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A simple iterative model is introduced quantifying the interaction of saturable gain and nonlinear loss in a
mode-locked laser cavity. The resulting geometrical description of the laser dynamics completely characterizes
the generic multi-pulsing instability observed in experiments. The model further shows that the onset of multi-
pulsing can be preceded by periodic and chaotic transitions as recently confirmed in theory and experiment.
The results suggest ways to engineer the nonlinear losses in the cavity in order to achieve an enhanced
performance. © 2010 Optical Society of America
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. INTRODUCTION
he onset of multi-pulsing as a function of increasing la-
er cavity energy is a well-known physical phenomenon
1,2] that has been observed in a myriad of theoretical
nd experimental mode-locking studies in both passive
nd active laser cavities [3–17]. Aside from two purely
heoretical (computational) studies [3,4], the bulk of these
bservations has been almost exclusively experimental in
ature. Specifically, each of these experiments demon-
trates that as the gain pumping is increased, the number
f mode-locked pulses in the cavity increases in an ap-
roximately linear and discrete manner with the cavity
aturation energy. This observation is independent of the
pecific mode-locking mechanism used, whether it is non-
inear polarization rotation, nonlinear interferometry,
uantum saturable absorbers, etc. Thus the phenomenon
s ubiquitous to mode-locked laser cavities. One of the ear-
iest theoretical descriptions of the multi-pulsing dynam-
cs was by Namiki et al. [3], in which energy rate equa-
ions were derived for the averaged cavity dynamics.
ore recently, a full stability analysis of the mode-locking

olutions was performed, showing that the transition dy-
amics between N and N+1 pulses in the cavity exhibited
more complex and subtle behavior than previously sug-

ested [4]. Indeed, the theory predicted, and it has been
onfirmed experimentally since, that near the multi-
ulsing transitions, both periodic and chaotic behavior
ould be observed as operating states of the laser cavity
or a narrow range of parameter space [4–7]. In this pa-
er, we generalize the energy rate equation approach [3]
nd develop an iterative technique that provides a simple
eometrical description of the entire multi-pulsing transi-
ion behavior as a function of increasing cavity energy.
he model captures all the key features observed in ex-
eriment, including the periodic and chaotic mode-locking
egions [5], and it further provides valuable insight into
0740-3224/10/102068-10/$15.00 © 2
aser cavity engineering for maximizing the performance,
.e., enhancing the mode-locked pulse energy.

The multi-pulsing instability arises from the competi-
ion between the laser cavities’ bandwidth constraints
nd the energy quantization associated with the resulting
ode-locked pulses, i.e., the so-called soliton area theo-

em [3]. Specifically, as the cavity energy is increased, the
esulting mode-locked pulse has increasing peak power
nd spectral bandwidth. The increase in the mode-locked
pectral bandwidth, however, reaches its limit once it is
ommensurate with the gain bandwidth of the cavity.
urther increasing the cavity energy pushes the mode-

ocked pulse to an energetically unfavorable situation
here the pulse spectrum exceeds the gain bandwidth,

hereby incurring a spectral attenuation penalty. In con-
rast, by bifurcating to a two-pulse per round trip configu-
ation, the pulse energy is then divided equally between
wo pulses whose spectral bandwidths are well contained
ithin the gain bandwidth window. Figure 1 illustrates

he concept as a function of increasing gain.
To theoretically characterize the multi-pulsing transi-

ion, a model is needed that is capable of capturing the
ynamic competition between the various multi-pulse so-
ution branches. Often it is the case that various of these
ranches are stable at the same time, thus leading to bi-
table behavior in the system [3–17]. Starting from initial
hite noise in the laser cavity, an effective model must se-

ect which branch of solutions is selected in the mode-
ocking process. In the model constructed here, a minimal
et of assumptions are made. First, the cavity is assumed
o have a nonlinear loss due to the cavities’ saturable ab-
orption. Second, the cavity is subject to bandwidth lim-
ted saturable gain. Third, upon undergoing a multi-
ulsing bifurcation, the resulting pulses are well-
eparated in time. With these three assumptions, a
eometrical iteration picture can be constructed of the
010 Optical Society of America
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ulti-pulsing dynamics by considering the intersection of
he gain and loss curves that are applied once per round
rip. It is a simple model that yields tremendous insight
nto the more subtle and complex issues of the multi-
ulsing dynamics observed theoretically and experimen-
ally [4,5,7]. Further, it is a much simpler analytical
ramework to understand than previous theoretical find-
ngs [3,4].

