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Non-adiabatic pulse compression of cascaded higher-order optical soliton is investigated. We demonstrate high
degree compression of pulses with soliton orders N=2, 3, 4, and 5 in two or three nonlinear fibers with different
second-order dispersion coefficients. Each fiber length is shorter than half of its soliton period. This compres-
sion technique has significant advantages over the widely reported adiabatic and higher-order soliton

compression. © 2010 Optical Society of America
OCIS codes: 190.7110, 320.5520.

1. INTRODUCTION

The ability to robustly and routinely produce ultrashort
pulses has led to transformative technologies in such di-
verse areas as telecommunications, photonics, and bio-
logical imaging. Ultrashort optical pulse sources are criti-
cal components for applications in which femtosecond or
picosecond time resolution, high peak powers, and/or
large optical bandwidths are required [1]. Ultrashort
pulses are usually generated with mode-locked lasers.
However, mode-locked lasers can be complex and costly,
and the ultrashort pulses emitted from high-energy
mode-locked laser sources are often chirped and/or lim-
ited to fairly low output powers. As an alternative, vari-
ous pulse compression schemes have been proposed to
generate ultrashort pulses with high-energy content.
Pulse compressors based on nonlinear fiber optics can be
classified into two broad categories: grating-fiber and
soliton-effect compressors [2]. In a grating-fiber compres-
sor, the input pulse is first propagated in the normal-
dispersion fiber which imposes a nearly linear positive
chirp on the pulse through a combination of self-phase
modulation and group velocity dispersion (GVD), and
then compressed externally using a grating pair. The
grating pair provides the anomalous GVD for compres-
sion of positively chirped pulses. Grating-fiber compres-
sors are useful for compressing pulses in the visible and
near-infrared regions, while soliton-effect compressors
work typically in the range from 1.3 to 1.6 um [2]. For
grating-fiber compressors, the compression factor can be
estimated by F,~N/1.6, where N is the soliton order [3].
Although in theory the compression factor can be in-
creased by increasing the peak power of the incident
pulse, it is limited in practice since the peak power should
be kept below the Raman threshold to avoid the transfer
of pulse energy to the Raman pulse. For the soliton-effect
compression, two commonly considered techniques are
the higher-order soliton compression scheme and the
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adiabatic pulse compression method. Unfortunately, each
method suffers from significant technological drawbacks:
the former from the generation of a large pedestal/
background structure that contains a large portion of the
pulse energy [4], and the latter from a limit on the com-
pression factor and excessively long dispersion decreasing
fiber (DDF) segments [5]. In this paper, a hybrid tech-
nique is proposed that takes advantage of the strength of
both compression techniques while avoiding their draw-
backs. Specifically, we theoretically study the cascaded
N-soliton for non-adiabatic pulse compression in two or
three nonlinear fibers with different constant anomalous
dispersion coefficients. Very large compression factors can
be achieved with the generation of a relatively small ped-
estal, making the technique competitive with current
pulse compression technologies.

To be more specific about the performance of previous
compression techniques using solitons, the higher-order
(non-adiabatic) compression can be considered. In this
case, large compression factors can be achieved, but it suf-
fers from energy splitting between the desired com-
pressed pulse and an undesired broad background. The
resulting pulses are of poor quality unless reshaping tech-
niques are used. In some of these techniques, such as the
nonlinear intensity discrimination with nonlinear in-
duced birefringence [6,7] or the nonlinear optical loop
mirror (NOLM) [8], the suppression of pedestal can be
achieved, but a great deal of energy is wasted. Another
disadvantage with this technique is that the required in-
put power is high and cannot be obtained directly from
semiconductor lasers; thus an additional large gain opti-
cal amplification is necessary [5]. Optimum compression
of an N=15 soliton can generate a compression factor of
60, but up to 80% of the pulse energy is contained in the
pedestal component [4]. Thus it is a highly inefficient
method, from an energy standpoint, for producing ul-
trashort pulses.
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For the adiabatic pulse compression, the fundamental
soliton is typically used in a dispersion map with mono-
tonically decreasing dispersion along the propagation di-
rection. If the dispersion decreases slowly enough, the
soliton can self-adjust to maintain the balance between
dispersion and nonlinearity by reducing its pulse width
[9]. Generation of pulses of less than 200 fs duration has
been demonstrated experimentally using DDFs [10-12].
The compression factor is determined by the ratio of input
and output dispersion, and the input power requirement
is significantly lower than that for the higher-order soli-
ton compression. This compression scheme is attractive
since in the compression process, the pulse maintains its
transform-limited characteristics and generates much
smaller pedestal compared to that in the higher-order
soliton compression scheme. However, the drawback is
that the maximum compression factor is limited to about
20, and the fiber length required for broad input pulse
tends to be excessively long [5]. Further, DDFs can be
rather expensive to procure or manufacture.

