
Noise control zone for a periodic ducted Helmholtz resonator system
Chenzhi Cai and Cheuk Ming Mak

Citation: The Journal of the Acoustical Society of America 140, EL471 (2016); doi: 10.1121/1.4968530
View online: https://doi.org/10.1121/1.4968530
View Table of Contents: https://asa.scitation.org/toc/jas/140/6
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Wave propagation in a duct with a periodic Helmholtz resonators array
The Journal of the Acoustical Society of America 131, 1172 (2012); https://doi.org/10.1121/1.3672692

Helmholtz resonator with extended neck
The Journal of the Acoustical Society of America 113, 1975 (2003); https://doi.org/10.1121/1.1558379

Silencer design by using array resonators for low-frequency band noise reduction
The Journal of the Acoustical Society of America 118, 2332 (2005); https://doi.org/10.1121/1.2036222

On the Theory and Design of Acoustic Resonators
The Journal of the Acoustical Society of America 25, 1037 (1953); https://doi.org/10.1121/1.1907235

On sound transmission loss across a Helmholtz resonator in a low Mach number flow duct
The Journal of the Acoustical Society of America 127, 3519 (2010); https://doi.org/10.1121/1.3409481

Helmholtz resonator lined with absorbing material
The Journal of the Acoustical Society of America 117, 725 (2005); https://doi.org/10.1121/1.1841571

https://images.scitation.org/redirect.spark?MID=176720&plid=1225645&setID=407059&channelID=0&CID=414012&banID=519951227&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=7e7e30d6798a3241c86931e1e778ab1601dd31fb&location=
https://asa.scitation.org/author/Cai%2C+Chenzhi
https://asa.scitation.org/author/Mak%2C+Cheuk+Ming
/loi/jas
https://doi.org/10.1121/1.4968530
https://asa.scitation.org/toc/jas/140/6
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/1.3672692
https://doi.org/10.1121/1.3672692
https://asa.scitation.org/doi/10.1121/1.1558379
https://doi.org/10.1121/1.1558379
https://asa.scitation.org/doi/10.1121/1.2036222
https://doi.org/10.1121/1.2036222
https://asa.scitation.org/doi/10.1121/1.1907235
https://doi.org/10.1121/1.1907235
https://asa.scitation.org/doi/10.1121/1.3409481
https://doi.org/10.1121/1.3409481
https://asa.scitation.org/doi/10.1121/1.1841571
https://doi.org/10.1121/1.1841571


Noise control zone for a periodic ducted
Helmholtz resonator system

Chenzhi Cai and Cheuk Ming Maka)

Department of Building Services Engineering, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong, China

chenzhi.cai@connect.polyu.hk, cheuk-ming.mak@polyu.edu.hk

Abstract: This paper presents a theoretical study of the dispersion
characteristics of sound wave propagation in a periodic ducted
Helmholtz resonator (HR) system. The predicted result fits well with a
numerical simulation using a finite element method. This study indicates
that for the same system, no matter how many HRs are connected or
what the periodic distance is, the area under average transmission loss
T L curves is always the same. The broader the noise attenuation band,
the lower the peak attenuation amplitude. A noise control zone compro-
mising the attenuation bandwidth or peak amplitude is proposed for
noise control optimization.
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1. Introduction

The Helmholtz resonator (HR), which consists of a cavity communicating with an
external duct through a neck, is widely used to reduce low-frequency noise in a narrow
frequency band at its resonance peak. The resonance frequency is only determined by
the physical geometries of the cavity and the neck. It is therefore possible to design a
silencer with a desired resonance frequency. The classical approach to modeling HRs
considers an equivalent spring-mass system with end-correction factors for the sake of
accuracy.1,2 Furthermore, wave propagation in both duct and resonator has been con-
sidered in theoretical analysis. The one-dimensional wave propagation approach was
considered in preliminary investigations and was expanded to a multidimensional
approach in order to account for nonplanar effects. The latter has been proven by
experiment to be a better theoretical analysis approach.3–6