The paper is outlined as follows: In Section 2, the prin-
iple of operation is outlined for the multi-pulsing analy-
is. This is the key section of the paper, highlighting the
eometrical viewpoint of the multi-pulsing bifurcation
nalysis. Section 3 considers explicit numerical simula-
ions of the geometrical model for the three key satura-
ion curves of physical interest. This gives a quantitative
easure of the multi-pulsing instability. Section 4 dis-

usses a method by which the nonlinear losses can be en-
ineered to achieve key mode-locking characteristics such
s high-energy pulses or self-starting. A review of the
ndings and concluding remarks are found in Section 5.

. PRINCIPLE OF OPERATION
he aim of this section is to provide a high-level overview
f the formal theoretical framework needed to capture the
ulti-pulsing mode-locking dynamics. The discussion will

volve around a geometrical representation of the dynam-
cs, and three key papers are of critical importance [3–5].
he simplified theoretical framework considered here in-
olves a balance between two dominant physical effects:
he nonlinear loss and the saturating gain. Figure 2 illus-
rates the simplified cavity that is driven by the saturat-
ng gain and nonlinear losses. The remaining physical ef-
ects, discussed in what follows, are balanced in the
ormation of the mode-locked pulse [3].

The primary modeling component in the paper by
amiki et al. [3] is the development of an energy rate

quation. In this formulation, the mode-locked pulse en-
rgy is computed over one round trip. The exact form of
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ig. 1. Multi-pulsing bifurcation dynamics as a function of in-
reasing gain. As the gain is increased, the mode-locked pulse
eak power and spectral width (bold lines) are increased beyond
he gain bandwidth (dashed line), leading to the formation of two
ode-locked pulses whose spectra are within the gain

andwidth.
he mode-locked pulse solution is unimportant, and it is
ssumed that the effects of chromatic dispersion, self-
hase modulation, nonlinear gain, and the bandwidth
ain limitations effectively balance each other to form the
ode-locked pulse solution [3]. Indeed, the fundamental

remise of mode-locking is that a localized pulse solution
xists for a given balance of dispersive and dissipative ef-
ects [1,2]. For more on such dissipative solitons, see
khmediev and Ankiewics [18]. Unlike the work of
amiki et al. [3], the model formulation established here

reats the cavity as a discrete loss-gain system so that the
avity dynamics are understood from an underlying itera-
ion scheme.

Before proceeding to the analysis, a few comments are
ade about the variable naming conventions used in the

aper and their relation to Fig. 2. The variable E will rep-
esent the cavity energy. However, it will rarely appear
ithout superscripts or subscripts when referring to the

aser cavity. The subscript in or out will refer to the en-
rgy at the input or output of a laser cavity element, re-
pectively. The superscripts loss and gain will refer to the
aser cavity element under consideration. For instance,
he expression Eout

gain refers to the output energy of the
ain element. Additionally, the expression Ej refers to the
nergy of the jth pulse at the output coupler (see Fig. 2),
nd Etotal is the sum of energies of all the pulses. The final
erm, Esat, is the saturation energy of the gain medium
hich is modified in practice as the gain pumping is ad-

usted in the laser cavity.

. Saturating Gain
e will make the same assumptions as those laid out by
amiki et al. [3] and will simply consider a model for the

aturating gain as well as the nonlinear cavity losses. Fig-
re 2 shows the basic laser cavity configuration consid-
red. The two primary components of loss and gain are in-
luded. The saturating gain dynamics results in the
ollowing differential equation for the gain [1–3]:

dEj

dZ
=

g0

1 + �j=1
N Ej/Esat

Ej, �1�

here Ej is the energy of the jth pulse �j=1,2, . . . ,N�, g0
easures the gain pumping strength, and Esat is the satu-

ation energy of the cavity. The total gain in the cavity
an be controlled by adjusting the parameter g0 or Esat. In
hat follows here, the cavity energy will be increased by

imply increasing the cavity saturation parameter Esat.
his increase in the cavity gain can equivalently be con-

rolled by adjusting g . These are generic physical param-
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ig. 2. Simple cavity configuration involving a saturable gain
lement and a nonlinear loss element that gives the cavity satu-
able absorption. The remaining physical effects are assumed to
alance each other in the formation of a mode-locked pulse.
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ters that are common to all laser cavities, but which can
ary significantly from one cavity design to another. The
arameter N is the number of pulses in the cavity [4].
his parameter, which is critical in the following analysis,
elps to capture the saturation energy received by each

ndividual pulse. Note that this equation can be solved ex-
ctly using standard methods of differential equations.
owever, the resulting solution is given in an implicit

orm.