In order to incorporate the desirable features of both
the higher-order soliton compression and adiabatic pulse
compression while diminishing their inherent drawbacks,
Pelusi and Liu proposed the higher-order soliton (N~ 2)
compression in a DDF [5]. Increasing the soliton order to
N~2 can reduce the required DDF length and increase
the pulse compression factor without significant pedestal
generation. An N=2.1 soliton in a linear profiled DDF
with length equal to one soliton period gives a compres-
sion factor of 55 and corresponding pedestal energy of
30%. The same compression factor can only be achieved
by the conventional higher-order soliton compression us-
ing an N ~ 13 soliton, but the pedestal energy is as high as
75% [4].

Another attractive solution to achieve pulse compres-
sion is to utilize a highly dispersive nonlinear medium
such as a fiber Bragg grating (FBG). The grating disper-
sion just outside the stop band is up to 6 orders of mag-
nitude larger than that of silica fiber, making it a feasible
technology for constructing a very short all-fiber compres-
sor. The first experimental observation of nonlinear
propagation effects in FBGs, resulting in nonlinear opti-
cal pulse compression and soliton propagation at 76% of
the speed of light in a uniform medium, is reported in
[13]. The adiabatic soliton compression in a non-uniform
grating in which the dispersion decreases along the grat-
ing has also been proposed [14]. Recently, we demonstrate
nearly chirp-free and pedestal-free pulse compression of
linearly chirped self-similar pulses near the photonic
bandgap (PBG) structure of FBGs [15]. Efficient pulse
compression can be achieved with the exponentially de-
creasing dispersion. However, the fabrication of grating
with exponentially decreasing dispersion is nontrivial, al-
though almost any grating profile can be manufactured
using the state-of-the-art grating-writing technique. The
stepwise approximation of the exponentially decreasing
dispersion profile normally requires more than six seg-
ments [15], which also creates complexity in this scheme.
Furthermore, the maximum compression factor is limited
by the width of the PBG structure [16]. Very recently, a
high degree pulse compressor was reported based on the
chirped two-soliton breather in the exponentially decreas-
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ing dispersion [17,18]. If the initial chirp is carefully cho-
sen, pedestal-free, nearly chirp-free, and high degree com-
pression can be realized.

Recently, soliton-effect compression to few-cycle dura-
tions has been studied both theoretically [19-21] and ex-
perimentally [22]. The possibility of sub-2-cycle soliton-
effect pulse compression at 800 nm in photonic crystal
fibers (PCFs) is numerically investigated [19]. Soliton
compression to a 2 fs pulse width with a compression fac-
tor of up to 50 is demonstrated numerically for a disper-
sion profile typical of a small-core PCF [20]. By exploiting
the broad region of the GVD and the large effective non-
linearity of photonic nanowires, soliton-effect self-
compression of 70 fs down to 6.8 fs is demonstrated ex-
perimentally [22].

Despite significant technological progress, it remains of
great interest to develop a compression technique capable
of achieving both high-quality pulses and large compres-
sion factors. Ideally, the required input power should be
low, the fiber length should be short, and the fabrication
should be easy. The method proposed here achieves many
of the desired properties of an ideal compressor. Specifi-
cally, by using cascaded N-solitons for non-adiabatic pulse
compression in two or three nonlinear fibers with differ-
ent constant anomalous dispersion coefficient, very large
compression factors can be achieved with relatively small
pedestals. The method requires low input powers in con-
junction with short sections of constant dispersion fibers,
all of which are technological components that are inex-
pensive and readily available.

The paper is organized as follows. N-soliton dynamics
are discussed in Section 2. The numerical results for cas-
caded N-soliton compression will be presented in Subsec-
tion 3.A. The discussion on soliton robustness will be of-
fered in Subsection 3.B. The influence of higher-order
fiber effects will be given in Section 4. The advantages of
the cascaded N-soliton compression and its promising ap-
plications will be highlighted in the discussion and con-
clusion in Section 5.

