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GRADIENT BOUNDS FOR A THIN FILM EPITAXY EQUATION

DONG LI, ZHONGHUA QIAO, AND TAO TANG

ABSTRACT. We consider a gradient flow modeling the epitaxial growth of thin films with slope selection.
The surface height profile satisfies a nonlinear diffusion equation with biharmonic dissipation. We estab-
lish optimal local and global wellposedness for initial data with critical regularity. To understand the
mechanism of slope selection and the dependence on the dissipation coefficient, we exhibit several lower
and upper bounds for the gradient of the solution in physical dimensions d < 3.

1. INTRODUCTION
Let v > 0. Consider
oth =V - (([Vh|> = 1)Vh) — vA%h (1.1)
and the 1D version
he = (h3 = ha)x — Vhawaa. (1.2)

Eq. (1.1) is a nonlinear diffusion equation which models the epitaxial growth of thin films. It is posed
on the spatial domain € which can either be the whole space R?, the L-periodic torus (L > 0 is a
parameter corresponding to the size of the system) R?/LZ9, or a finite domain in R? with suitable
boundary conditions. In this work for simplicity we shall be mainly concerned with the 27-periodic
case Q = T¢ = R?/27Z% but our results can be easily generalized to other settings. The function
h = h(t,x) : R x 2 — R represents the scaled height of a thin film and v > 0 is positive parameter
which is sometimes called the diffusion coefficient. Typically in numerical simulations one is interested
in the regime where v is small so that the nonlinear effects become dominant. The 1D version (1.2) is
connected with the Cahn-Hilliard equation:

O = A(u® — u) — vA?u

through the identification v = d,h. This connection breaks down for dimension d > 2.
Define the energy

B(h) = /Q(i(yvm? 17+ AR )de. (1.3)

The equation (1.1) can be regarded as a gradient flow of the energy functional E(h) in L?(). In fact,
it is easy to check that

d
—F = — 2 1.4
dt (h) HathH27 ( )

i.e. the energy is always decreasing in time as far as smooth solutions are concerned. Alternatively
one can derive the energy law from (1.1) by multiplying both sides by d;h and integrating by parts.
The first term in (1.3) models the Ehrlich-Schowoebel effect [3, 12, 13]. Formally speaking it forces the
slope of the thin film |VA| ~ 1. For this reason Eq. (1.1) is often called the growth equation with slope
selection. On the other hand, in the literature there are also models “without slope selection”, such as

Oh=-V-( Vh) — vA*h. (1.5)

1+ |Vh|?
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Heuristically speaking, if in (1.5) the slope |Vh| is small, then
1

14 |Vh|?
and one recovers the nonlinearity in (1.1). However this line of argument seems only reasonable when
|Vh| < 1 which is a typical transient regime and not so appealing physically. Indeed the long time
interfacial dynamics governed by (1.1) and (1.5) can be quite different, see for example the discussion
in [5]. The second term in (1.3) corresponds to the fourth-order diffusion in (1.1). It has a stabilizing
effect both theoretically and numerically.

Eq. (1.1) can also be viewed as regularized version of the equation

Oth =V - ((|[Vh|*> = 1)Vh). (1.6)

~1—|Vh?

The wellposedness of (1.6) is a rather subtle issue. In light of recent developments ([1, 2]), one should
expect generic illposedness although the underlying mechanism will be different. However as it turns
out, if there is a smooth solution to (1.6) on some finite time interval, then it must admit some form of
a maximum principle. We record it here as

Proposition 1.1. [Mazimum principle for smooth solutions to (1.6)] Let the dimension d > 1 and
T¢ = R?/27xZ% be the usual 2n-periodic torus. Let T > 0 and assume h € C}C2([0,T] x T?) is a
classical solution to (1.6). Then

IVA(L oo < max{|[Vh(0, ), 1}, VO<E<T. (L.7)

If the dimension d = 1, then a better bound is available:

1

102 (t,-)[co < max{[|0:(0, )|, \/3},

We stress that Proposition 1.1 is a conditional result, namely it assumes the existence of a smooth

solution. On the other hand the wellposedness of classical solutions to the regularized equation (1.1)

is much easier to obtain thanks to the fourth order dissipation on the right hand side. In the Fourier

space, the biharmonic operator —A? seems to offer much stronger dissipation and damping effect than
the usual Laplacian operator, as can be seen from studying the linear equations

Oh = Ah, A=A or — A2

VO<t<T. (1.8)

Since equation (1.1) can be viewed as a regularized version of (1.6), it is very natural to stipulate that
solutions to (1.1) should behave much better than those to (1.6) from a general perspective. From this
heuristics, it is very tempting to expect that Proposition 1.1 also holds for (1.1). Preliminary numerical
experiments seem to support this, thus

Conjecture 1: Let v > 0. For general smooth initial data hg, the corresponding solution h = h(t, x)
to (1.1) satisfies the bound

IVA(t)]loo < max{[|Vhollo, 1}, VE>0.

A weaker form of Conjecture 1 is the following:
Conjecture 2: Let v > 0. For general smooth initial data hg, the corresponding solution h = h(t, x)
to (1.1) satisfies the bound

IVA®)||oo < max{|[Vho|loo,ag}l, Vit > 0.

where ay > 0 is a constant depending only on the dimension d.

Perhaps a better formulation of Conjecture 2 is that ||VA(t)|ec < F(||Vhol|co,d) for some function
F independent of (v,d). The main point in both Conjecture 1 and Conjecture 2 is that the constants
in the upper bounds of ||Vh||« are independent of v. If true these gradient bounds can lead to better
stability estimates of numerical algorithms (see [15, 10, 16, 14, 7, 8, 9]).

On the other hand, it is not so difficult to extract a v-dependent upper bound on ||V h||, see Corollary

1.2 below.
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Perhaps a bit surprisingly, the goal of this paper is to disprove Conjecture 1. Conjecture 2 is still
open at the time of this writing. However we shall give a lower bound for the constant in Conjecture 2.
Namely, we shall show that ag > Cyg > 1 for some explicit constant Cy depending on the dimension d.

