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Abstract: In this paper we study local sharp minima of the nonlinear programming problem
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subderivatives and regular subdifferentials, we obtain some primal and dual characterizations

for a penalty function associated with the nonlinear programming problem to have a local sharp

minimum. These general results are then applied to the `p penalty function with 0 ≤ p ≤ 1.

In particular, we present primal and dual equivalent conditions in terms of the original data of

the nonlinear programming problem, which guarantee that the `p penalty function has a local

sharp minimum with a finite penalty parameter in the case of p ∈ (1
2
, 1] and p = 1

2
respectively.

By assuming the Guignard constraint qualification (resp. the generalized Guignard constraint

qualification), we also show that a local sharp minimum of the nonlinear programming problem

can be an exact local sharp minimum of the `p penalty function with p ∈ [0, 1] (resp. p ∈ [0, 1
2
]).

Finally, we give some formulas for calculating the smallest penalty parameter for a penalty

function to have a local sharp minimum.
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1 Introduction

The notion of a local sharp minimum, due to Poljak [19], plays an important role in the

convergence analysis of many iterative procedures [5, 20, 1, 10]. Note that other terminologies

were often used for local sharp minima in the literature, such as strongly unique local minima

[5], strict local minimizers of order 1 [28, 26, 27], and isolated local minima with order 1 [2, 25].

Characterizations of local sharp minima in terms of generalized derivatives and tangent cones

were extensively investigated in [2, 25, 28, 26, 27]. Recall that for an extended-real-valued

function ψ and a point x̄ with ψ(x̄) finite, ψ is said to have a local sharp minimum at x̄ if there

exist some α > 0 and δ > 0 such that

ψ(x) ≥ ψ(x̄) + α‖x− x̄‖ ∀x ∈ Bδ(x̄),

where Bδ(x̄) is a closed ball of radius δ centered at x̄. From [28, Proposition 2.1], it follows that

ψ has an unconstrained local sharp minimum at x̄ if and only if dψ(x̄)(w) > 0 for all w 6= 0,

where dψ(x̄) denotes the subderivative (also known as the Hadamard directional derivative; see

the definition at the end of the section) of ψ at x̄.

Concerning local sharp minima in constrained cases, we consider in this paper the nonlinear

programming problem

(NLP) min f(x)

s.t. x ∈ C :=

{
x ∈ <n

∣∣∣∣∣ gi(x) ≤ 0, i ∈ I
hj(x) = 0, j ∈ J

}
,

where I := {1, 2, . . . ,m}, J := {m + 1,m + 2, . . . ,m + q}, the functions f, gi, hj : <n → < are

all assumed to be at least twice continuously differentiable. Throughout the paper, let φ be

a nonnegative extended-real-valued function having the property that φ(x) = 0 if and only if

x ∈ C. The function φ can be considered as a measure of violation of the constraints of (NLP).

With the help of φ, we can define a penalty function for (NLP) as follows:

f(x) + µφ(x), (1)

where µ > 0 is the penalty parameter. Penalty functions of (NLP) in the form of (1) include

the `p (0 ≤ p ≤ 1) penalty functions

f(x) + µSp(x), (2)
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as special cases, where

Sp(x) :=

(∑
i∈I

max{gi(x), 0}+
∑
j∈J

|hj(x)|

)p

(3)

with the convention 00 := 0 being used when p = 0. We refer the reader to the excellent survey

paper [4] and the references therein for a comprehensive investigation on the central roles that

the `1 penalty function, dating back to [6] and [30], plays in constrained optimization. When

p < 1, the `p penalty function is often referred to as a lower order penalty function, which was

introduced in [14] for the study of mathematical programs with equilibrium constraints, and

rediscovered from nonlinear Lagrangian and unified augmented Lagrangian schemes in [23] and

[12] respectively. Recently, first- and second-order necessary optimality conditions have been

derived for local minima of (NLP) by assuming exactness of lower order penalty functions and

imposing some regularity conditions on the constraints; see [29, 17, 18].

