determine whether the

HEP extract used in our in vivo study could demonstrate osteo-

protective effects in vitro, namely stimulation of osteoblastic

cell proliferation and inhibition of osteoclastogenesis via its

action on osteoblasts. However, it should be noted that limita-

tions exist in using herbal extracts for in vitro studies. The HEP
extract, which contains numerous compounds (both active and

inactive), is normally processed by the gastrointestinal tract

and metabolized before the active ingredients exert effects dir-

ectly on osteoblastic cells. In addition, HEP extract might con-

tain other substances that interfere with the biological actions

of the active ingredient on cell lines. Thus, a study of the

effects of the total extract of HEP in vitro might not be ideal.

Future studies are needed to identify the active ingredient(s)

in the HEP extract that are responsible for the osteoprotective

effects in OVX rats.

In summary, the present study clearly demonstrates the

in vivo efficacy of using HEP extract to prevent OVX-

induced increase in bone turnover rate and to restore the loss

of trabecular bone architecture in OVX rats. Moreover, the in
vitro data indicated that the observed increase in trabecular

bone area and decrease in bone turnover rate by HEP extract

in OVX rats might be mediated by its direct action of stimulat-

ing bone formation and inhibiting bone resorption. Both

in vivo and in vitro studies provide evidence that HEP extract

is a promising alternative and complementary therapeutic

agent for the management of postmenopausal osteoporosis.

However, in order to develop HEP extract in the international

scientific community as an alternative regime for the treatment

of bone diseases, more research will be needed to identify the

active ingredients in HEP extract as well as the mechanism that

mediates the action of HEP extract in vivo.
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