To make the paper self-contained, we first establish local and global wellposedness for (1.1). For H?
initial data in dimensions d = 1,2, 3, a fairly satisfactory wellposedness theory has been worked out in
[5] using energy estimates and Galerkin approximation. By using the method of mild solutions, our
Theorem 1.1 below slightly refines this wellposedness result and allows initial data to be in the “critical”
space H % which in particular contains H? for d < 3. Note that although (1.1) is not scale-invariant, in
high frequency approximation, one can regard (1.1) as

dth =V - (|Vh|*Vh) — vA%h. (1.9)

To invoke scaling analysis, one can consider (1.9) posed on the whole space R?. If h(t,z) is a solution
o (1.9), then for any A > 0,

ha(t, ) = h(A't, Az)

. d
is also a solution. From this one can deduce that the critical space for (1.9) is L (R?) or H2 (R?). Thus
we have

Theorem 1.1 (Improved local wellposedness). Let the dimension d > 1. Consider (1.1) on the 2m-
periodic torus T¢ with v > 0. Let sq = d/2. For any initial data hg € H*(T?), there exist Ty = T'(hg) >
0 and a unique local solution h € CYH34 with tiVh € cpcy, tih e CYH3Y. Moreover h(t) € H™ for
allm>1,0 <t < Ty, where 0 < T, < oo is the maximal lifespan of the local solution. In particular
h(t) € CX for all0 <t < T.. If hg has mean zero, then h(t) also has mean zero for all 0 <t < T.

As is well-known, the long time dynamics is dictated by conserved quantities (or conservation laws).
For (1.1), the energy dissipation law (1.4) gives a priori H? control of the solution with mean zero. Note
that if h has mean zero, then ||h|2 is controlled by ||Ah|2 thanks to the Poincaré inequality. Or one
can just prove it directly using the Fourier series. The space H? is subcritical in dimensions d < 3 since

the corresponding critical space is H %. Thus

Corollary 1.1 (Global wellposedness for d < 3). Let the dimension d =1,2,3. Consider (1.1) on the

2m-periodic torus T with v > 0. For any initial data hy € H%(']I‘d) with mean zero, the corresponding
solution h = h(t,z) to (1.1) obtained in Theorem 1.1 exists globally in time.

Remark 1.1. An interesting open problem is to show the global wellposedness of (1.1) in dimension
d=4. In that case H? is the critical space.

The following Corollary gives gradient bounds on h. For simplicity we assume the initial data hg €
H?(T?) so that the energy is well-defined. By using the smoothing effect one can also treat the case
ho € H %(']I‘d) with the help of Theorem 1.1. However the bounds in that case have slightly worse
dependence on v (for initial transient time when the smoothing effect takes place). We shall not dwell
on this subtle issue here and focus instead on the long time bounds. In Corollary 1.2 below, we shall
only consider the case when the diffusion coefficient v is not so large (the physically relevant case is
v — 0), which we denote by the notation 0 < v < 1. It means 0 < v < 1y where 1y > 0 is some constant
of order 1. The numerical value of 1 is not so important. For example one can just take vy = 1.

Corollary 1.2 (Gradient bounds for d < 3). Let the dimension d = 1,2,3. Consider (1.1) on the
2m-periodic torus T with 0 < v < 1. Assume hg € H%(TY) with mean zero. Let h = h(t,z) be the
corresponding global solution to (1.1). Denote

_ 1 2 1 2 2
Ey = /Td<2l/\Ah0] +Z(|Vh0‘ 1) )dm.

Then Vh admits the following bounds: for some absolute constants Cq, Co, C3 > 0,
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1 1
sup [|VA(H)|eo < C1v S ES (ES +1),  ifd=1;

0<t<o0o
Ep. 1 Ey+1 .
sup [[VA()llso < Co(=7)2[log(—-=)], i d=2;
1<t<oo 14
sup VAo < Cav™2(Ep +1)2,  ifd=3.
1<t<oo
Similarly for some absolute constants C%, >0, C% > 0,
E E 1
sup [[Vh(t) = Ve ™ hollg < C - (Z2)3[10g(Z22)), ifd=2;
0<t<1 v v
sup [|[Vh(t) — Ve "™ hollo < Chv™2(Ey +1)2,  ifd=3.
0<ts1

Remark 1.2. The above gradient bound for d = 1 follows trivially from energy law and interpolation
inequalities. It does not use the dynamics at all. On the other hand the proof of the bounds for d = 2,3
uses the mild formulation of the equation together with energy law. In terms of the dependence on v the
bounds here seem not optimal. See for example Proposition 5.1-5.2 in §5 for more refined results.

To disprove Conjecture 1, we shall use two different methods. The first method (see Theorem 1.2 and
Corollary 1.3 below) gives a weak lower bound approximately of the form 1+ O(v) (with O(v) > 0).
Even though this already settles Conjecture 1 in the negative, the obtained lower bound approaches to
1 as v tend to zero which is the drawback of the construction. On the other hand, the second method
(see Theorem 1.3) gives a v-independent lower bound which also yields a lower bound for the constant
ag in Conjecture 2. It is quite possible that these bounds can be improved further.

We now introduce the first construction. To elucidate the main idea, we first state the 1D version.

Theorem 1.2. Consider (1.2) with v > 0 and 2w-periodic boundary condition. There exists a family
A of smooth initial data such that the following holds:

(1) For any hg € A, we have [ ho(z)dz =0 and ||0zhollee < 1.
(2) For any hy € A, there exists tog > 0 (depending on hgy) such that the corresponding solution to
(1.2) satisfies

10:h(to; *)lloo > 1.

It is relatively straightforward to generalize the construction in Theorem 1.2 to the equation (1.1) in
all dimensions.

Corollary 1.3. Let the dimension d > 1 and T¢ be the usual 2r-periodic torus. Consider (1.1) with
v >0 and on (t,z) € [0,00) x T¢. There exists a family A of smooth initial data such that the following
holds:
(1) For any ho € A, we have [rq4 ho(x)dz =0 and ||0zhollee < 1.
(2) For any hg € A, there exists to > 0 (depending on hgy) such that the corresponding solution to
(1.1) satisfies
IVh(to,)||eo > 1.