Since a single resonator has a narrow noise attenuation band, an array of res-
onators is one way to obtain a broader noise attenuation band. Multiple-resonator
arrays have been investigated to broaden the noise attenuation band in the low-
frequency range.7–10 Some researchers have discussed the acoustic performance of peri-
odic ducted HR systems and proposed theoretical methods of predicting the bandwidth
of the noise attenuation band. However, periodic ducted HR systems struggle to obtain
the necessary broad attenuation bandwidth and high-peak attenuation amplitude at the
same time.11,12 A parameter based on the transmission loss index is first proposed here
to investigate HRs’ sound energy storage capacity. The parameter remains the same
for the same geometries of duct and resonator. This clearly imposes limitations on
noise control. A noise control zone compromising the attenuation bandwidth or peak
amplitude of the periodic ducted HR system is also first proposed for noise control
optimization.

2. Dispersion relation of sound waves in a periodic acoustic system

The sound waves propagated in a periodic ducted HR system are known as Bloch
waves.11,13 Only planar waves are considered in duct propagation because the fre-
quency range considered here is well below the duct’s cutoff frequency. Bloch wave
theory and the transfer matrix method are used to investigate the dispersion relation of
sound waves in a duct resonator system.

2.1 A duct with an array of Helmholtz resonators

Although a multidimensional approach provides a more accurate measure of the
acoustic impedance of a resonator, the main purpose here is to reveal the dispersion
relation of sound waves in a periodic ducted HR system. For this reason, the classical

a)Author to whom correspondence should be addressed.
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approach is adopted here and the acoustic impedance of the resonator is expressed
as2,12

Zr ¼ j
q0l0n
Snx

x2 � x2
0

� �
; (1)

where q0 is air density, l0n and Sn are the neck’s effective length and area, respectively,
and x0 and x are the resonant circular frequency and circular frequency, respectively.

A duct segment with a resonator constitutes a typical periodic cell. The duct
segment’s length is regarded as a periodic distance based on the assumption that the
diameter of the resonator’s neck is negligible in a periodic cell. The sound pressure and
particle velocity in the duct segment of the nth cell, as shown in Fig. 1, can be
described as pnðxÞ and unðxÞ with a suffix of n. The sound pressure is a combination of
two wave propagations in opposite directions of axial x. Assuming a time-harmonic
disturbance in the form of ejxt, the sound pressure can be expressed as1

pnðxÞ ¼ Ine�jkðx�xn�xtÞ þ Rnejkðx�xnþxtÞ; (2)

where k is the number of waves, xn ¼ ðn� 1Þd represents the local coordinates, d is
the periodic distance, and In and Rn represent respective complex wave amplitudes.
Combining the continuity of sound pressure and volume velocity at x ¼ nd yields

Inþ1

Rnþ1

� �
¼

1� Zd

2Zr

� �
exp �jkdð Þ � Zd

2Zr
exp jkdð Þ

Zd

2Zr
exp �jkdð Þ 1þ Zd

2Zr

� �
exp jkdð Þ

2
6664

3
7775 In

Rn

� �
¼ T

In

Rn

� �
; (3)

where Zd is the acoustic impedance of the duct and T is the transfer matrix. Once the
initial sound pressure is given, the sound pressure and particle velocity in an arbitrary
cell can be determined successively using Eq. (3). According to Bloch wave theory, the
transfer matrix can be set as T ¼ k [k is set to be expð�jqdÞ and q is the Bloch wave
number and is allowed to be a complex value].