2. BACKGROUND

Optical pulses are typically modeled by reducing Max-
well’s equations via high-frequency asymptotics. Several
key assumptions are made in this analytical reduction in-
cluding (i) quasi-monochromatic waves, (ii) a slowly vary-
ing envelope, and (iii) uni-directional one-dimensional
wave propagation. For pulses longer than 1 ps in dura-
tion, the pulse propagation in nonlinear fibers is governed
by the nonlinear Schriodinger (NLS) equation [23],
dA By A ,
i—-——+7A[fFA=0, 1
=22 A 1
where A is the slowly varying amplitude of the pulse en-
velope, z is the distance, ¢ is the time in the pulses’ frame
of reference, B3, is the second-order dispersion coefficient,

and v is the nonlinear coefficient. The soliton order N is
defined as

N= \“’LD/LN’ (2)

where Lp and Lpy are the dispersion and nonlinear
lengths, respectively. The fundamental soliton arises for
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Lp=Ly. For all higher-order solitons (N>1), |A|? is peri-
odic with the period

w

zp= 2LD- (3)

Figure 1 shows the N=2-, 3-, 4-, and 5-soliton evolution
over one period. As the pulse propagates along the fiber, it
first contracts to a fraction of its initial width, splits into a
multi-humped pulse, and then merges again, in a sym-
metric fashion, to recover the original shape at the end of
soliton period z=z;. In the conventional higher-order soli-
ton compression, the fiber length is chosen so that the
soliton pulse is at its highest peak during the evolution,
which corresponds to the minimum pulse width. This
gives the maximum compression factor possible in the
higher-order soliton compression schemes. Indeed, the
compressed pulse is much narrower than the initial pulse.
However, the pulse is now accompanied by a potentially
large pedestal. Specifically, the larger the soliton order,
the larger the generated pedestal. For high-quality pulse
compression, the pedestal must be minimized in order to
suppress the deleterious interaction between the pedestal
and compressed spike that occurs upon further propaga-
tion. The interaction leads to a host of undesirable peri-
odic pulse reshaping effects [24] that are detrimental for
optical communication applications.

The key idea of this paper is to consider switching the
dispersion of the fiber at the maximal compression point
so that the localized compressed pulse structure is now
ready to be compressed again as a new higher-order soli-
ton in the next fiber segment. Specifically, consider Fig.
1(a) which shows the evolution of an N=2 soliton. At a
propagation distance of z/z7=0.5, the pulse has been com-
pressed, and its peak intensity increased by a factor of 4.
The idea is to now make this new compressed pulse an
N=2 soliton in a new fiber segment and compress the
pulse again so that the intensity is again increased by an-
other factor of 4. All that is required in this process is to
determine the length of the fiber and the dispersion of the
next fiber segment. Cascading higher-order solitons this
way is a promising compression technology provided that
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Fig. 1. (Color online) Soliton evolution over one period for (a)
N=2, (b) N=3, (¢c) N=4, and (d) N=5. Note that the higher the
soliton order, the higher the compression and pedestal formation.
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the pedestal can be kept relatively small. This will be ex-
plored in the following sections.

3. PULSE COMPRESSION

A. Cascaded N-Soliton Compression

For the proposed two-stage N-soliton compression, the
initial pulse is a chirp-free hyperbolic secant pulse
N; sech(7), where 7is the normalized time, and N is the
soliton order in the first fiber. The output of the first fiber
is launched into a second fiber with a different dispersion
coefficient, and the soliton order in the second fiber is Ns.
Consequently, we have

N3 =T5vP|Bal, N5 =TooyPyol|Baol, (4)
where T; 92,P1 .2, 821,22 are the initial pulse width param-
eter, peak power, and second-order dispersion in the first
and second fibers, respectively. Since the input of the sec-
ond fiber is not an exact hyperbolic secant shape, T, is
decided by the pulse fitting with a sech? pulse having the
same peak power and full width at half-maximum
(FWHM) intensity. Here, we assume the nonlinear coeffi-
cient vy is same for the first and second fibers. For higher-
order soliton formation, both Bs; and B9y are negative.
First, we consider the case for which N;=Ny=N. Figures
2(a) and 2(b) show the peak power evolution in the first
fiber within one soliton period z(;. The solid and dashed
curves in Fig. 2(a) represent N=2 and N=3, respectively.
The solid and dashed curves in Fig. 2(b) represent N=4
and N=5, respectively. Figures 2(c) and 2(d) show the
peak power evolution in the second fiber within one soli-
ton period zgy. The solid and dashed curves in Fig. 2(c)
represent N=2 and N=3, respectively. The solid and
dashed curves in Fig. 2(d) represent N=4 and N=5, re-
spectively. Note that the maximum peak power corre-
sponds to a minimum pulse width. For each different IV,
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Fig. 2. (Color online) (a) and (b) show the peak power evolution
in the first fiber within one soliton period z,;. The solid and
dashed curves in (a) represent N=2 and N=3, respectively. The
solid and dashed curves in (b) represent N=4 and N=5, respec-
tively. (¢) and (d) show the peak power evolution in the second
fiber within one soliton period z(,. The solid and dashed curves in
(c) represent N=2 and N =3, respectively. The solid and dashed
curves in (d) represent N=4 and N=5, respectively.
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Fig. 3. (Color online) Pulse shapes where compression is maxi-
mized in both the first and second fibers for N=2. The dashed
and solid curves in (a) and (b) represent the input and output
pulses of the first fiber in (a) linear and (b) logarithmic scales.
The dashed and solid curves in (¢) and (d) represent the input
and output pulses of the second fiber in (c) linear and (d) loga-
rithmic scales.