. Nonlinear Loss (Saturable Absorption)
he nonlinear loss in the cavity, i.e., the saturable absorp-
ion or saturation fluency curve, will be modeled by a
imple transmission function:

Eout = T�Ein�Ein. �2�

he actual form of the transmission function T�Ein� can
ary significantly from experiment to experiment, espe-
ially for very high input energies. For instance, for mode-
ocking using nonlinear polarization rotation, the result-
ng transmission curve is known to generate a periodic
tructure at higher intensities. Alternatively, an idealized
aturation fluency curve can be modified at high energies
ue to higher-order physical effects. As an example, in
ode-locked cavities using waveguide arrays [4], the

aturation fluency curve can turn over at high energies
ue to the effects of three-photon absorption, for instance.
s a final note, this transmittance function is commonly
eferred to in the literature as the cavity’s nonlinear loss
r saturable absorption [1–3]. In what follows, the terms
onlinear loss and transmission curves will be used inter-
hangeably.

A number of specific nonlinear loss curves will be con-
idered in the next section. For the moment, however,
onsider the rather generic saturation curve as displayed
n Fig. 3. This shows the output energy as a function of
he input energy. It is assumed, for illustrative purposes,
hat some higher-order nonlinear effects cause the satu-
ation curve to turn over at high energies. This curve de-
cribes the nonlinear losses in the cavity as a function of
ncreasing input energy for N mode-locked pulses. Also
lotted in Fig. 3 is an analytically calculated line that
ives a threshold value for multi-pulsing operation. The

E
ou

t

E
in

threshold

ig. 3. Generic nonlinear loss (or saturable absorption or satu-
able fluency) curve (bold line) showing the standard effect of
aturable absorption at high energies along with a fold-over due
o higher-order nonlinear loss processes. The dashed line is the
nalytically computed threshold curve. Once the input energy is
ncreased above the threshold point, any perturbation will cause
he growth of an additional pulse, so the cavity jumps from N to
+1 pulses. Note that the small and large signal transmission

urves (dashed and solid lines, respectively) coalesce for low in-
ut energies.
hreshold is the small signal loss (constant loss of the cav-
ty) that limits the amplification of small signals. In laser
avities, any signal with a gain larger than the loss is am-
lified. For small signals, only the linear part of the non-
inear loss will take effect, and if the gain in the cavity is
arger than this constant loss, the small signals will be
mplified. When there is already a large pulse in the cav-
ty, due to gain saturation, the gain value can be smaller
han the constant loss. Because the pulses in same round
rip are assumed to see the same gain, i.e., the slow satu-
ation assumption, then any perturbation (small pulses)
ill be suppressed, because the gain is less than the loss

or them. With the increase of the parameter Esat, the
ain for the larger pulses increases. Since it is larger than
he constant loss, the perturbations (small pulses) in the
avity will be amplified to large pulses, and more pulses
ill be generated. As more pulses join the multi-pulsing

onfiguration, the entire gain in the cavity will be satu-
ated again and drop to lower than the constant loss. This
ew stable configuration will remain stable until the
aturated energy Esat is further increased.

. Iterative Cavity Dynamics
he generic loss curve illustrated in Fig. 3 along with the
aturable gain as a function of the number of pulses [Eq.
1)] are the only two elements required to completely
haracterize the multi-pulsing transition dynamics and
ifurcation. When considering the cavity configuration in
ig. 2, the alternating action of saturating gain and non-

inear loss produces an iteration map which only has
ulses whose loss and gain balance is stabilized in the
avity. Specifically, the output of the gain is the input of
he nonlinear loss, and vice versa. This is much like the
ogistic equation iterative mapping for which a rich set of
ynamics can be observed with a simple nonlinearity
19,20]. Indeed, the behavior of the multi-pulsing system
s qualitatively similar to the logistic map with steady-
tate, periodic, and chaotic behavior all potentially ob-
erved in practice.

In addition to the connection with the logistic equation
ramework, two additional features are particular to our
roblem formulation. First, we have multiple branches of
table solutions, i.e., the one-pulse, two-pulse, three-
ulse, etc. Second, the loss curve exceeds the threshold
nergy as shown in Fig. 3. Figure 4 is the key figure of the
aper and exhibits all the critical features of our multi-
ulsing model. Exhibited in this model are the input and
utput relationships for the gain and loss elements of Fig.
. Three gain curves are illustrated for Eq. (1) with N=1,
=2, and N=3. These correspond to the one-pulse, two-