In this paper, we shall study local sharp minima of (NLP) in connection with penalty

functions associated with (NLP). Let x̄ ∈ C. For the sake of simplicity and unambiguity, we

say that (NLP) has a local sharp minimum at x̄ if there exist some α > 0 and δ > 0 such that

f(x) ≥ f(x̄) + α‖x− x̄‖ ∀x ∈ C ∩Bδ(x̄), (4)

and that the penalty function (1) has an exact local sharp minimum at x̄ if f + µφ has a local

sharp minimum at x̄ with some finite penalty parameter µ > 0, or explicitly there exist some

µ > 0, α > 0 and δ > 0 such that

f(x) + µφ(x) ≥ f(x̄) + µφ(x̄) + α‖x− x̄‖ ∀x ∈ Bδ(x̄). (5)

It is clear that (5) implies (4). Given a local sharp minimum x̄ of (NLP) and a measure φ of

violation of the constraints of (NLP), we can define the smallest penalty parameter (for short,

SPP) for the penalty function (1) to have a local sharp minimum at x̄ as follows:

SPP(f, φ, x̄) := inf{µ > 0 | the function f + µφ has a local sharp minimum at x̄}, (6)

where the convention inf ∅ := +∞ is used. By definition, the penalty function (1) has an exact

local sharp minimum at x̄ if and only if SPP(f, φ, x̄) < +∞, and for each µ > SPP(f, φ, x̄), the

function f + µφ must have a local sharp minimum at x̄.

From [28, Theorem 2.2], it follows that x̄ is a local sharp minimum of (NLP) if and only if

〈∇f(x̄), w〉 > 0 ∀w ∈ TC(x̄)\{0}, (7)
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where TC(x̄) denotes the tangent cone to C at x̄. As it has been pointed out in [18] that

the kernel of the subderivative of φ at x̄, denoted by ker dφ(x̄), is a closed cone satisfying

TC(x̄) ⊂ ker dφ(x̄), the following condition is clearly sufficient for x̄ to be a local sharp minimum

of (NLP):

〈∇f(x̄), w〉 > 0 ∀w ∈ ker dφ(x̄)\{0}. (8)

Observing that the measure φ of violation of the constraints of (NLP) is involved in (8), the

question then arises, “Does the property (8) have some connections with exact local sharp

minima of the penalty function (1)?” The answer is yes as will be seen in the sequel.

This paper aims at characterizing exact local sharp minima of penalty functions associated

with (NLP) by using conditions (8) and their dual counterparts, and at giving some formulas

for calculating the smallest penalty parameters defined by (6). We will show that the penalty

function (1) has an exact local sharp minimum at x̄ if and only if (8) holds, or equivalently

−∇f(x̄) belongs to int (pos (∂̂φ(x̄)), the interior of the positive hull of the regular subdifferential

∂̂φ(x̄) of φ at x̄. Moreover, in the case of ∂̂φ(x̄) 6= ∅, we will show that

SPP(f, φ, x̄) = γ∂̂φ(x̄)(−∇f(x̄)),

where for a closed and convex set M with 0 ∈M , γM is the gauge of M to be defined below.

The general results obtained for the penalty function (1) are then applied to the `p (0 ≤ p ≤
1) penalty functions (2). We will answer the question as to when the `p penalty function has an

exact local sharp minimum at x̄ without or with the help of some constraint qualifications. In

particular, we show in Theorem 3.1 that the `p penalty function with 1
2
< p ≤ 1 has an exact

local sharp minimum at x̄, if and only if, the linear system

〈∇f(x̄), w〉 ≤ 0, 〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄), 〈∇hj(x̄), w〉 = 0 ∀j ∈ J (9)

has a unique solution w = 0, where I(x̄) := {i ∈ I | gi(x̄) = 0} denotes the active inequality

index set of (NLP) at x̄. The equivalent dual counterpart of (9) is also obtained as follows: The