The analysis of the periodic structure translates to an eigenvalue and its corre-
sponding eigenvector problem. From the definition of k, q must satisfy the following
dispersion relation:

cos qdð Þ ¼ cos kdð Þ þ j
Zd

2Zr
sin kdð Þ ¼ cos kdð Þ þ wkd sin kdð Þ

2 x=x0ð Þ2 � 1
h i ; (4)

where w ¼ Vc=Sdd (Vc represents the HR’s volume and Sd the cross-sectional area of
the duct). The Bloch wave number q is a complex value comprising a real part, qr, and
imaginary part, qi; the solutions of k ¼ expð�jqdÞ describe the propagation properties
of Bloch waves. Assuming that qr > 0 and qi > 0, the two solutions q ¼ qr � jqi and
q ¼ �ðqr � jqiÞ represent the propagation properties of positive-x and negative-x Bloch
waves, respectively, corresponding to the eigenvalues k1 and k2. The eigenvectors corre-
sponding to eigenvalues k1 and k2 can be expressed as ½vI1; vR1�T and ½vI2; vR2�T,
respectively.

2.2 Dispersion relation

The solution of q is a function of the wave frequency, periodic distance, and geometric
dimensions of a duct resonator system. The dispersion relation of sound waves in a
duct can be described by solutions of q. When q contains an imaginary part, this

Fig. 1. Schematic diagram of a periodic ducted HR system with finite resonators.
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implies that a sound wave decays as it travels; the frequency ranges of such a sound
wave are called stopbands. Passbands are sound waves that have only a phase delay
during travel when q only contains a real part. Stopbands are brought about physically
by two mechanisms. One is when sound wave frequency coincides with the resonator’s
resonance frequency, which is also the mechanism of a single-resonator case. The other
is Bragg reflection. Based on these two mechanisms, a theoretical prediction of stop-
band position and its bandwidth is studied.

When the asymptotic wave frequency x! x0 is considered, setting x=x0
¼ 1þ D (jDj is assumed to be well below unity). When Eq. (4) is set to be unity, the
approximate stopbands at D ¼ Dþ and D ¼ D� are expressed in the form of Taylor
series,

Dþ ¼
Vck0

4Sd
cot

k0d
2

� �
þ cot0 k0d=2ð Þ

1!

k0d
2

Dþ þ � � � þ
cot nð Þ k0d=2ð Þ

n!

k0d
2

Dþ

" #
; (5)

D� ¼ �
Vck0

4Sd
tan

k0d
2

� �
þ tan0 k0d=2ð Þ

1!

k0d
2

D� þ � � � þ
tan nð Þ k0d=2ð Þ

n!

k0d
2

D�

" #
; (6)

where k0 ¼ x0=c0 is the wave number of resonance frequency and c0 is the sound
velocity. The stopband of resonance can be expressed as ½ð1þ D�Þx0; ð1þ DþÞx0�.
For the sake of simplicity, when only zero-order correction is considered, the band-
width is given as Dbw ¼ Vck0x0jcotðk0d=2Þ þ tanðk0d=2Þj=4Sd .

The stopband is also due to Bragg reflection; it occurs near xm ¼ mpc0=d (m
is an integer). Then kd ¼ mp (m is an integer) can be obtained, indicating the approxi-
mate positions of stopbands. When the asymptotic wave frequency x! xm is consid-
ered, setting x=xm ¼ 1þ D. Then, Eq. (4) is rewritten as11

cos qdð Þ ¼ cos mp 1þ Dð Þð Þ þ wmp 1þ Dð Þsin mp 1þ Dð Þð Þ

2 xm 1þ Dð Þ=x0
� 	2 � 1
h i

¼ �1ð Þm 1� mpð Þ2

2
D2 � DDm

� 	� �
: (7)

Thus stopbands of Bragg reflection appear at ½ð1� Dm=2Þxm; ð1þ Dm=2Þxm�, where
Dbw ¼ xmDm ¼ wxm=jðxm=x0Þ2 � 1j represents the bandwidth. As the integer number
m increases, the width of the stopband becomes narrower as 1=m2 and the maximum
value of the imaginary part becomes smaller as 1=m.12