the peak power evolutions in the first fiber (one soliton pe-
riod) and the second fiber (one soliton period) are quite
similar. For the two-stage N-soliton compression, the
pulse with a minimum pulse width in the first fiber is
used as the input of the second fiber. Figures 3(a) and 3(b)
show the pulse shapes where compression is maximized
in the first fiber when N=2. The dashed and solid curves
represent the input and output pulses of the first fiber in
both linear and logarithmic scales. The intensity en-
hancement by a factor of 4 is clearly illustrated. Figures
3(c) and 3(d) show the pulse shapes where compression is
maximized in the second fiber using a fiber dispersion cor-
responding to an N=2 fitted input soliton. The dashed
and solid curves represent the input and output pulses of
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Fig. 5. (Color online) Pulse shapes where compression is maxi-
mized in both the first and second fibers for N=4. The dashed
and solid curves in (a) and (b) represent the input and output
pulses of the first fiber in (a) linear and (b) logarithmic scales.
The dashed and solid curves in (¢) and (d) represent the input
and output pulses of the second fiber in (c) linear and (d) loga-
rithmic scales.

the second fiber again in linear and logarithmic scales.
Similarly, Figs. 46 show the pulse shapes where com-
pression is maximized in both the first and second fibers
for the N=3, 4, and 5 solitons, respectively. With the in-
crease in the soliton order N, pulse compression becomes
more effective, but at the price of increased pedestal gen-
eration. The specific details of the compression factor and
pedestal energy are given in Table 1.

Table 1 gives a comprehensive evaluation of the com-
pression factor and pedestal energy in the first and sec-
ond fibers for the proposed two-stage N-soliton compres-
sion. The pedestal energy is defined as the relative
difference between the total energy of the transmitted
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Fig. 4. (Color online) Pulse shapes where compression is maxi-
mized in both the first and second fibers for N=3. The dashed
and solid curves in (a) and (b) represent the input and output
pulses of the first fiber in (a) linear and (b) logarithmic scales.
The dashed and solid curves in (c¢) and (d) represent the input
and output pulses of the second fiber in (c) linear and (d) loga-
rithmic scales.
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Fig. 6. (Color online) Pulse shapes where compression is maxi-
mized in both the first and second fibers for N=5. The dashed
and solid curves in (a) and (b) represent the input and output
pulses of the first fiber in (a) linear and (b) logarithmic scales.
The dashed and solid curves in (¢) and (d) represent the input
and output pulses of the second fiber in (c) linear and (d) loga-
rithmic scales.
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Table 1. Compression Factor and Pedestal (%) in the First and Second Fibers for Two-Stage N-Soliton

Compression
N=2 N=3 N=4 N=5
First Second First Second First Second First Second
Comp. factor 44 19.7 8.4 70.8 12.5 158.4 17.0 283.9
Pedestal (%) 9.8 18.8 26.0 44.8 38.0 61.1 46.9 71.3

pulse and the energy of a hyperbolic secant pulse having
the same peak power and width as those of the transmit-
ted pulse [25], i.e.,

|Etota1 - Esech‘

Pedestal (%) = X 100%. (5)

total

Note that the energy of a hyperbolic secant pulse with
peak power Pp., and pulse width FWHM is given by

FWHM
Egn=2Pyeax——7- 6
TS peak 763 (©)

We note that with the increase in the soliton order N, the
compression factor becomes larger, but the pedestal be-
comes more pernicious. For each different IV, the compres-
sion factor after the second fiber is almost the square of
the compression factor after the first fiber, and the pedes-
tal in the second fiber is smaller than twice of the pedes-
tal in the first fiber. This suggests that the pedestal plays
only a small role in the compression enhancement. As
mentioned in the introduction, in the conventional
higher-order soliton compression, for a pulse compression
factor of 60, the pedestal energy was as high as 80%. In
our two-stage third-order soliton compression, the com-
pression factor is 70.8 and the pedestal is 44.8%, which is
much better than the conventional higher-order soliton
compression. Higher soliton orders (IN>3) can also be
used in the two-stage compression, and it is without sig-
nificant increase in the pedestal. The two-stage fifth-order
soliton compression gives an impressive compression fac-
tor of 283.9 and corresponding pedestal energy of 71.3%.
The specific fiber components required for generating
such a performance are given in Table 2. Specifically, de-
tails of the fiber design in the two-stage N-soliton com-
pression are explicitly presented, where Bs1,B99,L1,Lo
represent the second-order dispersion of the first and sec-
ond fibers, and the length of the first and second fibers,
respectively. The dispersion coefficient of the second fiber
is always smaller than the dispersion coefficient of the
first fiber. With the increase in N, the ratio of the disper-
sion coefficients in the second and first fibers, |B99|/|B21],
becomes smaller, and the maximum compression happens

