
An Improved Algorithm for the p-Center Problem

on Interval Graphs with Unit Lengths∗

T.C.E. Cheng1, Liying Kang1,2, C.T. Ng1

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong
2Department of Mathematics, Shanghai University

Shanghai 200444, China

Abstract

The p-center problem is to locate p facilities in a network of n demand points so as to
minimize the longest distance between a demand point and its nearest facility. We consider
this problem by modelling the network as an interval graph whose edges all have unit
lengths. We present an O(n) time algorithm for the problem under the assumption that the
endpoints of the intervals are sorted, which improves on the existing best algorithm for the
problem that has a run time of O(pn).

Key words: p-center problem; interval graph; location

AMS subject classification: 05C85; 90C27

1 Introduction

Network location problems are concerned with finding the right locations to place one or more
facilities in a network of demand points, i.e., customers represented by nodes in the network,
that optimize a certain objective function related to the distance between the facilities and the
demand points. Usually the facilities to be located are desirable, i.e., customers prefer to have
the facilities located as close to them as possible. For example, services such as police and fire
stations, hospitals, schools, and shopping centers are typical desirable facilities.

∗This research was supported in part by The Hong Kong Polytechnic University under a grant from the Area

of Strategic Development in China Business Services. The second author was also supported by the National

Natural Science Foundation of China.

1

This is the Pre-Published Version.

The p-center problem is to locate p facilities in a network so as to minimize the longest
distance between a set of n demand points and the p facilities. This problem is central to the
field of location theory and logistics, and has been subject to extensive research [4, 8, 15, 18, 19].
Applications of the p-center problem include the location of industrial plants, warehouses,
distribution centers, and public service facilities in transportation networks, as well as the
location of various service facilities in telecommunication networks [4, 8, 15, 18, 19].

We model the network as a graph G = (V,E), where V is the vertex set with |V | = n and
E is the edge set with |E| = m. We assume that the demand points coincide with the vertices,
and restrict the location of the facilities to the vertices. We also assume that each edge of E

has a unit length. The distance d(u, v) between two vertices u, v is the number of edges on a
shortest u-v path from u to v in G. We write d(u, U) =minv∈Ud(u, v) for a set U ⊂ V . The
p-center problem then becomes that of finding a set X ⊂ V such that |X| = p and for which
max{d(vi, X) : vi ∈ V (G)} is minimum.

A graph G = (V,E) is called an intersection graph for a finite family F of a nonempty set if
there is a one-to-one correspondence between F and V such that two sets in F have nonempty
intersection if and only if their corresponding vertices in V are adjacent to one another. We
call F an intersection model of G. For an intersection model F , we use G(F) to denote the
intersection graph for F . If F is a family of intervals on a real line, then G is called an interval
graph for F , and F is called an interval model of G. If F is a family of arcs on a circle, then G

is called a circular-arc graph for F and F is called a circular-arc model of G. A set D of the
vertices of G is a dominating set of G if every vertex in V −D is adjacent to some vertex in D.
A dominating set that induces a path in G is called a dominating path of G.

Interval graphs arise in many application areas, such as archeology, biology, logistics, schedul-
ing, traffic control, and VLSI design [9, 12]. The problems of recognizing interval and circular-
arc graphs are known to be solvable in O(m + n) time (see, e.g., [3]). We assume that an
interval model F for G is available. In the rest of this paper, we assume that the endpoints of
the intervals in F are already sorted.

The p-center problem is known to be NP-complete [7]. Olariu [17] provided an O(n) time
algorithm for locating a single facility on an interval graph that minimizes the maximum dis-
tance to a demand point. Frederickson [6] showed how to solve this problem for trees in optimal
linear time (without necessarily restricting the location of the facilities to the vertices of the
tree) using parametric search. Bespamyatnikh et al. [2] gave an O(pn) time algorithm for the
p-center problem on circular-arc graphs. It is easy to see that the p-center problem on general
interval graphs (with unit edge lengths) is a special case of circular-arc graphs, and therefore it
can be solved in O(pn) time. Hsu et al. [11] presented a general p-facility location problem on

2

the real line with unimodal distance functions. For this specially structured problem, they gave
an O(pn2) algorithm. Kariv and Hakimi [13] presented the results for the p-center problem on
general graphs; however, since the problem is known to be NP-complete, they were able to give
only an O(n2p+1 log n/(p − 1)!) time algorithm. Tamir [18] showed that the weighted and un-
weighted p-center problems in networks can be found in O(npmp log2 n) and O(np−1mp log3 n)
time, respectively. In addition, some work has been done on approximating the p-center solution
(see, e.g., [1, 10]).