In practice, the special case where the designed resonance frequency x0 coincides
with the Bragg reflection frequency xm is applied to achieve a broader noise stopband at
resonance frequency. The stopband is thus a combination of resonance and Bragg reflec-
tion. Then Eq. (7) is converted to cos ðqdÞ ¼ ð�1Þm½1� ðmpÞ2ðD2 � w=2Þ=2�. Thus, the
stopband of the special case can be obtained at ½ð1�

ffiffiffiffiffiffiffiffiffi
w=2

p
Þx0; ð1þ

ffiffiffiffiffiffiffiffiffi
w=2

p
Þx0�, with

bandwidth Dbm ¼ 2x0

ffiffiffiffiffiffiffiffiffi
w=2

p
. The bandwidth decreases with increasing d(d ¼ mk0=2),

where k0 ¼ 2pc0=x0 is the wavelength of resonance frequency. For the sake of a broader
stopband at resonance frequency, d ¼ k0=2 is often chosen as a periodic distance.

3. A parameter to evaluate the capacity of sound power storage in resonators

3.1 Transmission loss of periodic ducted HR systems

According to the definition of the eigenvalue, Eq. (3) can be expressed in eigenvector
form as13

Inþ1

Rnþ1

� �
¼ T

In

Rn

� �
¼ T2 In�1

Rn�1

� �
¼ � � � ¼ Tn I1

R1

� �
¼ A0k

n
1

vI1

vR1

� �
þ B0k

n
2

vI2

vR2

� �
; (8)

where A0 and B0 are complex constants determined by boundary conditions. The end
boundary conditions with reflection coefficient a give

Rnejk x�xnþxtð Þ

Ine�jk x�xn�xtð Þ ¼
A0k1

n�1vR1ejkLend þ B0k1
n�1vR2ejkLend

A0k1
n�1vI1e�jkLend þ B0k1

n�1vI2e�jkLend
¼ a: (9)

Similarly, the initial condition gives

p0 ¼ I0e�jkðxþdÞ þ R0ejkðxþdÞjx¼�Lstart

¼ ðA0k1
�1vI1 þ B0k2

�1vI2Þe�jkðd�LstartÞ þ ðA0k1
�1vR1 þ B0k2

�1vR2Þejkðd�LstartÞ: (10)
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Thus the average transmission loss can be expressed as

T L ¼ 20
nþ 1

log10
I0

Inþ1

����
���� ¼ 20

nþ 1
log10

A0k1
�1vI1 þ B0k2

�1vI2

A0k1
n�1vI1 þ B0k2

n�1vI2

����
����: (11)

When the duct ends with an anechoic termination, the reflection a equals zero, and k1
describes positive-direction propagation, it means that jk1j < 1, jk2j > 1. B0 ¼ 0 is
required in this situation. The average transmission loss of a duct with an anechoic ter-
mination loaded with infinity resonators can be expressed as T L ¼ �20 log10jk1j.
3.2 Helmholtz resonators’ sound power storage capacity

The transmission loss index is only used to evaluate acoustic transmission performance.
A parameter based on the transmission loss index is first proposed here to investigate
HRs’ energy storage capacity. According to the definition of the transmission loss,3

Fig. 2. (Color online) The average transmission loss T L of the duct resonator system with different numbers of
resonators (nþ 1) or periodic distances (d). Lines represent theoretical results and dotted crosses represent FEM
simulations.

Table 1. T L area and Wtotal of a periodic ducted HR system with different numbers of HR.

Resonator number

d ¼ 0:5k d ¼ k

Theory FEM Theory FEM

T L area Wtotal T L area Wtotal T L area Wtotal T L area Wtotal

(�103) (�10�4) (�103) (�10�4) (�103) (�10�4) (�103) (�10�4)