Table 2. Fiber Design in Two-Stage N-Soliton

Compression
N=2 N=3 N=4 N=5
|Basl/ | Boal 0.204 0.0884 0.0496 0.0316
Li/zy 0.5 0.237 0.149 0.108

Loz, 0.486 0.235 0.150 0.109

earlier compared to the soliton period (Lq/z(; or Ly/zs be-
comes smaller with the increase in N). For each different
N, Li/zy1~Ly/zpe. For example, for N=2, the maximum
compression in the first and second fibers occur at L,
=0.5z9;, and Ly=0.486z(, respectively; for N=5, the
maximum compression in the first and second fiber occur
at L1=0.108z(;, and Ly=0.109zs, respectively. For the op-
timized two-stage N-soliton compression, the first or sec-
ond fiber length (L, or L,) is always smaller than the half
of soliton period of the first or second fiber (z¢;/2 or z¢9/2),
which makes for a compact compression scheme. We can
also use two-stage higher-order soliton compression when
N;# Njy. Table 3 lists the compression factor and pedestal
for Ny=2, Ny=3, 4, 5. For the combination of N;=2 and
Ny=3, the final compression factor and pedestal are 37.5
and 32.8%, respectively, and the performance is between
that of Ny=Ny=2 and that of N;=N,=3. We have similar
observations for Ny=2, No=4, 5. Table 4 gives the second
fiber design in the two-stage N-soliton compression when
N;=2, Ny=3, 4, 5. The first fiber follows the design in
Table 2.

The two-stage N-soliton compression is very attractive
in comparison with current compression schemes and
techniques. We also investigated the performance of a
three-stage N-soliton compression. As an illustration, we
consider the case where N1=Ny=N3=N, where N{,N3,N3
are soliton orders in the first, second, and third fibers, re-
spectively. The fiber length is optimized to have maxi-
mum compression in all three fibers. The first and second
fibers follow the design in Table 2. The third fiber disper-
sion coefficient B3 and length Lg are given in Table 5. Fig-
ure 7 gives the final pulse shape for a three-stage second-
order soliton compressor, where the dashed and solid
curves represent the input and output pulses of the third
fiber in linear and logarithmic scales. The final compres-

Table 3. Compression Factor and Pedestal (%) in
the Second Fiber when N{=2, N,=3,4, 5

N;=2 N,=3 Ny=4 N,=5
Comp. factor after second fiber 375 56.1 75.1
Pedestal (%) 32.8 43.6 51.5

Table 4. Second Fiber Design in Two-Stage
N-Soliton Compression when N;=2, N,=3,4,5

N,=2 Np=3 Nyp=4 Ny=5
|Boal | Banl 0.0904 0.0508 0.0326
Ly/zes 0.235 0.150 0.108
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Table 5. Third Fiber Design in Three-Stage
N-Soliton Compression

N=2 N=3
|Basl/| Bl 0.0416 0.0078
Ls/zgs 0.487 0.235
80, ; =
= 3
3 60 1 s
< =
=40+ _ 7}
e 5
[
£ 20f 1 =
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Fig. 7. (Color online) Pulse shapes where compression is maxi-
mized in the first, second, and third fibers for three-stage second-
order soliton compression. The dashed and solid curves represent
the input and output pulses of the third fiber in (a) linear and (b)
logarithmic scales.