KKT condition holds at x̄ with some multiplier satisfying the strict complementarity condition,

and the linear space spanned by vectors∇gi(x̄) and∇hj(x̄) with i ∈ I(x̄) and j ∈ J respectively

is <n. In Theorem 3.2, we show that the ` 1
2

penalty function has an exact local sharp minimum

at x̄ if and only if the system (27) of finitely many quadratic forms mixed with linear equations

and inequalities has a unique solution, or equivalently the second-order sufficient condition

(28) holds. With the help of some constraint qualification, we further show that a local sharp

minimum of (NLP) is an exact local minimum of the `p penalty function with p ranging in an

interval depending on the constraint qualification assumed. For instance, under the Guignard
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constraint qualification originating with [9], we show that x̄ is a local sharp minimum of (NLP)

if and only if the `p penalty function with p ∈ [0, 1] has an exact local sharp minimum at

x̄, while under the so-called generalized Guignard constraint qualification newly introduced in

Definition 3.1, we show that x̄ is a local sharp minimum of (NLP) if and only if the `p penalty

function with p ∈ [0, 1
2
] has an exact local sharp minimum at x̄. Moreover, we give formulas for

calculating SPP(f, Sp, x̄) in various settings.

The outline of the paper is as follows. In Section 2, we present primal and dual characteriza-

tions for exact local minima of the penalty function (1). Applications of these characterizations

to the `p (0 ≤ p ≤ 1) penalty functions (2) can be found in Section 3. The paper is ended with

some conclusions in Section 4.

We conclude this section by reviewing some notions and notation that are needed in this

paper. The notation that we employ in this paper is for the most part borrowed from the book

[22]. Let < := < ∪ {±∞} and let <+ := {t ∈ < | t ≥ 0}. For vectors x, y in <n, we denote

by xT the transpose of x, by 〈x, y〉 the inner product of x and y, by x⊥ := {v | 〈v, x〉 = 0}
the orthogonal complement of x, and by ‖x‖ the Euclidean norm of x. For any function

f : <n → <+ ∪ {+∞} and any p > 0, let fp(x) = (f(x))p for all x ∈ <n with the convention

that (+∞)p = +∞. For a closed and convex set M ⊂ <n with 0 ∈ M , the gauge of M is the

function γM : <n → < defined by

γM(x) := inf{λ ≥ 0 | x ∈ λM},

where the convention inf ∅ = +∞ is used.

For a given subset A of <n, we denote the closure of A, the interior of A, the boundary of

A, the linear space spanned by A and the convex hull of A respectively by clA, intA, bdA,

spanA and conA. The polar cone of A is defined by

A∗ := {v ∈ <n | 〈v, x〉 ≤ 0 ∀x ∈ A}.

The positive hull of A is defined by

posA := {λx | x ∈ A, λ ≥ 0}.

The horizon cone of A, representing the direction set of A, is defined by

A∞ := {x ∈ <n | ∃xk ∈ A, ∃λk ↓ 0 with λkxk → x}.

The support function σA : <n → < of A is defined by

σA(w) := sup
v∈A
〈v, w〉.
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The distance function to A, written as dA(·), is defined by

dA(x) := inf
y∈A
‖x− y‖.

The indicator function of A is defined by

δA(x) :=

{
0, if x ∈ A,

+∞, otherwise.

If A is empty, we set by convention

A∗ := <n, posA := {0}, A∞ := {0}, σA(·) = −∞, dA(·) := +∞, and δA(·) := +∞.

Let x̄ ∈ A. A vector w ∈ <n belongs to TA(x̄), the tangent cone to A at x̄, if there are sequences

tk ↓ 0 and wk → w such that x̄+ tkwk ∈ A for all k.

Let f : <n → < be an extended-real-valued function. The effective domain of f is the set

dom f := {x ∈ <n | f(x) < +∞},

the kernel of f is the set

ker f := {x ∈ <n | f(x) = 0},

and the epigraph of f is the set

epi f := {(x, α) ∈ <n ×< | α ≥ f(x)}.