We now introduce the second construction. The key idea builds on examining the linear evolution
eV tAQ, and treating the nonlinear part as a correction.

Theorem 1.3. Let the dimension d > 1 and T¢ be the usual 2m-periodic torus. Consider (1.1) with
v >0 and on (t,z) € [0,00) X T<. There exists a constant Cyq > 1 depending only on the dimension d,
such that for any € > 0, there exists hg € C™(TY) for which the following hold:

(1) Jpaho(z)dz =0 and |[Vhollee < 1.
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(2) There exists to > 0 such that the corresponding solution to (1.2) satisfies
IVh(to,)|leo > Ca — €.

1
(2m)?

Remark 1.3. Let f(x) =

£l £y (ray > 1.
Remark 1.4. One can also consider the following version of (1.1) with fractional dissipation:

Oth =V - ((|Vh]*> = 1)Vh) — v|V|"h, (1.10)

/ e_|§|4ei5'”"d§. The constant Cy in Theorem 1.8 is given by Cyq =
R4

where v > 2 controls the “order” of dissipation. For h : T — R, |V[Y can be defined on the Fourier
side as

[V[h(k) = kh(k),  kezb

The L>®-mazimum principle holds for the fractional heat propagator e tIN!" for 0 < < 2. The behavior
of e !INI" for~ < 2 and the heat operator e'® can be quite different, see for example [6] for a discussion in
the (Littlewood-Paley) frequency-localized context. In the wider setting one can even consider operators
of the form A =|V|"/log?(A+ |V|) (for 0 <~ <2, 3>0 and A\ > 1) and establish a new generalized
mazimum principle (see [4]) for the drift equation

0 +v -Vl =—-A0,

where v is a giwen arbitrary external velocity field transporting the scalar quantity 6. On the other
hand, in the regime ~v > 2, the L>®-maximum principle is no longer expected since the corresponding
fundamental solution may change signs. Based on this, an analogue of Theorem 1.3 is expected to hold
for (1.10) when ~v > 2. In that case the constant Cy is replaced by

Cay = ||]:71(67|£|7)HL}D(R61) > 1.

2. NOTATION AND PRELIMINARIES

In this section we collect some notation and preliminaries used in this paper.

For any = = (x1,--- ,z4) € R%, we use the Japanese bracket notation (z) = \/1 +af 4+ 2k
We denote by T¢ = R?/27Z? the 27-periodic torus.
Let @ =R% or T¢, d > 1. For any function f: Q — R, we use ||f|z» = ||f||r(o) or sometimes || f|},

to denote the usual Lebesgue LP norm for 1 < p < oco. If f = f(x,y) : Q1 x Q2 — R, we shall denote
by [|f|l 71 1z2 to denote the mixed-norm:

L5 ()

1022 = |17 ) g2

In a similar way one can define other mixed-norms such as || f(|cogmn ete.

For any two quantities X and Y, we denote X <Y if X < CY for some constant C' > 0. Similarly
X 2 Yif X > CY for some C > 0. We denote X ~ Y if X <Y and Y < X. The dependence of
the constant C' on other parameters or constants are usually clear from the context and we will often
suppress this dependence. We denote X Sz, ... 7, Y if X < CY where the constant C' depends on the
parameters Z1,- -+ , Zm,.

We adopt the following convention for Fourier transform pair on R%:

FNO =76 = [ 1@t
I N g
@) = g [ F@eas.

Sometimes the inverse Fourier transform is denoted as F 1.
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Also for f: T - R, and k € Z%, we denote the Fourier coefficient
fk) = | fla)e e,
Td
Of course (under suitable conditions) f can be recovered from the Fourier series:
1 ¢ ik-x
f(iU):W > fk)e*
kezd
Note that if we regard f as a periodic function on R, then
(FHE = > f(R)aE k), (2.11)
kezd

where § is the usual Dirac delta distribution on R<. '
For f: T - R and s > 0, we define the H*-norm and H*-norm of f as

1 . 1
£l = (3 @+ JPNFRR) 1l = (X kZ1F0R)"
kezd keZd
provided of course the above sums are finite. If f has mean zero, then f(0) = 0 and in this case
: 3
1l ~ (32 RF ).
kezd

Occasionally we will need to use the Littlewood—Paley (LP) frequency projection operators. To fix
the notation, let ¢g € C2°(R?) and satisfy

0<¢o<1, ¢o(§) =1 for[{| <1, ¢o(§)=0 for[¢|=>2.
Let ¢(&) := ¢o(€) — ¢o(2€) which is supported in 1/2 < |¢| < 2. For any f € S'(R?), j € Z, define
A;1(8) = 62779 f(&),
Sif(6) = 0(279)f(€),  €eR”
We recall the Bernstein estimates/inequalities: for 1 < p < ¢ < oo,
VA fllr@ay ~ 218, fll ey, s €R;

il 1
155 Fll aay + 125 Il Logay S 277N f 1l Lo (ray-

We also need the Bernstein inequalities for periodic functions. Let f : T — R be a smooth function
and “lift” f to be a periodic function on R?. Then in this way f € S'(R%) and one can define A, f for
any j € Z. By expressing A;f in terms of a convolution integral, it is easy to check that A;f is also
a periodic function on R? and thus can be identified as a function on T¢. A more “direct” way is just
to use (2.11) and recognize A;f as (on the Fourier side) the partial sum of J-distributions in a dyadic
block. It is then natural to expect that the following “Bernstein”-type inequalities hold (note that the
norms are evaluated on ']I‘d): forany 1 < p <q < oo,

V1Al ocray ~ 2508 fll oy, s ER (2.12)
sl 1 .

18, fllpacray S 27N flppray, 5 €2 (2.13)
sl 1 .