sion factor and pedestal content are 87.5 and 26.8%, re-
spectively. The performance of the three-stage second-
order soliton compression is better than that of the two-
stage third-order soliton compression. Figure 8 gives the
final pulse shape for three-stage third-order soliton com-
pression, where the dashed and solid curves represent the
input and output pulses of the third fiber in linear and
logarithmic scales. The final compression factor and ped-
estal are 599.7 and 58.8%, respectively. The performance
of the three-stage third-order soliton compression is bet-
ter than that of the two-stage fourth-order soliton com-
pression. Table 5 gives the design of the third fiber in the
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three-stage N-soliton compression for N=2 and N=3.
Among the three fibers, the third fiber has the smallest
dispersion coefficient. The maximum compression in the
second and third fibers happens almost at same location
Lg/zg9g~Ls/zp3. The performance of the cascaded
N-soliton compression scheme is quite exemplary, with an
almost 4 orders of magnitude compression and only ap-
proximately 60% pedestal energy generated. The NOLM,
consisting of a fiber directional coupler with its output
ports spliced, has been successful in demonstrating ped-
estal suppression of optical pulses [26]. For the final com-
pressed pulse in the three-stage third-order soliton com-
pression, Figs. 8(c)-8(f) show the pulse shapes and
spectra with and without the use of NOLM, where the
spectrum corresponds to the input pulse width parameter
Ty=60 ps. The dashed and solid curves in Figs. 8(c) and
8(d) represent the compressed pulses with and without
the use of NOLM in linear [Fig. 8(c)] and logarithmic [Fig.
8(d)] scales. The unwanted pedestal has again been sup-
pressed effectively. Figure 8(e) shows the spectrum of the
final compressed pulse without NOLM, while Fig. 8(f)
shows the spectrum of the compressed pulse with NOLM.
The spike in the middle of the spectrum is the residual
pedestal. Here, we define the spectral width to be the full
width at half-maximum intensity where the spike is ig-
nored in the spectrum. Figure 8(e) shows a center spike,
i.e., the pedestal component. The spectral width in Fig.
8(f) is 24.7 nm.

B. Soliton Robustness

The above results demonstrated the effective compression
by using two- or three-stage N-soliton. The input pulse
has an ideal hyperbolic secant pulse shape. The peak
power is carefully chosen to have the second-, third-,
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Fig. 8. (Color online) Pulse shapes where compression is maximized in the first, second, and third fiber for three-stage third-order

soliton compression. The dashed and solid curves represent the input and output pulses of the third fiber in (a) linear and (b) logarithmic
scales. Compressed pulse shapes with (dashed curve) and without (solid curve) the use of NOLM in (c) linear and (d) logarithmic scales
for three-stage third-order soliton compression. (e¢) Spectrum of compressed pulse without NOLM. (f) Spectrum of compressed pulse with
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Table 6. Compression Factor and Pedestal (%) of the Compressed Pulse in the First and Second Fibers for
Two-Stage N-Soliton Compression when N=2.5, 3.5, and 4.5

N=25 N=35 N=45
First Second First Second First Second
Comp. factor 6.4 40.5 10.4 123.0 14.6 216.8
Pedestal (%) 18.4 33.5 32.5 49.6 42.8 66.9

Table 7. Fiber Design in Two-Stage N-Soliton
Compression when N=2.5, 3.5, and 4.5

N=25 N=35 N=45
|Basl/ | Baal 0.128 0.0648 0.0391
Ly/zo; 0.325 0.184 0.125
Lo/zo, 0.310 0.184 0.126

fourth-, or fifth-order soliton. Because of its practical ap-
plication, it is critical to study the influence of peak power
and non-hyperbolic-secant pulse shapes. First, we inves-
tigate the two-stage N-soliton compression when N is not
an integer. Table 6 gives the compression factor and ped-
estal in the first and second fibers for two-stage N-soliton
compression when N=2.5, 3.5, and 4.5. Table 7 gives the
fiber design in two-stage N-soliton compression when N
=2.5, 3.5, and 4.5. Note that for the two-stage N-soliton
compression when N=2.5 (3.5, 4.5), the compression fac-
tor and pedestal are almost the average of the results of
N=2 and N=3 (N=3 and N=4, N=4 and N=5).

Additionally, we consider the compression of a Gauss-
ian input given by

A(0,t) = Ny exp(- t2/T%2), (7)

where N is defined as N3=TayP1/|Bs1|. Ty and P; are the
pulse width parameter and peak power of Gaussian input
pulse. B9; and vy are the dispersion and nonlinear coeffi-
cients of the first fiber. Similar to the two-stage N-soliton
compression, the fiber length is optimized to have maxi-
mum compression in both the first and second fibers in
the two-stage N-Gaussian compression. After the first fi-
ber, the Gaussian shaped pulse has evolved into a nearly
hyperbolic secant shaped profile. The soliton order in the
second fiber N, is N3=(FWHM/1.763)2yPy/|Bss|, where
FWHM and P, are the full width at half-maximum inten-
sity and peak power of the input pulse to the second fiber,
respectively. The parameters S99 and y are the dispersion
and nonlinear coefficients of the second fiber. Here, we
still use N1=Ny=N. Tables 8 and 9 give the compression
factor, pedestal, and fiber design for the two-stage
N-Gaussian compression. For the two-stage N-Gaussian

compression, the compression factor/pedestal is a little
smaller than that of the two-stage N-soliton compression;
the maximum compression in the first fiber happens at a
shorter length (L{/zq;) compared to the maximum com-
pression in the first fiber of the two-stage N-soliton com-
pression, and the maximum compression in the second fi-
ber happens at almost the same location (Lg/zo)
compared to the maximum compression in the second fi-
ber of the two-stage N-soliton compression.