ulse, and three-pulse per round trip solutions, respec-
ively. The intersection of the loss curve with a gain curve
epresents the mode-locked solutions. These two curves
re the ones on which the iteration procedure occurs
19,20]. As the gain is increased through the cavity satu-
ation energy Esat, the gain solution curves move to the
ight in the graph, producing steady-state (a), periodic, (b)
nd chaotic (c) behavior (see Fig. 5 for how the iteration
enerates these types of behavior). Such differing types of
ehavior are common to nonlinear iteration maps [19,20].
n the current scenario, the one-pulse solution branch has
eached a point in the solution space where the iteration
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etween the gain and loss dynamics produces chaotic en-
rgy fluctuations in the laser cavity. If the gain is further
ncreased, the one-pulse solution branch moves past the
hreshold point, and no one-pulse per round trip solutions
re stable any longer. Instead, the mode-locking moves to
multi-pulsing configuration with a higher number of

ulses.
Generically, this process of increasing the gain shows

xplicitly how the mode-locked laser jumps from N to N
1 pulses per round trip. It is simply a consequence of the

solution branch exceeding the threshold point of the
onlinear loss curve where that particular solution no

onger is stable. This forces the dynamics to a higher
umber of pulses per round trip. Moreover, depending on
he curvature of the nonlinear loss curve for high-energy,
he transition dynamics can exhibit periodic (b) and cha-
tic dynamics (c) before the onset of steady-state multi-
ulsing (a).
Figure 5 demonstrates the iterative process for the ge-

eric gain and loss curves illustrated in Fig. 4. Specifi-
ally, the production of steady-state [Fig. 5(a)], periodic
Fig. 5(b)], and chaotic [Fig. 5(c)] behavior in the system is
llustrated. These curves are standard iteration curves
roduced when considering, for instance, the logistic
quation [19,20].

As stated previously in the paper, the onset of multi-
ulsing behavior through periodic and chaotic regions has
een verified through both experiment [5] and direct nu-
erical simulations of a full laser cavity model based on
aveguide arrays [4]. To explicitly make connection to the

aser cavity pulse dynamics, Fig. 6 illustrates the behav-
or in the laser cavity as a function of increasing cavity
aturation energy Esat. As Esat is increased through four
uccessively higher values, the stable one-pulse solution
corresponding to (a) in Fig. 5] first undergoes a Hopf bi-
urcation to a periodic breather [corresponding to (b) in
ig. 5] before becoming chaotic [corresponding to (c) in

2−pulse
3−pulse

1−pulse

E
sat

(b) periodic

(c) chaotic

(a)

E
in
loss, E

out
gain

E
ou

t
lo

ss
,E

inga
in

ig. 4. Nonlinear loss and saturating gain curves for one-pulse
N=1�, two-pulse �N=2�, and three-pulse �N=3� per round trip
onfigurations. The intersection of the gain and loss curves rep-
esents the mode-locked solution states of interest. As the gain
arameter g0 is increased, the gain curves shift to the right. The
ne-pulse solution first becomes periodic (b), and then chaotic (c)
efore ceasing to exist since it no longer intersects the loss curve.
he solution then jumps to the next most energetically favorable
onfiguration of two pulses per round trip (a). This qualitative
icture describes the entire N to N+1 pulse transition.
ig. 5] and finally achieving the stable two-pulse solution
corresponding once again to (a) for the two-pulse branch
n Fig. 5]. Details of the parameters and model used for
his simulation are found in [4].

This concludes our section on the principle of operation.
nce the graph in Fig. 4 is understood, the transition that
rocesses from N to N+1 can be understood along with
he potential periodic and chaotic dynamics preceding the
ransition. In what follows, various explicit forms of the

ig. 5. Iteration map dynamics for the nonlinear loss and satu-
ating gain behavior. Possible iteration behaviors are (a) a
teady-state solution, (b) a periodic solution, and (c) a chaotic dy-
amics. The interpretation of the periodic and chaotic dynamics

n the mode-locking is given in Fig. 6. Note that the periodic and
haotic dynamics arise before the onset of multi-pulsing for the
onlinear loss curve chosen here.
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oss curve will be considered. By appropriate engineering
f the nonlinear loss curve, the periodic and chaotic tran-
ition effects can be mitigated.

. MULTI-PULSING TRANSITION
YNAMICS
ntil now, the figures presented demonstrate the qualita-

ive picture of the underlying dynamics associated with
he onset of multi-pulsing. In this section, several specific
ransmission (nonlinear loss) curves will be constructed,
nd their dynamics will be investigated. The key observa-
ion is that engineering of the nonlinear loss curve can
ave significant impact on the laser cavity dynamics.
hus although the nonlinear loss curves do not necessar-

ly correspond to any real laser cavity, one can imagine
hat by engineering a laser cavity, one can potentially ob-
erve all of the dynamics demonstrated in what follows.