The function f is said to be lower semicontinuous iff epi f is closed in <n × <. Moreover, f is

said to be positively homogeneous, iff 0 ∈ dom f and f(λx) = λf(x) for all x and all λ > 0,

and it is sublinear, iff in addition

f(x+ x′) ≤ f(x) + f(x′) for all x and x′.

Let x̄ be a point with f(x̄) finite. The notions of subgradients and subderivatives that we need

throughout the paper are summarized below; see [22, Chapters 8 and 13] for more details.

(i) The vector v ∈ <n is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), iff

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖).

(ii) For any w ∈ <n, the subderivative of f at x̄ for w is defined by

df(x̄)(w) := lim inf
τ↓0, w′→w

f(x̄+ τw′)− f(x̄)

τ
.

(iii) For any vector v ∈ <n, the second subderivative at x̄ for v and w is defined by

d2f(x̄ | v)(w) := lim inf
τ↓0, w′→w

f(x̄+ τw′)− f(x̄)− τ〈v, w′〉
1
2
τ 2

.

6



2 Primal and Dual Characterizations of Exact Local Sharp

Minima

To begin with, we exploit some relations between a closed and convex set M , consisting of

the gradients of the affine supports of a nonnegative, lower semicontinuous and positively

homogeneous function h, and the kernel kerh of h.

Lemma 2.1 For any nonnegative, lower semicontinuous and positively homogeneous function

h : <n → <, kerh is a nonempty closed cone, the set defined by

M := {v ∈ <n | 〈v, w〉 ≤ h(w) ∀w ∈ <n}

is closed and convex with 0 ∈M , and the following statements are true:

(a) M∞ = [domh]∗ ⊂ M ⊂ [kerh]∗, for which the first inclusion is an equality if and only if

M is a cone, while the second inclusion is an equality if and only if [domh]∗ = [kerh]∗.

If furthermore h is convex, then cl (posM) = [kerh]∗.

(b) M has nonempty interior if and only if kerh is pointed. In that case, cl (posM) = [kerh]∗.

(c) int (posM) = {λw | w ∈ intM,λ > 0} = {v ∈ <n | 〈v, w〉 < 0 ∀w ∈ kerh\{0}}.

(d) If there exists some τ > 0 such that d(w, kerh) ≤ τh(w) for all w, then posM = [kerh]∗.

Proof. In view of the fact that M is the intersection of a collection of closed half-spaces, M

is closed and convex. By the nonnegativity of h and the definition of M , we have 0 ∈M . This

further implies that

int (posM) = int (cl (posM)) = intTM(0) = {λw | w ∈ intM,λ > 0}, (10)

where the first equality follows from the convexity of posM , and the last two equalities follow

from the formulas for the tangent cone to a convex set ([22, Theorem 6.9]). Since h is nonneg-

ative and positively homogeneous, we have h(0) = 0 and h(λx) = 0 for all λ > 0 and x ∈ kerh.

Thus, kerh is a nonempty cone. Since h is nonnegative and lower semicontinuous, it follows

that kerh = {w ∈ <n | h(w) ≤ 0} is closed. That is, kerh is a nonempty closed cone. Since

〈v, w〉 ≤ 0 for all v ∈M and w ∈ kerh, we have

M ⊂ [kerh]∗. (11)
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Let v ∈ [domh]∗. By definition, we have 〈v, w〉 ≤ 0 for all w ∈ domh. Since h is nonnegative,

it follows that 〈v, w〉 ≤ h(w) for all w ∈ <n, i.e., v ∈ M . Thus, we have [domh]∗ ⊂ M . By

[22, Exercise 3.24] and the definition of M , we have M∞ = [domh]∗. By the definition of

the horizon cone, we have [domh]∗ = M if and only if M is a cone. Moreover, M = [kerh]∗

(implying that M is a cone and hence [domh]∗ = M) if and only if [domh]∗ = [kerh]∗. By

[22, Theorem 8.24], if h is convex, we have h = σM , which implies that w ∈ kerh if and only

if 〈v, w〉 ≤ 0 for all v ∈ M , or in other words w ∈ M∗. That is, when h is convex, we have

kerh = M∗. Noting that M∗ = (cl (posM))∗, that posM is convex as M is convex, and that

kerh is closed and convex, we assert that kerh = M∗ if and only if cl (posM) = [kerh]∗, by

applying [22, Corollary 6.21], which says that for a cone K, the polar cone K∗ is closed and

convex, and K∗∗ = cl (conK). Thus, (a) is proved.