1Si fll Loy S 2 flloepay, 5= 2. (2.14)

If f has mean zero (so that f(0) = 0), then one does not need the condition j > —2 (since Sif =0
for j < —2). Although these inequalities are standard, we include the proof here for the sake of
completeness.
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Proof of (2.12)—(2.14). We shall only prove (2.12)—(2.13). The proof of (2.14) is similar to (2.13).
First we deal with (2.12). For some Schwartz function ¢ (v = F~1(|¢]*¢(£))), we have

(VPA ) () = 2 /

R

=270 )" /Td 2 (2 (@ — y + 2mk)) f(y)dy

kezd

L2 (@ = y) f(y)dy

=2 [ e = s

where 1;(z) = Z 294(27 (2 + 27k)) is a periodic function on R? (and thus can be identified as a
kezd
function on T?). By using Young’s inequality on T?, we get

IV 128 fll oqray S 27°01950 vy 1 1| orey-
Easy to check that
195 1 ) < 2jd||¢(2jz)\|Lg(Rd) = Y[l L1 (ray S 1.
Therefore
V1A fll oy S 251 f 1| ocrey-
By using a fattened projection Aj = 212:_2 A;_; (and noting that A;f = AjAjf), one can then derive

(2.12).
Next we derive (2.13). By Young’s inequality, we have

18 £ 1| agray S sl e ey |1 F Nl o gray,

where % =1+ % — 119' By (2.11) and f(O) = 0, easy to check that A;f = 0 if j < —2. Therefore we may
assume without loss of generality that j > —2. Then by using the fact that v is Schwartz, we get

1Y 27%9(27 (2 + 27k)) | g e

kezd
S VY (=t 2wkl gy + Y 2HE) IO
|k|<100 |%|>100

< (2 2) | ey + 1 S 200270

Thus (2.13) is proved. O

3. PROOF OF PROPOSITION 1.1
For 0 < t < T, consider f(t,z) = |Vh(t,z)|*. Note that

Oh=(f —1)Ah+V§f - Vh.

d d
Clearly 9,Vh = (AR)Vf + (f = 1)AVh+ > 0;Vho;f + > _ 0;hd;Vf.

j=1 j=1
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Therefore

%atf =Vh-0,Vh

d
= AR(Vh-Vf)+ (f = 1)(Vh) - (AVR) + Y (Vh-9;Vh)d; f
=1
] J
+3 9;h(Vh-9;Vf)
j=1
d
= Ah(Vh-Vf)+ (f —1)(Vh) - (AVh) + %\VfIQ + > 0;hokhdjif. (3.15)
j.k=1

By definition, it is easy to check that

d
Af=2VAL-Vh+2 ) (90;h)?
k,j=1

d
1
Therefore Vh - AVA = SAf - > (0k0;h)?
k,j=1
Plugging this expression into (3.15), we then obtain

d

SO0 = 5(F = DAT — (7 —1) 3 (0k85)* + AW(Vh- V)

k,j=1
1 d
+ 5 [VIP+ Y 0;h0khd;0k f.
kyj=1
Now let € > 0 be a small parameter which will tend to zero later. Consider the auxiliary function
fe(t,z) = f(t,z) —et, YO<t<T,zeT
Note the equation for f€ reads as

d

1 € 1 € € €
SO =—ge+ 3 (f +et —1)Af = (f +6t_1)kzl(akajh)2
7.7:
d
€ 1 €2 €
+ AR(Vh- V) + 5[V P+ > 0;h0Rho;0n f¢. (3.16)

k,j=1

Since f€ is a continuous function on the compact domain [0, 7] x T¢, it must achieve its maximum
at some point (t,x4), i.e.

max _ f(t,z) = f(ts, zs) =1 M.
0<t<T,z€Td

We discuss several cases.
Case 1. 0 < t, <T and M, > 1. In this case observe that
Vit ze) =0, Af(ts,24) <0,

d

Z ¢jcr(0j0k ) (te, 2:) <0, for any (c1,--- ,cq) € R%
kj=1
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Therefore by (3.16) and the fact that M, > 1, we have

%(8,:]”)(15, x) < —%6 + %(ME + et — 1)(Af) (b, z4)

(t*vx*)
d

— (Mc+et —1) Y (9p0;h)’

k,j=1
< 1<O
— =€ .
-2

This obviously contradicts to the fact that 0 < ¢, < T and (t«,z«) is a maximum. Hence Case 1 is
impossible.
Case 2. 0 < t, <T and M, < 1. In this case we obtain the bound

max  f(t,z) < el + 1.
0<t<T,z€Td

Case 3. t. = 0. Clearly then

max  f(t,z) < max f(0,z) + €T.
0<t<T,z€Td x€Td

Concluding from all cases and sending € to zero, we obtain (1.7).
In the case dimension d = 1, the proof of (1.8) is similar. Set g = h,. Note that

09 = (9° = 9)aw = (39° — 1)guw + 69(92)*.
Clearly (392 — 1)gs, is elliptic when 3g% > 1, whence

19 loe < max{[lg(0)]|so- jg}, Vi 0.

4. PROOF OF THEOREM 1.1

Lemma 4.1. Let v > 0 and L = —vA2%. Then for any integer m > 1 and any t > 0, we have

1D™ e £l e ray Swtam (Lt ) N sz pay; (4.17)

Similarly for any integer m > 0 and any t > 0,
HDm@thHLgo(Td) Svdm tT 1 f1l oo (Ta)5 (4.18)
ID™e™ £ 12 ray Svam (L+ %) fll 2 (ra)- (4.19)

In the above D™ denotes any differential operator of order m. For example D? can be any one of the
operators Opz;, 1 < 4,j < d.
If f has mean zero, then (4.17) and (4.19) can be improved as:

1™ flloe St € FIFN, g Ym= 1,850, (4.20)
ID™ e flla Svam t 4 Il Ym>0,t>0. (4.21)
Proof. We first show (4.17). Define (V) = /1 — A. Clearly

_d

Dmetl f = DMt (V) TS (W)E f = Ky (V)2 f)

d
2

where * denotes the usual convolution and K is the kernel corresponding to D™e!(V)~2. Then

m tL
[D™e fHLgo(Td) S ”K1||L?E(Td)”fHH§(Td)'

Now since m > 1,
1Ky £ 30 e kP ()~ S 1y e R S 1y
kezd k0
Thus (4.17) follows easily.
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For (4.18), we can regard f as a periodic function on R?. Then using the fact that for any multi-index
a with [af = m, Hf*l(faeftwl)HL;(Rd) St we get

HDmethHLgO(’]I‘d) = HDmethHLgO(Rd) N t_%HfHLgO(Rd) St £l oo (ay-
Similarly one can prove (4.19) by computing everything on the Fourier side.
In the case f has mean zero, we note that f(0) = 0, and (4.20)—(4.21) follows easily. O

Proof of Theorem 1.1. This is more or less a standard application of the theory of mild solutions.
Therefore we shall only sketch the details.