The complete graph is an interval graph. The p-dominating set problem on a general graph
is trivially reducable to a p-center problem on a complete graph with edge lengths equal to 1
or 2. The dominating set problem is known to be NP-complete [7]. So the p-center problem
on interval graphs with general edge lengths is NP-hard. In this paper we present an O(n)
algorithm for the p-center problem on interval graphs with unit lengths under the assumption
that the endpoints of the intervals are sorted.

In the next section we introduce some useful notation and some results pertinent to interval
graphs. Section 3 presents an O(n) time algorithm for the p-center problem under study in this
paper.

2 Preliminaries

Let F be the set of n intervals in the interval model for G. Every interval Ii ∈ F is defined
by its left endpoint ai and right endpoint bi, i.e., Ii = [ai, bi], with ai ≤ bi. Without loss of
generality, we assume that no two distinct intervals in F have the same endpoints and that
ai < bi for every 1 ≤ i ≤ n. Let L be the sorted array containing the endpoints of the intervals
in F . Let L = (p1, p2, . . . , p2n), where every pi is either aj or bj for some j. Note that from L

we can easily obtain the list of all the intervals in F that are sorted by the ai’s (respectively,
bi’s). Hence, we assume that the intervals in F have been labelled in such a way that bi < bj

if and only if i < j. Such a labelling is easily obtained from L in O(log n) time using n/ log n

processors by parallel prefixing [14, 16]. Let s (respectively, t) be the smallest left endpoint
(respectively, largest right endpoint) among those in L. Then, s = al for some l ∈ {1, 2, . . . , n}
and t = bn. Without loss of generality, we assume that ∪n

i=1Ii is equal to the interval [s, t],
i.e., the union of the intervals in F is one connected component [s, t] on the real line. This
is because if it is not the case, then G is not connected, and we can consider the connected
components of G.

Chen et al. [5] defined a successor function on intervals to solve the all-pair shortest path

3

problem on interval and circular-arc graphs. Bespamyatnihk et al.[2] used Chen’s idea to
define a right successor function and a left successor function of an integer q as follows: For
every point q on the real line, RSUC(q) = Ii ∈ F if and only if bi =max{bj | Ij contains
q}, and LSUC(q) = Ii ∈ F if and only if ai =min{aj | Ij contains q}. For an interval Ii,
RSUC(Ii) = RSUC(bi) and LSUC(Ii) = LSUC(ai). Note that, because ∪n

i=1Ii is a connected
component, RSUC(Ii) = Ii implies that i = n. For example, in Figure 1, RSUC(I1) = I4,

1
2

3
4

5
6

7

8

9

10

Figure 1.

RSUC(I4) = I9, RSUC(I9) = I10 and LSUC(I10) = I9, LSUC(I9) = I4, LSUC(I4) = I2.
Furthermore, the ith iterated successor RSUC(q, i) of an integer q is defined as RSUC(RSUC

(. . . RSUC(q, 0))), where RSUC appears i + 1 times and RSUC(q, 0) = q. Similarly, we
can define LSUC(q, i). For any interval Ij , we define RSUC(Ij , i) to be RSUC(bj , i), and
LSUC(Ij , i) to be LSUC(aj , i). In Figure 1, for example, RSUC(I1, 1) = I4, RSUC(I1, 2) =
I9, RSUC(I1, 3) = I10 and LSUC(I10, 1) = I9, LSUC(I10, 2) = I4, LSUC(I10, 3) = I2. Observe
that the RSUC function actually gives rise to a tree structure T (RSUC-TREE) whose nodes
correspond to the intervals in F . We define, for every Ii, 1 ≤ i < n, that RSUC(Ii) is the
parent node in T corresponding to node Ii. Using the tree data structure based on the successor
function, Chen et al. [5] were able to compute iterated successors in constant time.

Lemma 2.1 After an O(n) time preprocessing step, given interval Iq ∈ F and i ∈ [1 . . . n],
RSUC(Iq, i) or LSUC(Iq, i) can be computed in constant time.

Chen et al. [5] made further use of their tree structure to obtain the following result.

Lemma 2.2 After an O(n) time preprocessing step, given two intervals Ii ∈ F and Ij ∈ F ,
the distance between Ii and Ij in G(F) can be computed in constant time.