1 2.6766 2.4333 2.7532 2.5108 2.6766 2.4333 2.7532 2.5108
2 2.6562 2.5203 2.7378 2.5097 2.6654 2.5055 2.7445 2.5078
3 2.6422 2.5198 2.7272 2.5041 2.6596 2.4889 2.7396 2.5041
4 2.6337 2.5 2.7205 2.4987 2.6576 2.4745 2.7347 2.4958
5 2.6288 2.4845 2.7161 2.4954 2.6576 2.4743 2.7361 2.5022
6 2.6263 2.4742 2.7133 2.5002 2.6575 2.4695 2.7353 2.5001
7 2.6254 2.4678 2.7117 2.4932 2.6569 2.4652 2.7373 2.5256
8 2.6253 2.4362 2.71 2.4812 2.6565 2.4618 2.7378 2.5385
9 2.6252 2.4602 2.711 2.4798 2.6565 2.4617 2.7351 2.4995
10 2.6249 2.4567 2.7092 2.4631 2.6565 2.4618 2.7329 2.4887
12 2.6237 2.4496 2.7086 2.4569 2.6563 2.4592 2.7249 2.4754
16 2.6222 2.4406 2.7086 2.4569 2.6563 2.4595 2.7376 2.5002
24 2.6211 2.4313 2.703 2.4471 2.656 2.4564 2.7315 2.4841
32 2.6209 2.4272 2.7043 2.4521 2.6555 2.4552 2.7424 2.5012
48 2.6198 2.4237 2.7042 2.4536 2.6555 2.457 2.7469 2.5056
64 2.6201 2.4195 2.7077 2.4468 2.6554 2.4571 2.7536 2.5263
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TL ¼ Lwi � Lwt ¼ 10lgðwi=wtÞ; (12)

where wi ¼ Sijpij2=qc and wt ¼ Stjptj2=qc are the incident sound power and transmis-
sion sound power, respectively. Since HRs are reactive silencers without energy con-
sumption, their energy storage capacity in a frequency domain is expressed as

Wtotal ¼
ð
ðwi � wtÞ ¼

ð
ðwi � wi=10TL=10Þ ¼

Xf r

1

ðwi � wi=10TLf r=10Þ: (13)

When the dimensions of a duct resonator system and the incident sound power are
determined, HRs’ energy storage capacity remains unchanged. The periodic distance
only affects stopbands’ position, bandwidth, and amplitude; however, it has no effect
on HRs’ energy storage capacity. Owing to multiple relationships between the integra-
tion of the T L curve or Wtotal in a frequency domain, the integration of T L curves
can be used to evaluate HRs’ energy storage capacity and noise control optimization
design.

4. Results and discussion

A duct resonator system with the geometries Sd ¼ 36 cm2, ln ¼ 2:5 cm, Sn ¼ 4p cm2,
and V ¼ 101:25p cm3 was used in this study. The three-dimensional finite method was
used to validate theoretical prediction. An oscillating sound pressure at a magnitude of
P0 ¼ 1 was applied at the beginning of the duct. An anechoic termination was set at
the end to avoid reflected waves.

Figure 2(a) shows x0 6¼ xm cases (n ¼ 1; 3; 10) with two types of stopband sep-
arately. The T L of two different special cases (x0 ¼ x1 ¼ pd and x0 ¼ xm ¼ 2pd)
was compared with a single-branch HR in Fig. 2(b), in which the stopband near the
resonance frequency is a combination of Bragg reflection and resonance effect. The
relationship between integer number m and periodic distance d in special cases is given
as d ¼ mk0=2. Figure 2(c) shows that the width of the stopband becomes narrower asffiffiffiffiffiffiffiffiffi

1=m
p

with increasing m in special cases (d ¼ 0:5k0; 1:5k0; 3k0). Thus, for the sake of
having a broader stopband at resonance frequency, d ¼ k0=2(m ¼ 1) is often chosen as
periodic distance. Figure 2(d) verifies T L ¼ �20 log10jk1j in cases of infinite resona-
tors, and also compares three different cases (d ¼ 0:5k0; 0:68k0; k0) with a single-
branch HR. The theoretical T L of different cases shown in Fig. 2 are compared with
the numerical simulation using three-dimensional finite element methods (FEMs) (dot-
ted crosses). The predicted result fits well with the FEM results. In addition, the results
illustrate that the broader the noise attenuation band, the lower the peak attenuation
amplitude.