We recast (1.1) into the mild form (alternatively one can also construct the mild solution by consid-
ering L = —vA% — A as the linear part and taking e'* as the linear propagator):

d .t
h(t)=e " ho+ ) / d;e”E=SWAT(|VA? — 1)9;h)(s)ds
j=170

= e A hg 4 B(h)(1).
Fix ho € HY2(T?). Define h(® = e=A%p, and for j > 1,
hO)(t) = e A ho + d(hUD)(1).
For T' > 0, introduce the Banach space
Xr={he COHZ([0,T] x T%) : t5Vh e COCY, tih e cfﬂﬁ“}
with the norm

1 1
Iy = Wl g + I3 VRl + IRy g

x

For convenience denote the seminorm

1 1
1ollyz = ([t VAl e, + ”t4thgH%+1'

x

We shall show that for sufficiently small 7 > 0 (depending on the profile of hg), the iterates h(),
7 > 0 form a Cauchy sequence in the set

Br ={h € X7 : ||h|lx; < 2| hol| },

wd qay 1Ml < 2allholl g o

where €7 > 0 is a sufficiently small constant depending only on (v, d) and ||h0||H g-

We shall only verify that h¥) € By and omit the contraction argument since it is quite similar.
d
Consider first j = 0. For hg € H?2(T?), obviously
—_UAZ2
le™ 2 holl g <Ilholl 4-
t H1x

By Lemma 4.1 and a density argument, we have for hg € H %,

1 _ 2 1 2
[t7Ve™ 2 ho|| e = 0, [¢5 €74 holl 4+

lim lim =0.
t—0+ t—0+

Thus for T' > 0 sufficiently small,
3
1ROl xp < lholl ¢, 1R Nyy < ellboll g

where €1 will be taken sufficiently small (depending on (v,d) and ||h0||H%) later when we verify the

estimates for h(), j > 1. ' .
Now inductively assume hl=1 e Bp. To show hY) € By, it suffices for us to check

12(AY=) |, < etllholl g



GRADIENT BOUNDS FOR A THIN FILM EPITAXY EQUATION 11
To simplify notation, in the computation below we shall drop the superscript (j —1) and write @(h(j _1))
simply as ®(h). We also write <, 4 simply as <.
Note that without loss of generality we can assume ¢ < 1, so that when applying Lemma 4.1, we have
14+t~% <t~7 (ie. the constant 1 is not needed). Now by Lemma 4.1, we have

< H/O (V)EV - e (=A% (1gp2 — 1)Vh)(s)dsH2
< /O (t = ) [(V)§Vh(s) |ods
n / (t = ) [(V)E (IVA(3) 2T h(s)) [ods
0
S [e—artsias jstnl .,

sdixz

t 1 _3 1 1
s [ s Ul g 1 VAG) e

sttx

A
Nl

1 1 1
t2lsth(s) L, g HISTRE g 157V gz

S x s x

1
S tz|holl g + 213,
Thus for T' > 0 sufficiently small and €; sufficiently small,

€1
®(h < —=|lh .
12 g, 0y < 15100

Similarly easy to check that

@)@ 4.,

1 €
+ [[taVP(h)(t)|| 700 < L .
cond i omrey T I VEROllig qorpery < liboll g

Thus
@Ml xs < enllholl 4

We have finished the proof of existence and uniqueness of a solution in the Banach space Xrp.
The smoothing estimate of h(t) for ¢t > 0 is utterly standard. For example if we know h €
L H™([to, t1] x T?) on some time interval [to,?;], then for ¢ € (to, 1],

HDm“ v e~ (t=WA (|wpf? - 1)Vh)(s)ds”2

to

S [ (= 5y MOV = DA 1ds

~Y
to

t1 3
< / (t — s)2ds - |l prp

to

t 3 _1 1
—|—/ (t—s)"is 2ds - [|h]|eomp - 15T VA|Foo poo-

to

This shows that h has higher regularity H”*! on (¢, 1] ( the linear part
e~ (A p(1) € HIH!

only for t € (tg,t1] ). We omit further details.
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5. PROOF OF COROLLARY 1.1 AND COROLLARY 1.2

Proof of Corollary 1.1. Let the dimension d < 3.

We first assume that the initial data hg € H*(T¢) with mean zero. Denote the corresponding solution
obtained by Theorem 1.1 as h. To bound ||0;h||2, we need to control ||§%h - Oh - Ohll2 < [|0%h||2||0R|% <
|R|%,. The H* regularity is used to control [Vh|ls. It is then easy to check that h € CYHi N C}{ L2
and

d
—E = —||0h||3 5.22
B = o]} (522)
where
1 1
B = 5vIAh013 + 1 [ (9h(0)F - 17de.
2 4 Td
Alternatively to avoid the issue of differentiability, one can interpret (5.22) as the integral formulation:
to
B(ts) = B(t) —/ |0uh2dt for any 0 < #1 < ta.
t1

From energy conservation we get ||h(t)|| g2 < ||hol| g2 for any ¢ > 0. Now for H? initial data (recall
the critical space in Theorem 1.1 is H%? and d/2 < 2 for d < 3), the lifespan of the local solution
depends on the H?-norm of the initial data. Thanks to this fact and the estimate ||h(¢)|| 2 < ||holl g2,
the corresponding local solution can be continued for all time by a standard argument. This concludes
the proof of global wellposedness under the assumption that hg € H*.