By the definition of the successor function, it is easy to see that for any Ii ∈ F , there exists
an integer l(Ii) such that RSUC(Ii, l(Ii) − 1) = In. Let RSUC(I1, 1) = Ii2 , RSUC(I1, 2) =

4

Ii3 , . . . , RSUC(I1, l(I1) − 1) = Iil(I1)
= In. Clearly, {I1 = Ii1 , Ii2 , . . . , Iil(I1)

= In} is a dom-
inating set of G, and (I1 = Ii1 , Ii2 , . . . , Iil(I1)

= In) is a dominating path of G. We denote
this path by P (I1). In fact, P (I1) is the unique path with length l(I1) − 1 from I1 to In in
T (RSUC-TREE). For each Iq ∈ V (G) − V (P (I1)), if Iq is adjacent to at least two vertices
on P (I1), then all the vertices on P (I1) adjacent to Iq must be consecutive vertices of P (I1).
Furthermore, we have the following result.

Lemma 2.3 For any Iq ∈ V (G)−V (P (I1)), Iq is adjacent to at most three consecutive vertices
on P (I1) in G(F).

Proof. Suppose to the contrary that Iq is adjacent to four consecutive vertices on P (I1). Denote
the four vertices by Iik , Iik+1

, Iik+2
and Iik+3

. From the definition of the right successor function,
it must be the case that aik+3

> bik+1
. Moreover, both IqIik ∈ E(G) and Iik+1

= RSUC(Iik)
imply that bik+1

> bq. Hence aik+3
> bq, contradicting our assumption that IqIik+3

∈ E(G).
The lemma follows.

For notational convenience, we define c = dl(I1)/pe, d = d(c − 1)/2e. If p divides l(I1), we
define

C(I1) =

{
{Iid+1

, Ii(d+1)+2d
, . . . , Ii(d+1)+2(p−1)d

} if c is even,
{Iid+1

, Ii(d+1)+(2d+1)
, . . . , Ii(d+1)+(p−1)(2d+1)

} if c is odd.

If p does not divide l(I1), let l(I1) = (c− 1)p + r (0 < r < p), and we define

C(I1) =


{Iid+1

, Ii(d+1)+2d
, . . . , Ii(d+1)+2(r−1)d

, Ii(d+1)+2(r−1)d+2(d−1)+1
,

. . . , Ii(d+1)+2(r−1)d+(p−r)[2(d−1)+1]
} if c is even,

{Iid+1
, Ii(d+1)+(2d+1)

, . . . , Ii(d+1)+(r−1)(2d+1)
, Ii(d+1)+(r−1)(2d+1)+2d

,

. . . , Ii(d+1)+(r−1)(2d+1)+2(p−r)d
} if c is odd.

Theorem 2.1 Let OPT (F) be the value of the optimal solution for the p-center problem given
an instance F . Then, d ≤ OPT (F) ≤ d + 1.

Proof. We first show that OPT (F) ≤ d + 1. From the construction of C(I1), it is easy to see
that for each Iq ∈ V (P (I1)), d(Iq, C(I1)) ≤ d. Since P (I1) is a dominating path of G, it follows
that d(Iq, C(I1)) ≤ d + 1 for each Iq ∈ V (G). So, OPT (F) ≤ d + 1.

Suppose that S is an optimal solution for the problem. For each Iq ∈ S ∩ V (P (I1)), there
exist at most 2OPT (F) + 1 vertices on P (I1) with distance no more than OPT (F) to Iq. For
any Iq ∈ S − V (P (I1)), by Lemma 2.3, Iq is adjacent to at most three consecutive vertices on

5

P (I1), it follows that there exist at most 2OPT (F)+1 vertices on P (I1) with distance no more
than OPT (F) to Iq. So, (2OPT (F) + 1)p ≥ l(I1).

We claim that OPT (F) ≥ d. Otherwise, OPT (F) ≤ d − 1. If c = dl(I1)/pe is even, then
d = d(c− 1)/2e implies that c− 1 = 2(d− 1) + 1. Hence (2OPT (F) + 1)p ≤ (2(d− 1) + 1)p =
(c − 1)p < l(I1), a contradiction. If c = dl(I1)/pe is odd, then d = d(c − 1)/2e implies that
c − 1 = 2d. Hence (2OPT (F) + 1)p ≤ (2(d − 1) + 1)p = (c − 2)p < l(I1), and we arrive at a
contradiction again. So, OPT (F) ≥ d.