To be more explicit about the simulations presented,
he iteration algorithm used in what follows is outlined.
hus the simulation results are carried out as follows:

(i) The cavity saturation parameter Esat is scanned
tarting from an initial value of Esat=0.001�1. It is as-
umed that initially there are a total of N=10 pulses of
mall amplitude �Ej�O�10−8�� in the cavity. Note that the
esulting pulse separation dynamics is not considered in
he analysis [3].

(ii) Input the initial signal field into the governing
aturable gain equation (1). Solve this equation with a

−10 0 10 0
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4000
0

3

Z
T

−10 0 10 0
2000

4000
0

3

Z
T

−10 0 10 0
2000
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0
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Z
T

−10 0 10 0
2000

4000
0

3

Z
T

ig. 6. Mode-locked cavity simulation where the saturable ab-
orption is provided by waveguide arrays [4]. Shown is the inten-
ity of the mode-locked field as a function of normalized propa-
ation distance Z and time T. As the cavity gain is increased via
0, the stable one-pulse configuration first bifurcates to a periodic
olution, and then bifurcates again to a chaotic solution, before
nally going to the two-pulse configuration.
tandard time-integration method, such as fourth-order
unge–Kutta, or solve for Ej from the exact implicit solu-

ion representation.
(iii) Input the signal from the gain element into the

onlinear loss element [Eq. (2)]. Mathematically, this ac-
ion is represented by its transmission function.

(iv) Iterate Steps (ii) and (iii) until the output con-
erges. If the solution fails to converge to a fixed point,
.e., when the iteration produces periodic or chaotic dy-
amics, use the last 256 iterations as a representation of
he dynamics. The last iteration of the Ej values is used as
he seed for the next value of increasing Esat.

(v) Increase Esat by �Esat=0.001. Add small perturba-
ions to the Ej values obtained from the previous Esat it-
ration in step (iv). These are the new initial values for Ej
n Eq. (1).

(vi) Repeat Steps (iv) and (v).

With N=10, this simple algorithm allows us to fully ex-
lore the transition dynamics until ten pulses are gener-
ted in the cavity. Note that N is chosen arbitrarily and
ould be made much larger than 10. However, in the re-
ults presented here, we do not consider any simulations
here more than ten pulses are generated per round trip.

. Example 1: Transition without Chaos
o begin, an example of a transmission curve will be con-
idered that mitigates any periodic or chaotic mode-
ocking in the cavity. For this case, Eq. (1) is considered
ith N=10 and for a propagation distance of Z=1. For

onvenience, the gain pumping strength is held fixed at
0=log�100�. To adjust the effective cavity energy, the
aturation energy Esat of the cavity is modified. Recall
hat the overall gain can be modified through either g0 or
sat. The specific form of the transmission considered is
iven by

T�E� = 0.5e−�1�E − �2�8
+ 0.1e−�1�E − �2�2

, �3�

ith �1=0.5 and �2=0.8.

ig. 7. Nonlinear loss and saturating gain curves for one-pulse,
wo-pulse, and three-pulse per round trip configurations. The in-
ersection of the gain and loss curves represents the mode-locked
olution states of interest. As the cavity energy is increased, the
ain curves shift to the right. For this case, the one-pulse solu-
ion ceases to exist beyond the threshold point indicated by the
old circle. Thus no periodic or chaotic behavior arises. The solu-
ion then jumps to the most energetically favorable configuration
f two pulses per round trip.
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Figure 7 gives the quantitative versions of the curves
ualitatively represented in Fig. 4. Specifically, the non-
inear loss curve along with the gain curves of the one-
ulse, two-pulse, and three-pulse mode-locked solutions
re given along with the threshold point. As the cavity en-
rgy is increased through an increasing value of Esat, the
ne-pulse solution becomes unstable to the two-pulse so-
ution as expected. In this case, the computed threshold
alue does not extend down the loss curve to where the
eriodic and chaotic branches of solutions occur; thus no
eriodic and chaotic dynamics are observed. Rather, a
lean multi-pulsing bifurcation occurs as depicted in Fig.
. In this case, the total cavity energy along with the
ingle pulse’s energy is depicted as a function of increas-
ng gain. This curve is in complete agreement with nu-

erous experimental and theoretical findings [3–17]. Spe-
ifically, each of these experiments demonstrates that as
he gain pumping is increased, the number of pulses in
he cavity increases in an approximately linear and dis-
rete manner as demonstrated in Fig. 8.