Now let hg € H %(']I‘d) with mean zero. By Theorem 1.1, there exists a local solution h on [0, Ty] for
some T > 0 depending on hy. Let hy = h(Ty/2). By Theorem 1.1, hy € H™ for all m > 1. In particular
hy € H*. Now with h; as initial data, the corresponding solution can be denoted as h(t) = h(t + Tp/2).
One can then repeat the argument described in the previous paragraph to obtain global wellposedness.

Proof of Corollary 1.2. The 1D case. Note that by energy law we have E(t) < Ey. Thus

||aac:ch( )”2 ~ \/> V Ep, Haﬂﬁh(t)||4 5 E(jz +1

By using the Gagliardo-Nirenberg interpolation inequality, we have

2 1
10:h o0 < 10:R3 | Duzhll3
Therefore
1 1
10:h(1) |0 S v BES (ES +1).

The 2D case. We first perform a short time estimate. Let 0 < € < 1 which will be taken sufficiently
small. Consider

t
h(t) = e—utA2h0 _|_/ V- e—u(t—s)A2(|Vh|2 . 1)Vh($)d8.
0

Easy to check that in 2D, ||[|[V|'* 10 hs < |[|V|*+2h]|2_c (recall h has mean zero). Then
IV h(t)]l2-e S NIV 27|V [2holo-c

*/ [[V[3+2V - e V=8 (|Vh| — 1)Vh)(s)ds||2—eds
0

— 2% t _ 3+2e
< (1)l hol| 2 +/0 ((t =)~ 71 (I1A(s) 372 + 1 (s) ]| r2)ds
3+25 1— 25

S R (D (D)),

In the above when bounding the nonlinearity, we used the estimate
IIVAEVRllo—e S VA2l VA2 S 1Al
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Thus for t ~ 1 and 0 < v < 1, we get

Eo+1,4

V138 A ®)loe S (——

).

By repeating the same analysis with ¢ > 1 and hg replaced by h(t — 1) (note that only ||h| g2 enters
the analysis), we get for all ¢ > 1

E0+1
14

IV 58 A1) |e S ( )

N[

Now note that ||h(t)| g2 S (70)
get

. Using Littlewood-Paley decomposition (note that S_oVh = 0), we

VA Loo(T2y S Z 1A; V| oo T2y + Z 1A; V| poo (T2
—2<5<j0 Jj>jo

S (o + 3)1hll gz + 2770500 |||V 156 7 oo

E e Fg+1
< (o +3)(57)2 +270wb0 0120

Optimizing in jo, we get
Ey+1

sup V(1) oe S (20 1og(Z2 D))

1<t<oo

Now to obtain the estimate for ¢t < 1, we simply note that for ¢ < 1, by repeating the analysis before,

E0+1>

e N
1] 700 (h(t) — €™ ho)|loo S ( v
On the other hand,

Ey

_UtA? 1
() = ™" holl sz < hllzr2 + llhollz2 < (57)2

Thus we obtain the same bound for h(t) — e *A% hy.
This finishes the estimate for the 2D case.
The 3D case. We shall again perform a short time estimate. Write

¢
Vh(t) = e 123 Vg + / VYV - e M8 (1R|2 = 1)Vh)(s)ds.
0
It is easy to check that

A2 it
(G "Whollpee sy S (V)75 Aol 2 (rs)-

We then get for ¢t < 1,

IVA(#) oo S (wt) 75 ol > + /0 (Wt — )" (IVR(s) |3 + [ VR(s)]12)ds

Opol=

_5 7.1, 3 3
v sE; +vTsts(v 2By +1).

0ol

St
3
Choosing t ~ v7 then yields [|[VA(t)|leo < 1/_%(E02 +1). For general t > 17, we can replace hy by
h(t — v7) and repeat the above analysis. This ends the estimate for the 3D case.

The following proposition shows that in 1D, there exists initial data such that the corresponding
solution obeys uniform in time gradient bounds which are independent of v.
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Proposition 5.1. Let the dimension d = 1. Consider (1.2) on the 2m-periodic torus T with 0 < v < 1.
Assume hg € H?(T) with mean zero and let h = h(t,z) be the corresponding global solution to (1.2).
Denote

_ 1 2, 1 2 1\2
By = /Td<2y|8mh0| + 1 (19ehof? = 1) )dx.
Then for all t > 0 and some absolute constant C; > 0,
1
10h(1)]|se < C1max{l,v 6 B3} (5.23)

For each 0 < v < 1, there exists a family A, of initial data, such that if hg € A,, then Ey < /v, and
the corresponding solution satisfies

|0:h(t)]|oc < B1,  Vt>0,
where By > 0 is an absolute constant. (In particular, it is independent of v ).

Proof of Proposition 5.1. We first show (5.23). Denote ||hy|lcc = A and g = h2 — 1. If A < 2 we are
done. Now assume A > 2, then obviously 4% < ||g||cc. Now by Gagliardo-Nirenberg interpolation, we
get

1 1 1 1 1 1 1
A? S lglloe S 931029115 S 1913 11002hll3 10212 < Nlgll3 [10:hll3 A2
Thus

Ol

1 1 1 Epo1 L
A S N9lI3110z2hll3 S Eg (=7)e S v e By

We now show that there exists initial data hg such that Ey < /v. The idea is to mollify the “saw-
tooth”-type profile and add a d-cap (§ & /v) around each tips of the sawtooth. To this end, let Ly > 3
be an integer and define

go(z) = /Ox sgn(sin(LoT))dT, x € [—m, 7,

where sgn is the usual sign function:

1, z>0,
sgn(z) =40, z=0,
-1, z<0.

The value of Ly is not important as long as it is independent of v.