Based on the conservation of energy, the total energy Wtotal of all T L curves
(summation of the power spectral of T L) from 0 to 1000 Hz are almost the same, as is
the area covered by T L curves. Tables 1 and 2 show different cases with different peri-
odic distances and numbers of resonators by both theoretical prediction and simula-
tion. The maximum relative error of T L area and Wtotal between theoretical analysis

Table 2. T L area and Wtotal of ten HR duct resonators with different periodic distances.

Periodic d 0:5k k 1:5k 2k 2:5k 3k 3:5k

FEM T L area (�103) 2.7092 2.7329 2.7364 2.747 2.7389 2.754 2.752
Wtotal (�10�4) 2.4631 2.4887 2.503 2.5123 2.4986 2.5206 2.5065

Theory T L area (�103) 2.6249 2.6565 2.6672 2.6729 2.6767 2.6795 2.6807
Wtotal (�10�4) 2.4567 2.4618 2.4695 2.4853 2.5069 2.5098 2.5104

Table 3. Relative error between the minimum value and maximum value.

Theory FEM

Min Max Min Max

Case 48 HRs, 0:5k 10 HRs, 3:5k 24 HRs, 0:5k 10 HRs, 3k
T L area (�103) T1¼ 2.6198 T2¼ 2.6907 T3¼ 2.703 T4¼ 2.754
Case 64 HRs, 0:5k 2 HRs, 0:5k 64 HRs, 0:5k 8 HRs, k
Wtotal (�10�4) T5¼ 2.4195 T6¼ 2.5203 T7¼ 2.4468 T8¼ 2.5385
Relative error (%) T1/ T2: 2.6%; T3/ T4: 1.9%; T1/ T4: 4.9%;

T5/ T6: 4%; T7/ T8: 3.6%; T5/T8: 4.7%
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and FEM are 3.6% (case: 64 HRs with distance k) and 3.1% (case: single HR),
respectively.

The relative errors between the minimum value and the maximum value are
exhibited in Table 3. These three tables indicate that for the same system, no matter
how many HRs are used or what the periodic distance is, the T L area and Wtotal are
always the same. This means that HR’s noise attenuation capacity remains the same
for the same geometries of duct and resonator.

There is no trick to noise control. The broader the noise attenuation band, the
lower the peak attenuation amplitude. Although different T L curves with different
bandwidths and peak amplitudes could be obtained with different periodic distances,
T L area and Wtotal are always the same and T L curves always fall into the bound-
aries of a noise control zone. The noise control zone as shown in Fig. 3 is first pro-
posed for noise control optimization design. It provides a clear indication of the limita-
tion of noise control. No matter what optimizing distance8–10 is adopted in noise
control, the values of the attenuation bandwidth and peak amplitude must be within
the proposed noise control zone. The noise control zone can be used to analyze the
feasibility of desired broad attenuation bandwidth and peak amplitude in noise control
optimization. Figure 3 shows the noise control zone for periodic ducted HRs, which is
bounded by the highest T L amplitude for a single resonator, and has the largest fre-
quency bandwidth with lowest T L amplitude for d ¼ k0=2.

5. Conclusion

This paper presents a theoretical study of the dispersion characteristics of sound wave
propagation in a periodic ducted HR system. The predicted result fits well with the
FEM results. This study indicates that for the same system, no matter how many HRs
are connected or what the periodic distance is, the T L area and Wtotal are always the
same. In other words, changing the resonator number or the value of the periodic dis-
tance has no effect on the HR’s noise attenuation capacity. The broader the noise
attenuation band the lower the peak attenuation amplitude. A noise control zone com-
promising the attenuation bandwidth or peak amplitude is first proposed to illustrate
the limitation of noise control for a ducted HR system and can be used to analyze the
feasibility of desired broad attenuation bandwidth and peak amplitude in noise control
optimization. T L curves always fall into the boundaries of the noise control zone as
long as the geometries of the duct resonator are the same. Optimal transmission loss
can be obtained by taking full advantage of periodicity and noise control zone in the
design, achieving the required noise attenuation band and peak attenuation amplitude.

Acknowledgments

The work described in this paper was fully supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project No. PolyU
152116/14E).