. Example 2: Transition with Chaos
more interesting and subtle behavior can occur in the
ulti-pulse bifurcation structure with only a slight

hange to the transmission function in Eq. (2). Consider
hanging a single parameter by 25% so that the param-
ter �2=1 in Eq. (2). This slight change completely
hanges the nature of the bifurcation structure observed
n Figs. 7 and 8.

Figure 9 now gives the quantitative versions of the
urves qualitatively presented in Fig. 4. Specifically, the
onlinear loss curve along with the gain curves of the one-
ulse, two-pulse, and three-pulse mode-locked solutions
re given along with the threshold point as before. As the
avity energy is increased through an increasing value of
sat, the one-pulse solution becomes unstable to the two-
ulse solution as expected. In this case, the computed
hreshold value does extend down the loss curve to where
he periodic and chaotic branches of solutions occur, thus
llowing for the observation of periodic and chaotic dy-
amics. The multi-pulsing bifurcation occurs as depicted

n Fig. 10. The total cavity energy along with the single

ig. 8. Iteration map dynamics for the nonlinear loss and satu-
ating gain behavior of Fig. 7. Shown is the total cavity energy
out (top panel) and the individual pulse energy E1 (bottom
anel) as functions of the cavity saturation energy Esat. The tran-
ition dynamics between multi-pulse operations produces a dis-
rete jump in the cavity energy. In this case, no periodic or cha-
tic dynamics is observed.
ulse’s energy is depicted as a function of increasing gain.
or this case, which is only a slight modification of the
revious dynamics, the solution first undergoes a Hopf bi-
urcation to a periodic solution. Through a process of pe-
iod doubling reminiscent of the logistic map [19,20], the
olution goes chaotic before eventually transitioning to
he two-pulse per solution branch. This process repeats it-
elf with the transition from N to N+1 pulses generating
eriodic and then chaotic behavior before the transition is
omplete. This curve is in complete agreement with re-
ent experimental and theoretical findings [4–6], thus
alidating the predicted dynamics.

One of the more interesting consequences of the tran-
ition with chaos is the randomness that is introduced in
he multi-pulsing bifurcation. In particular, the chaotic
ehavior does not guarantee a transition from N to N+1

ig. 9. Nonlinear loss and saturating gain curves for one-pulse,
wo-pulse, and three-pulse per round trip configurations. The in-
ersection of the gain and loss curves represents the mode-locked
olution states of interest. As the cavity energy is increased, the
ain curves shift to the right. Unlike Fig. 7, the one-pulse solu-
ion first experiences periodic and chaotic behavior before ceas-
ng to exist beyond the threshold point indicated by the right-

ost bold circle. The solution then jumps to the next most
nergetically favorable configuration of two pulses per round
rip.

ig. 10. Iteration map dynamics for the nonlinear loss and satu-
ating gain behavior of Fig. 9. Shown is the total cavity energy
out (top panel) and the individual pulse energy E1 (bottom
anel) as functions of the cavity saturation energy Esat. The tran-
ition dynamics between multi-pulse operations produces a dis-
rete jump in the cavity energy. In this case, both periodic and
haotic dynamics are observed preceding the multi-pulsing tran-
ition. This is consistent with recent theoretical and experimen-
al findings [4–6].
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ulses. Rather, a transition from N to N+m pulses occurs.
s different realizations of this numerical experiment are
un, the N to N+m random transition is easily observed,
specially for a higher number of pulses in the cavity. Fig-
re 11 demonstrates two simulations for increasing satu-
ation energy. Note that in both cases, for a higher num-
er of pulses in the cavity, the transition is not from N to
+1 pulses, but rather from N to N+m pulses. It should

e noted that this behavior is in contrast to laser cavities
hat do not have a chaotic transition region. Indeed, in
uch laser cavities where transition occurs without chaos,
he transition is always from N to N+1 pulses.

. Example 3: Periodic Nonlinear Loss
inally, a periodic transmission profile is considered. This
ransmission profile is inspired by laser cavities mode-
ocked through the process of nonlinear polarization rota-
ion. In such cases, the transmission curve is known to be
eriodic in nature. To model the transmission profile, we
onsider the transmission function of the form