We now prove (b) and (c) together. Let A := {v | 〈v, w〉 < 0 ∀w ∈ kerh\{0}}. It follows

from [22, Exercise 6.22] that int [kerh]∗ = A, and that the following conditions are equivalent:

(i) A 6= ∅; (ii) kerh is pointed; and (iii) [kerh]∗ has nonempty interior.

Assume that kerh is not pointed. We claim that intM = ∅, for otherwise it follows from the

inclusion (11) that [kerh]∗ has nonempty interior, which amounts to the pointedness of kerh.

By (10), we have int (posM) = ∅. Therefore, whenever kerh is not pointed, M has empty

interior and the property (c) holds trivially.

Assume now that kerh is pointed. Since the closed cone epih is a subset of <n × <+ and

epih ∩ (<n × {0}) = kerh× {0}, the pointedness of kerh amounts to the pointedness of epih.

It follows from [22, Theorem 3.15] that both the cones con (kerh) and con (epih) are closed

and pointed, and that

con (epih) ∩ (<n × {0}) = (epih+ · · ·+ epih(n terms)) ∩ (<n × {0})
= (epih ∩ (<n × {0})) + · · ·+ (epih ∩ (<n × {0}))(n terms)

= (kerh× {0}) + · · ·+ (kerh× {0})(n terms)

= con (kerh× {0}) = con (kerh)× {0}.

Then by [22, Corollary 6.21], we have [kerh]∗∗ = con (kerh) and [epih]∗∗ = con (epih). This

entails that w ∈ [kerh]∗∗ if and only if (w, 0) ∈ [epih]∗∗. Note that 〈(v,−1), (w, β)〉 ≤ 0 for all

(w, β) ∈ epih if and only if v ∈ M , and that 〈(v, 0), (w, β)〉 ≤ 0 for all (w, β) ∈ epih if and

only if 〈v, w〉 ≤ 0 for all w ∈ domh, or equivalently v ∈ [domh]∗ = M∞. Thus, we have

[epih]∗ = {λ(v,−1) | v ∈M,λ > 0} ∪ {(v, 0) | v ∈M∞}. (12)

Let w ∈M∗. In view of (12) and the inclusion M∞ ⊂M , we have (w, 0) ∈ [epih]∗∗ and hence

w ∈ [kerh]∗∗. This implies that M∗ ⊂ [kerh]∗∗, for which the reverse inclusion follows from the

8



inclusion (11). That is, we have M∗ = [kerh]∗∗ or equivalently cl (posM) = [kerh]∗ by M∗∗ =

cl (posM). Since posM is convex, we have int (posM) = int (cl (posM)) = int [kerh]∗ = A.

So, if kerh is pointed, then the property (c) holds. Since the pointedness of kerh amounts to

A 6= ∅, we thus have int (posM) 6= ∅. In view of (10), we have intM 6= ∅. This completes the

proof of (b).

Now (d) follows from [16, Theorem 5.1]. This completes the proof. 2

For a function ψ : <n → < and a point x̄ with ψ(x̄) finite, we have by [22, Exercise 8.4]

∂̂ψ(x̄) = {v ∈ <n | 〈v, w〉 ≤ dψ(x̄)(w) ∀w ∈ <n}. (13)

Observing that the subderivative dψ(x̄) is a lower semicontinuous and positively homogeneous

function, Lemma 2.1 is thus applicable in the circumstance that 0 ∈ ∂̂ψ(x̄) or equivalently

dψ(x̄) ≥ 0 as is true in particular when ψ has a local minimum at x̄; see the generalized

Fermat’s rule [22, Theorem 10.1]. The following theorem, which has been partially shown by

the authors in [18, 16], is more or less a restatement of Lemma 2.1, but fully characterizes the

connections between ker dψ(x̄) and ∂̂ψ(x̄).