For the interval RSUC(Ii, q) (LSUC(Ii, q)), we denote its left endpoint by a(RSUC(Ii, q))
(a(LSUC(Ii, q))) and its right endpoint by b(RSUC(Ii, q)) (b(LSUC(Ii, q))).

Lemma 2.4 For any interval Ii ∈ F and an integer q, if RSUC(Ii, q) = Ij with j < n, then
for any interval Ik with k > j, d(Ii, Ik) ≥ q + 1.

Proof. We apply induction on q. If q = 1, then d(Ii, Ik) ≥ 2 for any k > j, for otherwise
Ik = RSUC(Ii, q). We now assume that the assertion holds for all positive integers s < q, i.e.,
if RSUC(Ii, s) = Ij with j < n, then d(Ii, Ik) > s + 1 holds for k > j. We consider the case
RSUC(Ii, q) = Ij with j < n. For k > j, it must be the case ak > b(RSUC(Ii, q − 1)), for
otherwise RSUC(Ii, q) = Ik. Let Ik′ be the adjacent vertex of Ik on the shortest Ii-Ik path.
Ik′Ik ∈ E(G) implies that bk′ > ak. Combining this with ak > b(RSUC(Ii, q − 1)), we have
bk′ > b(RSUC(Ii, q−1)). Applying the inductive hypothesis, it follows that d(Ii, Ik′) ≥ q. Thus
d(Ii, Ik) ≥ q + 1, as required.

For every pair of intervals Ii, Ik ∈ F(i < k), we define Ti,k as the set of intervals whose right
endpoints are between bi and bk. The set Ti,k can be partitioned into two subsets T 1

i,k and T 2
i,k

such that the distance from every interval in T 1
i,k to Ii is smaller than or equal to d, and the

distance from every interval in T 2
i,k to Ii is greater than d. If T 2

i,k 6= ∅, we define L(Ii, Ik) as the
longest distance between intervals in T 2

i,k and Ik. Let L(Ii, Ik) = 0 if T 2
i,k = ∅.

To be able to efficiently compute L(Ii, Ik) for each pair Ii, Ik(i < k) of intervals in F with
T 1

i,k 6= ∅, let Q(Ii) = {Ij | Ij ∈ F , Ij is contained in RSUC(Ii, d) and Ij ∩RSUC(Ii, d−1) = ∅}.

Lemma 2.5 If Q(Ii) 6= ∅, then d(Iq(Ii), Ik) = L(Ii, Ik), where q(Ii) =min{j | Ij ∈ Q(Ii)}.

Proof. We first show that d(Ii, Iq(Ii)) > d. Let Im be the direct predecessor of Iq(Ii) on
the shortest Ii-Iq(Ii) path. It follows immediately that bm > aq(Ii) > b(RSUC(Ii, d − 1)),
since Iq(Ii) ∈ Q(Ii) and ImIq(Ii) ∈ E(G). By Lemma 2.4, we have d(Ii, Im) ≥ d. Hence,

6

d(Ii, Iq(Ii)) > d, i.e., Iq(Ii) ∈ T 2
j,k. On the other hand, q(Ii) =min{j | Ij ∈ Q(Ii)} implies that

Ij 6∈ T 2
j,k for any j, i < j < q(Ii). So, d(Iq(Ii), Ik) = L(Ii, Ik), the result follows.

Now we can compute q(Ii) by using the RSUC function as follows:

Procedure q(Ii)

(a) Let Mpi = {ph : ph < pi} for each pi in L.

(b) For every Ii = [ai, bi] with b(RSUC(Ii, d)) < bn, let MRSUC(Ii,d)) = Mb(RSUC(Ii,d))−

Ma(RSUC(Ii,d)), and compute the MRSUC(Ii,d)).

(c) Find the interval Ij whose left and right endpoints belong to MRSUC(Ii,d)) such that aj >

b(RSUC(Ii, d− 1)) and bj is as small as possible. Let q(Ii) = j.

It is easy to see that the computation of q(Ii) takes O(n) time.

Lemma 2.6 Let RSUC(Ii, d) = Ij. If Q(Ii) = ∅, then d(Ij+1, Ik) = L(Ii, Ik).

Proof. First, by Lemma 2.4, we have d(Ii, Ij+1) > d, so Ij+1 ∈ T 2
i,k. On the other hand,

Q(Ii) = ∅ implies that Ij′ 6∈ T 2
i,k for any j′ < j + 1. Thus, d(Ij+1, Ik) = L(Ii, Ik), as required.