T�E� = 0.1 + 0.2�1 + cos�2E − 0.8���, �4�

here T�E� now has a periodic component as might be ex-
ected in a nonlinear polarization rotation based laser.
Figure 12 gives the quantitative versions of the curves

ualitatively presented in Fig. 4, but now extended for
arge values of energy due to the periodic nature of the
ransmission. Specifically, the nonlinear loss curve along
ith the gain curves of the one-pulse, two-pulse, and

ig. 11. Iteration map dynamics for the periodic nonlinear loss
nd saturating gain behavior of Fig. 9. Shown is the total cavity
nergy Eout (top panel) and the individual pulse energy E1 (bot-
om panel) as functions of the cavity saturation energy Esat for
wo simulations. The transition dynamics shows that the chaotic
ehavior generates a more generic N to N+m pulses bifurcation.
hree-pulse mode-locked solutions are given along with
he threshold points. The periodic nature of the solution
uggests that higher-energy solutions may be accessible
n the mode-locking process. As the cavity energy is in-
reased through an increasing value of Esat, the one-pulse
olution becomes unstable to the two-pulse solution as ex-
ected. In this case, the computed threshold value only
xtends down the loss curve to where the periodic branch
f solutions occurs; thus no chaotic dynamics are observed
n the first transition to a periodic or chaotic two-pulse so-
ution. As previously, the total cavity energy along with
he single pulse’s energy is depicted as a function of in-
reasing gain in Fig. 13.

. ENGINEERING CAVITY LOSSES
he three examples given in the preceding section high-

ight the three transition behaviors that can occur: (i)

ig. 12. Periodic nonlinear loss and saturating gain curves for
ne-pulse, two-pulse, and three-pulse per round trip configura-
ions. The intersection of the gain and loss curves represents the
ode-locked solution states of interest. As the cavity energy is in-

reased, the gain curves shift to the right. The one-pulse solution
rst experiences periodic and chaotic behavior before ceasing to
xist beyond the threshold point indicated by the rightmost bold
ircle. The solution then jumps to the next most energetically fa-
orable configuration of two pulses per round trip. However, a
igh-energy one-pulse solution can also exist.

ig. 13. Iteration map dynamics for the periodic nonlinear loss
nd saturating gain behavior of Fig. 12. Shown is the total cavity
nergy Eout (top panel) and the individual pulse energy E1 (bot-
om panel) as functions of the cavity saturation energy Esat. The
ransition dynamics between multi-pulse operations produces a
iscrete jump in the cavity energy. In this case, periodic dynam-
cs is observed preceding the multi-pulsing transition to chaotic
wo-pulse solutions.
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ulti-pulsing transition without periodic or chaotic be-
avior, (ii) multi-pulsing transition with periodic but not
haotic behavior, and (iii) multi-pulsing transition with
oth periodic and chaotic transitions. Only small changes
o the nonlinear loss curve can generate all three sce-
arios.
The sensitivity to all three scenarios suggests that en-

ineering of the nonlinear gain in the cavity, i.e., the
ransmission curve [Eq. (2)], can potentially lead to gains
n the performance or larger operating regimes. But what
s of greatest interest is an observation associated with
xample 3 considered above. It is interesting to note that
higher-energy solution now exists for the one-pulse per

ound trip configuration due to the periodic nature of the
ransmission curve. Thus it is possible to jump to this so-
ution rather than the two-pulse per round trip scenario.
owever, the interplay of total cavity energy and the non-

inear loss typically forces the cavity to select the most en-
rgetically favorable operating regime. This would be the
wo-pulse per round trip scenario versus the high-energy
ne-pulse per round trip scenario. However, the high-
nergy branch of solutions is accessible provided the laser
avity initial conditions are prepared carefully. This is
ypically not done since the laser cavity is self-starting
rom white noise.

However, one can always ask the following question: is
t possible to engineer the cavity such that the higher-
nergy solution branch is favored over multi-pulsing? We
how that indeed this can be done. Two examples are
iven of nonlinear loss curves that generate the high-
nergy one-pulse solutions as functions of increasing cav-
ty energy. In the first example, illustrated in Figs. 14 and
5, a discrete jump is observed in the cavity energy much
ike the multi-pulsing transition. However, the discrete
ump is to a higher-energy one-pulse per round trip con-
guration. Thus instead of the pulse bifurcating to multi-
ulsing solutions, the desired high-energy pulse is cleanly
chieved. For this example, the transmission function
as taken to be

ig. 14. Periodic nonlinear loss and saturating gain curves for
ne-pulse, two-pulse, and three-pulse per round trip configura-
ions. The intersection of the gain and loss curves represents the
ode-locked solution states of interest. As the cavity energy is in-

reased, the gain curves shift to the right. The low-energy one-
ulse solution ceases to exist beyond the threshold point forcing
he solution to jump to a high-energy one-pulse solution.
T�E� = 0.02E + 0.1 + 0.2�1 + cos��2 − �0E�E − 0.8���,