Theorem 2.1 Let ψ : <n → < be a function with ψ(x̄) finite. Assume that 0 ∈ ∂̂ψ(x̄) or

equivalently dψ(x̄) ≥ 0. The following statements are true:

(a) ∂̂ψ(x̄)∞ = [dom dψ(x̄)]∗ ⊂ ∂̂ψ(x̄) ⊂ [ker dψ(x̄)]∗, for which the first inclusion is an equality

if and only if ∂̂ψ(x̄) is a cone, while the second inclusion is an equality if and only if

[dom dψ(x̄)]∗ = [ker dψ(x̄)]∗. If furthermore dψ(x̄) is convex as is true when ψ is regular

at x̄, then cl (pos ∂̂ψ(x̄)) = [ker dψ(x̄)]∗.

(b) ∂̂ψ(x̄) has nonempty interior if and only if ker dψ(x̄) is pointed. In that case, cl (pos ∂̂ψ(x̄)) =

[ker dψ(x̄)]∗.

(c) int (pos ∂̂ψ(x̄)) = {λv | v ∈ int ∂̂ψ(x̄), λ > 0} = {v ∈ <n | 〈v, w〉 < 0 ∀w ∈ ker dψ(x̄)\{0}}.

(d) If there exists some τ > 0 such that d(w, ker dψ(x̄)) ≤ τdψ(x̄)(w) for all w, then

pos ∂̂ψ(x̄) = [ker dψ(x̄)]∗.

For a function ψ : <n → < and a point x̄ with ψ(x̄) finite, it follows from [28, Proposition

2.1] or the definition of subderivative that, ψ has a local sharp minimum at x̄ if and only

if dψ(x̄)(w) > 0 for all w ∈ <n with w 6= 0. The latter condition has the inclusion 0 ∈
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int (∂̂ψ(x̄)) as its dual counterpart as can be easily seen from Theorem 2.1 (c) or the equality

(13). These primal and dual characterizations of local sharp minima are summarized in the

following corollary 2.1 for further reference.

Corollary 2.1 The following properties are equivalent:

(i) ψ has a local sharp minimum at x̄.

(ii) dψ(x̄)(w) > 0 for all w ∈ <n with w 6= 0.

(iii) 0 ∈ int (∂̂ψ(x̄)).

For a function ψ : <n → < and a point x̄ with ψ(x̄) finite, the variational description [22,

Proposition 8.5] of a regular subgradient is as follows: A vector v belongs to ∂̂ψ(x̄), if and

only if, there exists some δ > 0 along with a function h : <n → < smooth on Bδ(x̄) such that

h(x̄) = ψ(x̄), ∇h(x̄) = v and

ψ(x) > h(x) ∀x ∈ Bδ(x̄)\{x̄}. (14)

However, if the regular subgradient v belongs to the interior of ∂̂ψ(x̄), the inequality (14) can

be strengthened as can be seen from the following corollary.

Corollary 2.2 (variational description of interior of regular subdifferentials). A vector v be-

longs to the interior of ∂̂ψ(x̄), if and only if, there exist some ε > 0 and δ > 0 along with a

function h : <n → < smooth on Bδ(x̄) such that h(x̄) = ψ(x̄), ∇h(x̄) = v and

ψ(x) > h(x) + ε‖x− x̄‖ ∀x ∈ Bδ(x̄)\{x̄}. (15)

Proof. If h is smooth on Bδ(x̄) with ∇h(x̄) = v for some δ > 0, we have by [22, Exercise 8.8],

∂̂(ψ − h)(x̄) = ∂̂ψ(x̄)− v.

Observing that h(x̄) = ψ(x̄), we can reformulate (15) as

(ψ − h)(x) > (ψ − h)(x̄) + ε‖x− x̄‖ ∀x ∈ Bδ(x̄)\{x̄},

which by Corollary 2.1, amounts to 0 ∈ int (∂̂(ψ − h)(x̄)), or in other words, v ∈ int (∂̂ψ(x̄)).