References and links
1J. W. S. Rayleigh, The Theory of Sound, 2nd ed. (Dover, New York, 1945), Vol. II.
2U. Ingard, “On the theory and design of acoustic resonators,” J. Acoust. Soc. Am. 25, 1037–1061 (1953).
3M. L. Munjal, Acoustics of Ducts and Mufflers (Wiley, New York, 1987).
4P. K. Tang and W. A. Sirignano, “Theory of a generalized Helmholtz resonator,” J. Sound Vib. 26(2),
247–262 (1973).

Fig. 3. (Color online) Noise control zone for ducted HRs.

Chenzhi Cai and Cheuk Ming Mak: JASA Express Letters [http://dx.doi.org/10.1121/1.4968530] Published Online 1 December 2016

EL476 J. Acoust. Soc. Am. 140 (6), December 2016 Chenzhi Cai and Cheuk Ming Mak

http://dx.doi.org/10.1121/1.1907235
http://dx.doi.org/10.1016/S0022-460X(73)80234-2
http://dx.doi.org/10.1121/1.4968530


5A. Selamet and N. S. Dickey, “Theoretical, computational, and experimental investigation of Helmholtz
resonators with fixed volume: Lumped versus distributed analysis,” J. Sound Vib. 187(2), 358–367 (1995).

6X. Wang and C. M. Mak, “Wave propagation in a duct with a periodic Helmholtz resonators array,”
J. Acoust. Soc. Am. 131(2), 1172–1182 (2012).

7R. A. Prydz, L. S. Wirt, and H. L. Kuntz, “Transmission loss of a multilayer panel with internal tuned
Helmholtz resonators,” J. Acoust. Soc. Am. 87, 1597–1602 (1990).

8A. Trochidis, “Sound transmission in a duct with an array of lined resonators,” J. Vib. Acoust. 113,
245–249 (1991).

9S. H. Seo and Y. H. Kim, “Silencer design by using array resonators for low-frequency band nose reduc-
tion,” J. Acoust. Soc. Am. 118(4), 2332–2338 (2005).

10O. Richoux, B. Lombard, and J.-F. Mercier, “Generation of acoustic solitary waves in a lattice of
Helmholtz resonators,” J. Wave Motion. 56, 85–99 (2015).

11N. Sugimoto and T. Horioka, “Dispersion characteristics of sound waves in a tunnel with an array of
Helmholtz resonators,” J. Acoust. Soc. Am. 97(3), 1446–1459 (1995).

12X. Wang and C. M. Mak, “Acoustic performance of a duct loaded with identical resonators,” J. Acoust.
Soc. Am. 131(4), EL316–EL322 (2012).

13C. E. Bradley, “Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I.
Theory,” J. Acoust. Soc. Am. 96, 1844–1953 (1994).

Chenzhi Cai and Cheuk Ming Mak: JASA Express Letters [http://dx.doi.org/10.1121/1.4968530] Published Online 1 December 2016

J. Acoust. Soc. Am. 140 (6), December 2016 Chenzhi Cai and Cheuk Ming Mak EL477

http://dx.doi.org/10.1006/jsvi.1995.0529
http://dx.doi.org/10.1121/1.3672692
http://dx.doi.org/10.1121/1.399407
http://dx.doi.org/10.1115/1.2930177
http://dx.doi.org/10.1121/1.2036222
http://dx.doi.org/10.1016/j.wavemoti.2015.02.005
http://dx.doi.org/10.1121/1.412085
http://dx.doi.org/10.1121/1.3691826
http://dx.doi.org/10.1121/1.3691826
http://dx.doi.org/10.1121/1.410196
http://dx.doi.org/10.1121/1.4968530

	s1
	s2
	s2A
	l
	n1
	d1
	d2
	d3
	d4
	s2B
	f1
	d5
	d6
	d7
	s3
	s3A
	d8
	d9
	d10
	d11
	s3B
	d12
	f2
	t1
	d13
	s4
	t2
	t3
	s5
	c1
	c2
	c3
	c4
	f3
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13