3 The algorithm and analysis

In this section we describe an algorithm designed to solve the p-center on interval graphs. Let
Imax(a) be the interval of F with the maximum left endpoint.

Algorithm 3.1 Find an optimal p-center set of G(F) given a set F of sorted intervals.

Input. A set F of sorted intervals.

Output. A minimum-value p-center set of G(F).

Method.

1. Calculate the dominating path P (I1) and C(I1) (as defined in Section 2), let V (P (I1)) =
{I1 = Ii1 , Ii2 , . . . , Iil(I1)

= In}, and C(I1) = {Ik1 , Ik2 , . . . , Ikp}.

7

2. Calculate c = d l(I1)
p e, d = d c−1

2 e.

3. j := 1, Iw1 := Ik1 , S := {Iw1}

4. j := j + 1.

5. If j = p + 1 and d(Imax(a), Iwp) ≤ d, output S.

6. If j = p + 1 and d(Imax(a), Iwp) > d, S := C(I1), output S.

7. If j < p + 1, Iwj := Ikj
.

8. If L(Iwj−1 , Iwj) ≤ d, Iwj := Iwj+1.

8.1. If L(Iwj−1 , Iwj) > d or Iwj = In, then S := S ∪ {Iwj−1}, Iwj := Iwj−1, go to step 4.

8.2. If L(Iwj−1 , Iwj) ≤ d, Iwj := Iwj+1, go to step 8.1.

9. If L(Iwj−1 , Iwj) > d, Iwj := LSUC(Iwj , L(Iwj−1 , Iwj)− d), go to step 8.

For the sake of clarity we illustrate Algorithm 3.1 with an example. We consider a 2-
center problem on the interval graph given in Figure 1. We first calculate the dominating
path P (I1) and C(I1) (as defined in Section 2), V (P (I1)) = {I1, I4, I9, I10}, C(I1) = {I4, I10},
c = d l(I1)

p e = 4/2 = 2, and d = d c−1
2 e = 1. For j = 1, Iwj := I4; For j = 2, Iwj := I10, and

L(Iw1 , Iw2) = 2 > 1. In Step 9, Iw2 := LSUC(Iw2 , 1) = LSUC(I10, 1) = I9. The algorithm
ends in Step 5. We obtain an optimal solution S = {I4, I9}.

We next verify the validity of Algorithm 3.1.

Theorem 3.1 Algorithm 3.1 produces an optimal solution for the p-center problem on interval
graphs.

Proof. Let S = {Iw1 , Iw2 , . . . , Iwp} be the vertex set produced by Algorithm 3.1. By Theorem
2.1, it is clear that OPT (F) = d + 1 or OPT (F) = d. If OPT (F) = d, we will prove
that the algorithm ends in Step 5, and S is an optimal solution for the problem. Let M =
{Il1 , Il2 , . . . , Ilp} be the optimal solution for the problem that contains as many of the vertices
of S as possible. Let Ilj+1

be the first vertex of M that is different from S. If j = 0, i.e.,
Il1 6= Iw1 = Iid+1

. Since d(I1, Iw1) = d(I1, Iid+1
) = d and d(I1, Il1) ≤ d, it follows from Lemma

2.4 that l1 < w1. Hence, for any 1 < k < w1, we have d(Ik, Iw1) ≤ d(I1, Iw1) = d, and for any
k > w1, we have d(Ik, Iw1) ≤ d(Ik, Il1). Thus, M ′ = (M − {Il1}) ∪ {Iw1} is an optimal solution
for the problem, and |M ∩ S| < |M ′ ∩ S|, which contradicts the choice of M . If j > 0, then

8

l1 = w1, l2 = w2, . . . , lj = wj . Since M is an optimal solution, L(Iwj , Ilj+1
) = L(Ilj , Ilj+1

) ≤ d.
From Algorithm 3.1, it is valid that wj+1 ≥ lj+1, and L(Iwj , Iwj+1) ≤ d. Then, for any
1 ≤ k < wj = lj , d(Ik, Iwj) = d(Ik, Ilj) ≤ d(Ik, Ilj+1

); for any wj < k < wj+1, d(Iwj , Ik) ≤ d or
d(Ik, Iwj+1) ≤ d; for any wj+1 < j ≤ n, d(Ik, Iwj+1) ≤ d(Ik, Ilj+1

). So, M ′ = (M − {Ilj+1
}) ∪

{Iwj+1} is an optimal solution, and |M ∩ S| < |M ′ ∩ S|, contradicting the choice of M again.
Hence S = M . Since M is an optimal solution, d(Imax(a), Iwp) ≤ d, and so the algorithm ends
in Step 5. If OPT (F) = d + 1, then C(I1) is an optimal solution, and Algorithm 3.1 outputs
S = C(I1), so the result follows.