Now around each local maxima or minima of gg, easy to check that g change its sign from —1 to
1, or 1 to —1. At the maxima (minima), g; is undefined. One can then mollify gy therein within a
0-neighborhood. Denote the mollified function as gs. Then

1 1 1
B(gs) = [ (5710005l + 3(00sgl® = 12)de Siy v 555+ 6

Choosing § ~ /v then yields F(gs) <r, VV-

Proposition 5.2. Let the dimension d = 1. Consider (1.2) on the 2m-periodic torus T with 0 < v < 1.

Assume hgy € H%(T) with mean zero and let h = h(t,x) be the corresponding global solution to (1.2).
Then

lim sup ||0zh(t) |0 < Ko, (5.24)
t—o0

where Ky is a constant depending only on the initial data hg. If in additional hg is even in x, then
(5.24) can be improved to

limsup [|0xh(t)[|oc < 1. (5.25)
t—o00
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Remark 5.1. Recall that in the 1D case, the equation (1.2) can be transformed into the usual Cahn-
Hilliard equation via the change of variable w = 0yh. The convergence to steady states (and consequently
gradient bounds) can be obtained using the Lojasiewicz-Simon inequality (cf. [11]). Our proof below
however does not appeal to this theory and gives an alternative approach.

Proof of Proposition 5.2. First observe that by using Theorem 1.1 and a shift in time we may assume
ho € HY(T). By using the Duhamel formula

t

h(t) = e " hg + / e " 1=9)9%2 9, ((h2 = 1)hy)(s)ds,
0

the energy law, and the exponential (in time) decay of the propagator e (t=9); (

functions), it is not difficult to derive that

sup [|h(t) || groery Sv.ko 1- (5.26)
£>0

acting on mean-zero

This estimate will be used below.
Step 1: we show that lim; o ||Oth]|cc = 0. Denote g = 9;h, then g satisfies the equation ;g =

dx((3h% — 1)g,) — vdlg. Consider t > to, where to will be picked later. We have

t
g(t) = e 0% g (ko) + | 9,e ™70 ((3h2 — 1)g)(5)ds
to

t
= V0% g (1) + / Duze™ 7% (303 — 1)g)(s)ds
to

t
— | 0ye V9% (6hyyhpg)(s)ds. (5.27)

to

Now note that for any function §: T — R (not necessarily having mean zero), one has for m > 1,
ot ~ _ _m
107" 12 S €100 T |32

Here the point is that since m > 1, g can be replaced by g — g (g denotes the mean of §) and |g| < ||g]|2-
Now continuing from (5.27), we get (by using (5.26))

t

1

192 Suo lgto)ll2 + / (t— )3 =10 g ) ods
0

1 —

t
+/ (t—s5)"ae =919 g(s)||ods. (5.28)
to

By using the energy law, we have fooo lg(s)||3ds < oo. Thus one can find ¢y sufficiently large such
that ||g(to)|l2 < 1 and also ftzo lg(s)[3ds < 1. By (5.26), we also have sup,sq [lg(s)ll2 < 1. These
estimates with (5.28) and an e-6 argument (One needs to split the time interval in (5.28). For s close
to t, we use the smallness of the time interval and the estimate ||g(s)|2 < 1. For s away from ¢, use
[ llg(s)l3ds < 1.) then easily yield

Im [lg(t) 2 = 0.
Interpolating the above estimate with (5.26) (recall g(t) = d;h = (h3 — hy), — vOih), we get
Jim {|9;h|oc = 0. (5.29)

Step 2: we show (5.25). Easy to check that the even symmetry is propagated in time. Denote
f = 0zh. Then

O (f* = f = viuz) = Ouh.
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In view of the even symmetry of h, we have f(t,2 =0) =0, Oz f(t,2 = 0) = 0. Thus
(2= 1) =vosef = [ @)t 9)ay

A simple maximum principle argument together with (5.29) then yield (5.25).
Finally the proof of (5.24) is similar. In the general case, observe that (since f = 0,h)

! (f3 = f = vfe(t,2))de = % /T f3(t, x)da .
=m(t)

21 Jy

By the Mean Value Theorem, there exists xog € [—m, 7] such that

£, z0) — f(t, o) — v fax(t, x0) = m(t).
We then have

£ g = vies = [ @)y + m(o).

z0

Now observe that
m(®)] < 0RO < 1+ / (12— 1dx <1+ Eo.
T

where Ej is the initial energy. The bound (5.24) then again follows from a maximum principle argument
using this estimate.

6. PROOF OF THEOREM 1.2 AND COROLLARY 1.3

The following perturbation lemma is more or less standard. It follows from the local theory and we
omit the proof.

Proposition 6.1 (Finite time stability of solutions). Let v > 0 in (1.1). Let ug € H*, k > d/2 and u
be the corresponding solution. Let T' > 0 be given and assume u has lifespan bigger than [0,T]. Then
for any € > 0, there exists 6 > 0 such that the following holds:

For any vy € H*, k > d/2 with ||vg — uo||gr < &, there exists a solution v to (1.1) corresponding to
the initial data vy and has lifespan containing [0,T]. Furthermore we have

max [lo(t) = u(t) s < e

In particular by shrinking § further if necessary, we have

Jmax |Vo(t) — Vu(t)||eo < €.

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Step 1. We first show that there exists a smooth solution w to (1.2) with initial
data wp such that ||w(|lcc = 1 and for some t, >0, C; > 1

18510(t:) oo > C1 > 1. (6.30)

Let n > 0 be sufficiently small and wy be a smooth 27-periodic function with mean zero (Here one
can choose wg such that it is odd in & when regarded as a function on R. This in turn easily implies
that wp has mean zero on [—m,7].) such that

wo(z) = —na®, x| <n,
lwo(z)| <1, n<[g < (6.31)
Denote by w = w(t, z) the corresponding solution to (1.2). Observe that
wy(z) =1 — 5z, for |z < n.
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Obviously it follows that |w(x)| < 1 with equality holding only at = 0 (and its 27-periodic images).
By a direct calculation, we have for |z| <7,

(Dpwo)® — Bpwo = (1 — Bnz)3 — (1 — 5pat) = O(ah).
Clearly it holds that

Ora ((Dw0)? = duo) | =0.
Now since
Or(wg) = (W3 — wy)ze — vO2W,
we have
(0:0,w)(0,0) = ((0pw0)? — Opw0) 3z T vOiwo = 1200 >0,

Since A(t) = (0yw)(t,0) is a continuously differentiable function of ¢ with A(0) = 1, A’(0) > 0,
obviously (6.30) holds.