�5�

here �0=0.08. Note that the high-energy one-pulse solu-
ion has on average approximately three times the energy
f the low-energy solution. Thus the laser cavity perfor-
ance can be significantly enhanced with a passive
eans by proper engineering of the nonlinear loss curves.
A slight change in the transmission curve alters the

deal energy enhancement illustrated in Figs. 14 and 15.
imply changing the parameter �0 to zero yields the tran-
ition behavior shown in Figs. 16 and 17. In this case, a
ump from the low-energy one-pulse solution to the high-
nergy one-pulse solution occurs with a chaotic then peri-
dic behavior. This is the reverse of the standard periodic
o chaotic transmission. However, Fig. 16 exactly shows
ow this occurs in practice. In this case, as the one-pulse
ain line jumps from the first period of the nonlinear loss
o the second period, it begins by intersecting the chaotic
ynamics region. As the gain is increased it then goes
hrough a periodic region followed by the steady-state re-

ig. 15. Iteration map dynamics for the periodic nonlinear loss
nd saturating gain behavior of Fig. 14. Shown is the total cavity
nergy in the one-pulse solution. Note the jump to the high-
nergy branch.

ig. 16. Periodic nonlinear loss and saturating gain curves for
ne-pulse, two-pulse, and three-pulse per round trip configura-
ions. The intersection of the gain and loss curves represents the
ode-locked solution states of interest. As the cavity energy is in-

reased, the gain curves shift to the right. The low-energy one-
ulse solution ceases to exist beyond the threshold point forcing
he solution to jump to a high-energy one-pulse solution. The so-
ution jumps to a chaotic state.



g
t
r
h
m
a

5
T
o
p
d
i
e
s
p
r
t
e
w
t
t
a
f
e
c
t
c
a

o
p
e
a
p
p
n
l
i
p
m
n

S
l
t
j
d
i
s
p
f
[
c
e

A
J
B
R
k
t
o

R

1

1

1

1

1

F
a
e
j

2076 J. Opt. Soc. Am. B/Vol. 27, No. 10 /October 2010 Li et al.
ion. The desired steady-state mode-locking achieved in
his case is essentially the same for Figs. 15 and 17. The
outes to getting to the high-energy one-pulse solution,
owever, are quite different. Such simple geometrical
odeling of the system conveys the practical power of the

nalysis and illustrates its impact on laser cavity design.

. CONCLUSIONS
he multi-pulsing phenomenon is a ubiquitous instability
f mode-locked laser cavities. Despite this well-known
henomenon, theoretical models capturing the transition
ynamics and its associated bifurcations have been lim-
ted. The early work of Namiki et al. [3] was the first en-
rgy quantization approach used in computing the tran-
ition dynamics. This model presented a continuous
icture of the multi-pulsing dynamics. More recent theo-
etical [4] and experimental [5,6] findings suggested the
ransition dynamics that displayed a behavior not consid-
red by the original energy model formulation [3]. In this
ork, we have constructed a simple geometrical approach

o quantifying the multi-pulse transition behavior. Only
wo equations are involved: the saturating gain [Eq. (1)]
nd the nonlinear losses described by a transmission
unction [Eq. (2)]. By iterating alternatively on these two
ffects, a complete multi-pulse transition picture can be
onstructed. The theory shows that the transition be-
ween N and N+1 pulses can be preceded by periodic and
haotic behavior as observed in recent experiments [5,6]
nd as suggested in theory [4].
The multi-pulsing instability ultimately is detrimental

r undesirable for many applications where high-energy
ulses are desired. Indeed, instead of achieving high-
nergy pulses as a consequence of increasing pump power,

multi-pulsing configuration is achieved with many
ulses all of low energy. However, with the simple model
resented here, it is easy to see that the laser cavity dy-
amics can be engineered simply by modifying the non-

inear loss curve. Of course, modification of the loss curve
s trivial to do in theory, but may be difficult to achieve in
ractice. Regardless, the potential for an enhanced perfor-
ance suggests that experimental modification of the

onlinear losses merits serious consideration and effort.

ig. 17. Iteration map dynamics for the periodic nonlinear loss
nd saturating gain behavior of Fig. 16. Shown is the total cavity
nergy in the one-pulse solution. Note the chaotic, then periodic,
ump to the high-energy branch.
pecifically, we have demonstrated one potential periodic
oss curve which suggests that instead of the cavity going
hrough the multi-pulsing instability, it alternatively
umps to a high-energy solution branch, which is highly
esired in practice. Indeed, a threefold increase in energy
s demonstrated on average from a single jump in solution
tates. This essentially circumvents the limitations on
ulse energy imposed by the multi-pulsing instability. In
uture work, we hope to use quantitative cavity models
21] to pursue a more careful study of the nonlinear loss
urves generated from physically realistic cavity param-
ters.
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