4. HIGHER-ORDER EFFECTS

The results presented so far were based on an ideal fiber
model [Eq. (1)] that ignores all the higher-order temporal
effects. The advantage is that the results are generalized
and may be denormalized to correspond to any arbitrary
physical parameter, such as input pulse width, fiber dis-
persion and nonlinearity coefficients, and fiber length.
However, for ultrashort optical pulses (T(<1 ps), it is
necessary to include higher-order dispersion and nonlin-
ear effects, and the general NLS equation takes the form
[23]

A iBy A By PA
N
gz 2 9t 6 at®

v |APA Lo A|?A TAﬁ| ’ 8
= + — - .
Ly | | wo(?t(| ‘ ) R gt (8)

where the second and third terms on the right-hand side
of Eq. (8) represent the effect of self-steepening and intra-
pulse Raman scattering, respectively. Here, we assume
that the pulse is wide enough to contain many optical
cycles (pulse width>100 fs), and the slope of the Raman
gain spectrum varies linearly with frequency in the vicin-
ity of the carrier frequency as shown in Eq. (8). In the fol-
lowing examples, the second-order dispersion of the first
fiber is By;=—20 ps%/km; the third-order dispersion of the
first and second fibers is 83=0.1 ps®/km; the center angu-
lar frequency is wy=2mc/\., where \,=1.55 um; and the
slope of Raman gain is Tr=3 fs. The nonlinear parameter
is defined as y=nqwg/cAqg, where ny is the nonlinear in-
dex coefficient, c is the light speed, and A.¢ is the effective

Table 8. Compression Factor and Pedestal (%) in the First and Second Fibers for N-Gaussian Compression

N=2 N=3 N=4 N=5
First Second First Second First Second First Second
Comp. factor 3.92 17.46 7.85 66.39 11.99 152.16 16.2 275.74
Pedestal (%) 3.9 13.45 17.61 38.56 29.63 55.94 39.05 67.18
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Table 9. Fiber Design in Two-Stage N-Gaussian

Compression
N=2 N=3 N=4 N=5
| Baal/| Baal 0.205 0.0879 0.0491 0.0315
Li/zy 0.465 0.227 0.145 0.106
Lylzs 0.484 0.236 0.149 0.108
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Fig. 9. (Color online) The dashed and solid curves represent the
input and output pulses of second fiber in (a) linear and (b) loga-
rithmic scales for two-stage second-order soliton compression
where initial pulse width parameter T,=20 ps.

mode area. Typically, A,y can vary in the range of
1-100 um? in the 1.5 um region. As a result, y takes val-
ues in the range 1-100 W-1/km if n5=2.6 X 1072 m2/W
is used. For the two-stage second-order soliton compres-
sion, the length of the first fiber is L;=15.7 km, the length
of the second fiber is Ly=3.8 km, and the second-order
dispersion of the second fiber is Byy=-4.07 ps®/km (D
~ 3 ps/km nm). We suggest the use of PCF for the second
fiber. The dispersive properties of PCF's are very sensitive
to the air-hole diameter and the hole-to-hole spacing [27],
which indicates an attractive property of great controlla-
bility of chromatic dispersion in the PCF. Controllability
of chromatic dispersion is a very important problem in op-
tical communication systems [28], dispersion compensa-
tion [29], and nonlinear optics [30,31]. So far, various
PCFs with remarkable dispersion properties have been
studied both experimentally and numerically [32,33]. For
the example here, the first fiber uses typical parameters
of standard silica fibers, and the second fiber with By
=—-4.07 ps?/km (D~ 3 ps/km nm) may use a proposed fi-
ber design with a dispersion value not larger than 5
ps/km nm around 1.5 um [34]. Moreover, with the state-
of-the-art fiber fabrication technique, our proposed fiber
should be easily manufactured. Figures 9-12 show the
two-stage higher-order soliton compression when the ini-
tial pulse width parameter T,=20 ps for N=2, 3, 4, and 5,
respectively. The fibers follow the design in Table 2. Pulse

e
o
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N
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@
Fig. 10. (Color online) Dashed and solid curves represent the in-
put and output pulses of second fiber in (a) linear and (b) loga-
rithmic scales for two-stage third-order soliton compression
where initial pulse width parameter 7T,=20 ps.
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Fig. 11. (Color online) Dashed and solid curves represent the in-
put and output pulses of second fiber in (a) linear and (b) loga-
rithmic scales for two-stage fourth-order soliton compression
where initial pulse width parameter 7,=20 ps.