Step 2. The perturbation argument.

Let ¢ € CX({z : |z| < n}) be a fixed smooth cut-off function with ¢(x) = 1 for 2| < 3. Let ¢ be
even in z and let

vp(x) = wo(x) — dwe(x).

Note that vJ is odd in 2 and still has mean zero.
Clearly

105 — woll 2 < 8llz(@) ]| 2 < const -8 (6.32)

and can be made arbitrarily small.
On the other hand for |z| < n/2,

amvg(l“) = Oywo(z) —0 =1~ Szt — 8 <1—4.
For /2 < |x| < m, since by construction we have
|0z wo(z)] <15,

for some constant 5 > 0. Obviously by choosing § > 0 sufficiently small we can have

10,08 (2)] < 1 — g, V)2 < |o < .

Therefore we have shown
||81v‘05Hoo < 1.

Now let v° be the solution to (1.2) corresponding to initial data v3. By (6.32), (6.30) and Proposition
6.1, for § > 0 sufficiently small, we have

10:0° () [loo > C1 > 1,

where C] is another constant.
Define A = {v] : ¢ is sufficiently small}. This concludes our construction. O

Proof of Corollary 1.3. The essential ideas are already in the proof of Theorem 1.2. Therefore we only
sketch the necessary notational modifications.

Take 7 > 0 sufficiently small and a = ﬁ( 1,---,1)T (here d is the dimension). Note that by definition

la| = 1. We define a smooth function wg € C*°(T?) such that

d
wo(z) =a-x — nZw?, for |z| <n.
j=1
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Let D = [—, n]¢ be the fundamental domain of the torus T¢. For |z| > 7, 2 € D, we simply require
|Vwg(z)] < 1.

Take a radial ¢ € C®({x € R%: |z| < n}) such that ¢(z) =1 for |z| < n/2.
For § > 0 sufficiently small, define

vor = wo(z) — 6 - (a-z) - ()
and
A= {v]: >0 is sufficiently small}.

The set A is the desired family of initial data. O

7. PROOF OF THEOREM 1.3
In this section we give the proof of Theorem 1.3.
Proof of Theorem 1.3. Without loss of generality we assume the dimension d = 1. The case d > 2 can

be proved with suitable modifications.
Fix € > 0. Let

flx) = ! /e_£4ei5'md§.
R

T oon

Define

Cr=flriwy A= "l w-
Define t; > 0 such that

€
= -, 7.33

: (7:3)
Step 1: We show that there exist to > 0 with to < t; and hg € C°°(T) with mean zero such that

182ho]|se < 1 and

o=

203 Ay v - 2

lle=¥208232 9, |0 > Oy — % (7.34)

To show this, we first choose ﬁ’(t, x) to be an odd function of z which is 27-periodic, and such that

Jo Sgn(f(s/(yt)ﬁ))ds’ 0<z<ts;

F(tiz) =120, 5+ [ sgn(f(s/(vt)1))ds| < x <m
t5 <@ <5 +| [y sen(f(s/(vt)3))ds].

Easy to check that for ¢ < 1/2 the function F(t,z) is well-defined. Furthermore

. . . 1
linear interpolation, ¢35

0, F(t,x) =sgn(f(z/(wt)1)),  ae. |z| < t5;
and ||0, F||oo < 1. Define

G(t,z) = (efvtazm (D F(t, .))) (t, ).
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Then clearly if ¢ is sufficiently small, then

@wwz/ 1A

z|<t5 (yt)%

X

—)|(vt ~idy
e

mm>wx—/b£u<

=wm%®—2ﬂb£U%;ﬁmmrmx

:C’l—2/ ., [f(2)|de
lx|>v~4¢" 20

€
>01—Z

In the last inequality above, we used the fact that f is a Schwartz function and the tail contribution to
the integral can be made arbitrarily small (by taking ¢ small).

Now take an even function ¢ € C°(R) such that 0 < ¢ < 1, ¢(z) = 1 for |z| < 1 and [+ = 1.
Define 95(z) = 6 4 (x/§) and

Fy(t,z) = (1=0)- (s« F(t,)) (),

where * is the usual convolution on R. Easy to check that ||0,Fs|lso < 1, Fs is 2m-periodic, odd in
and has mean zero.
Define

Cis(t, @) = (7100, Fy(t, ) ) (¢, ).
Obviously for § sufficiently small, we have
~ €
Golt,0)] > €1 — &,

Thus (7.34) is achieved with ho(z) = F(t, z).
Step 2: Control of the nonlinear solution. We shall fix ¢35 and hg from Step 1. With hg as initial
data, let h be the corresponding solution to (1.2). We argue by contradiction and assume that

sup [|0zh(t,")[loo < C1 — e (7.35)
0<t<ty
Then
173 = hallee <203, YO <t<t,.
Now since
t
Ouh(t) = e V1 o + / Dyge ™V Draas ((hg — hy)(t — s))ds,
0
we get

T

t
[0:h(t) — e_wammawhouoo < / Hame_ysamm((hg — hy)(t = 8))|oods.
0

Regard (h3 — hy) as a 27-periodic function on R. Recall that f”(z) = F1(—¢2e¢"). Then
|0zze™ %o (R — ha))|l Lo (1
=[|8zze ™" %= (B3 = ha)) | Lge (m)
<IF 1P ) L@y 1A — Bz ey
<INy wy - (vs)~2 -2C%
=A; - (Vs)fé 203,
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Thus we obtain for 0 < ¢ < t9,

1
|10ah(t) — e V105 0 oo < Ay - 207282 - 203,
Since to < t1, by (7.33) and Step 1, we get
2¢

€ €
[0:h(t2)lo > C1 = 5 — 5 =Cr = T

which is an obvious contradiction to (7.35). O
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