To evaluate the complexity of the algorithm, we first note that Step 1 can be implemented
to run in O(n) time by Lemma 2.1. The computation of q(Ii) for each Ii can be performed in
O(n) time by Procedure q(I1). By Lemmas 2.1, 2.2, 2.5, and 2.6, after an O(n) time processing
step, L(Iwj , Iwj+1) can be computed in constant time. Therefore, the marginal effort needed
to compute Step 4 to Step 10 is O(n). The total computational effort to solve the problem
amounts to O(n). We have thus established the following result.

Theorem 3.2 Algorithm 3.1 solves the p-center problem on interval graphs with unit lengths
in O(n) time if the endpoints of the intervals are sorted.

4 Concluding remarks

In this paper we presented an O(n) time algorithm to solve the p-center problem on interval
graphs with unit lengths under the assumption that the endpoints of the intervals are sorted.
The p-center problem on interval graphs with general edge lengths is NP-hard. It remains
an interesting question whether we can develop an approximation algorithm for the p-center
problem on interval graphs with general edge lengths.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions
on an earlier version of this paper.

References

[1] J. Bar-Ilan and D. Peleg, Approximation algorithms for selecting network centers, Pro-
ceedings of Workshop on Algorithms and Data Structures ’91 1991: 343-354.

9

[2] S. Bespamyatnikh, B. Bhattacharya, M. Keil, D. Kirkpatrick, M. Segal, Efficient algorithms
for centers and medians in interval and circular-arc graphs, Networks 2002; 39: 144-152.

[3] K.S. Booth and G.S. Leuker, Testing for the consecutive ones property, interval graphs
and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences
1976; 13: 335-379.

[4] M.L. Brandeau, S.S. Chiu, An overview of representative problems in location research,
Management Science 1989; 35: 645-674.

[5] D. Chen, D.T. Lee, R. Sridhar, and C. Sekharam, Solving the all-pair shortest path query
on interval and circular-arc graphs, Networks 1998; 31: 249-258.

[6] G. Frederickson, Parametric search and locating supply centers in trees, Proceedings of
Workshop on Algorithms and Data Structures ’91 1991: 299-319.

[7] M.R. Garey and D. Johnson, Computer and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, New York, 1979.

[8] S.L. Hakimi, Optimal locations of switching centers and the absolute centers and medians
of a graph, Operations Research 1964; 12: 450-459.

[9] M.M. Halldorsson, G. Kortsarz, and H. Shachnai, Sum coloring interval and k-claw free
graphs with application to scheduling dependent jobs, Algorithmica 2003; 37: 187-209.

[10] D. Hochbaum and D.B. Shmoys, A unified approach to approximation algorithms for bottle
neck problems, Journal of the ACM 1986; 33: 533-550.

[11] V.N. Hsu, T.J. Lowe, and A. Tamir, Structured p-facility location problems on the line
solvable in polynomial time, Operations Research Letter 1997; 21: 159-164.

[12] S. Irani and V. Leung, Scheduling with conflicts on bipartite interval graphs, Journal of
Scheduling 2003; 6: 287-307.

[13] O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems I: The
p-centers, SIAM Journal of Applied Mathematics 1979; 37: 514-538.

[14] C.P. Kruskal, L. Rudolph, and M. Snir, The power of parallel prefix, IEEE Transactions
on Computers 1985; C-34: 965-968.

[15] M. Labbe, D. Peeters, and J.F. Thisse, “Location on networks,” Handbooks in Operations
Research and Management Science, M. Ball, T. Magnanti, R.L. Francis (Editors), Elsevier,
Amsterdam, 1995; 8.

10

[16] R.E. Ladner, M.J. Fischer, Parallel prefix computation, Journal of the ACM 1980; 27:
831-838.

[17] S. Olariu, A simple linear-time algorithm for computing the center of an interval graph,
Interational Journal of Computer Mathematics 1990; 24: 121-128.

[18] A. Tamir, Improved complexity bounds for center location problems on networks by using
dynamic data structures, SIAM Journal of Discrete Mathematics 1988; 1: 377-396.

[19] B.C. Tansel, R.L. Francis, T.J. Lowe, Location on networks: A survey–Part I: The p-center
and p-median problems, Management Science 1983; 29: 482-497.

11