60 . ~
S

El 8

s 4or 1 2

z 2

2 g

5 201 1 =

E o
=3
S s

82 0.2 =02 0 0.2
(@) (b) T

Fig. 12. (Color online) Dashed and solid curves represent the in-
put and output pulses of second fiber in (a) linear and (b) loga-
rithmic scales for two-stage fifth-order soliton compression where
initial pulse width parameter 7)y=20 ps.

compression in the first fiber is not shown here, because it
is very close to the results without higher-order effects.
The dashed and solid curves in Figs. 9-12 represent the
input and output pulses of the second fiber in linear and
logarithmic scales. For N=2 (Fig. 9) and N=3 (Fig. 10),
the higher-order effects are not obvious. For N=4 (Fig. 11)
and N=5 (Fig. 12), we can clearly see the higher-order ef-
fects: oscillations near the trailing edge of the pulse due to
a positive third-order dispersion, a steeper trailing edge
due to self-steepening effect, and a temporal shift of the
pulse position due to intrapulse Raman scattering. Table
10 gives the compression factor and pedestal energy (in
percent) of the compressed pulse in the second fiber. Com-
paring Tables 1 and 10, we note that the results including
higher-order effects are very close to the results without
higher-order effects when N=2 and N=3, but we can see a
clear difference between the two when N=4 and N=5.
The two-stage N=4 soliton compression gives a compres-
sion factor of 174.4 and corresponding pedestal of 76.5% if
higher-order effects are included, while the two-stage N
=4 soliton compression gives a compression factor of
158.4 and corresponding pedestal of 61.1% if higher-order
effects are ignored. The two-stage N=5 soliton compres-
sion gives a compression factor of 177.4 and correspond-
ing pedestal of 74.4% if higher-order effects are included,
while the two-stage N=5 soliton compression gives a com-
pression factor of 283.9 and corresponding pedestal of
71.3% if higher-order effects are ignored.

Table 10. Compression Factor and Pedestal (%) of
the Compressed Pulse in the Second Fiber

N=2 N=3 N=4 N=5
Comp. factor 19.7 71.5 174.4 177.4
Pedestal (%) 18.8 45.1 76.5 74.4
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5. DISCUSSION AND CONCLUSIONS

A detailed investigation of a cascaded higher-order soliton
compression scheme was presented. The results show
clear and distinct advantages over the standard methods
of adiabatic pulse compression, higher-order soliton com-
pression, and higher-order soliton compression in DDF.
Specifically, the cascaded higher-order soliton compres-
sion can achieve a very large compression factor using
two or three nonlinear fibers with different constant
anomalous dispersion coefficients. Each fiber length is
shorter than half of its soliton period. The two-stage fifth-
order soliton compression gives a compression factor of
284 and corresponding pedestal of 71%. The three-stage
second-order soliton compression gives a compression fac-
tor of 87 and corresponding pedestal of 27%. The three-
stage third-order soliton compression gives a compression
factor of 600 and corresponding pedestal of 59%. These re-
sults are highly favorable when compared to the standard
techniques previously used, thus suggesting that the cas-
caded higher-order soliton compression technique is a
promising technology that is easy to implement with cur-
rent technological components.

In terms of compression factor and pedestal energy, the
cascaded higher-order soliton compression clearly pro-
vides the best performance among the four compression
techniques. Moreover, the fabrication of fibers with differ-
ent constant dispersion segments is much easier com-
pared to the fabrication of DDF's. Specifically, PCF's offer
greatly enhanced design freedom, such as the precise con-
trol of the chromatic dispersion, compared to standard op-
tical fibers [35]. With fiber taping technologies and the
use of PCF becoming commonplace, we anticipate the ex-
perimental realization of the cascaded N-soliton compres-
sion in the near future.

We also want to point out the obvious spectral broad-
ening in the cascaded N-soliton compression. The initial
hyperbolic secant pulse with 7(=60 ps has a spectral
width of only 0.023 nm. After the three-stage N=3 soliton
compression, the spectral width is 24.7 nm [Fig. 8(f)], cor-
responding to a spectral broadening factor of 1057. Ultra-
broadband light can be generated if a shorter initial pulse
is used. We believe that the cascaded N-soliton can also
contribute to the area of supercontinuum generation.

Thus we have demonstrated that the cascaded higher-
order soliton compression in two or three nonlinear fibers
with different dispersion coefficients can achieve both
high-quality compression and large compression factors.
The two- or three-stage higher-order soliton compression
can greatly increase the compression factor and lower the
required input peak power without incurring significant
degradation in the pulse quality. The cascaded N-soliton
may have wide applications due to the ultrashort pulse
generation and associated ultrabroadband generation.
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