This completes the proof. 2

We now present the primal and dual conditions for exact sharp local minima of the penalty

function (1).
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Theorem 2.2 Let x̄ ∈ C. The penalty function (1) has an exact local sharp minimum at x̄ if

and only if −∇f(x̄) ∈ int (pos (∂̂φ(x̄)) or equivalently (8) holds. In that case,

SPP(f, φ, x̄) = γ∂̂φ(x̄)(−∇f(x̄)). (16)

Proof. Let x̄ ∈ C. Observing that φ has a global minimum at x̄, we have 0 ∈ ∂̂φ(x̄) and hence

Theorem 2.1 is applicable. By [22, Exercise 8.8], we have for each µ > 0,

∂̂(f + µφ)(x̄) = ∇f(x̄) + µ∂̂φ(x̄). (17)

By definition, the penalty function (1) has an exact local sharp minimum at x̄ if and only if

there exists some µ > 0 such that f + µφ has a local sharp minimum at x̄, or equivalently by

(17) and Corollary 2.1, there exists some µ > 0 such that −∇f(x̄) ∈ µint (∂̂φ(x̄)). The latter

condition amounts to −∇f(x̄) ∈ int (pos (∂̂φ(x̄)), or in other words, (8) holds as can be seen

from Theorem 2.1. Moreover, we have by definition

SPP(f, φ, x̄) = inf{µ > 0 | −∇f(x̄) ∈ µint (∂̂φ(x̄))}.

Since ∂̂φ(x̄) is a closed and convex set containing the origin, we have the following equality in

the case of int (∂̂φ(x̄)) 6= ∅:

inf{µ > 0 | −∇f(x̄) ∈ µint (∂̂φ(x̄))} = inf{µ > 0 | −∇f(x̄) ∈ µ∂̂φ(x̄)},

which is equal to γ∂̂φ(x̄)(−∇f(x̄)). This completes the proof. 2

3 Applications to the `p Penalty Functions

Throughout this section, let x̄ ∈ C be a fixed feasible point of (NLP). By applying the results

presented in the last section, we shall answer the question as to when the `p (0 ≤ p ≤ 1) penalty

function (2) has an exact local sharp minimum at x̄. In what follows, we intend to answer the

question in two ways. In Section 3.1, we shall calculate the closed cone ker dSp(x̄) and/or its

counterpart ∂̂Sp(x̄), and characterize exact local sharp minima of the `p penalty function by

virtue of the original data of (NLP) and without the help of any constraint qualification. In

Section 3.2, by assuming some constraint qualifications, we shall show that x̄ is a local sharp

minimum of (NLP) if and only if the `p penalty function has an exact local sharp minimum at

x̄ with p ranging in some interval depending on the constraint qualification assumed.
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3.1 Exact Local Sharp Minima without Constraint Qualifications

As the calculations for ker dSp(x̄) and ∂̂Sp(x̄) are different for various p’s, we shall consider in

what follows two cases: (i) 1
2
< p ≤ 1; and (ii) p = 1

2
.

3.1.1 The case of 1
2
< p ≤ 1

Denote the active inequality index set of (NLP) at x̄ by

I(x̄) := {i ∈ I | gi(x̄) = 0},

and the first-order linearized tangent cone to C at x̄ by

LC(x̄) :=

{
w ∈ <n

∣∣∣∣∣ 〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄)

〈∇hj(x̄), w〉 = 0 ∀j ∈ J

}
.

Moreover, let

KKT(x̄) :=

λ ∈ <m+q

∣∣∣∣∣∣∣
∇f(x̄) +

∑
i∈I

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) = 0

λi = 0 ∀i ∈ I\I(x̄), λi ≥ 0 ∀i ∈ I(x̄)

 .

We recall two formulas from [18] as follows:

dS(x̄)(w) =
∑
i∈I(x̄)

max{〈∇gi(x̄), w〉, 0}+
∑
j∈J

|〈∇hj(x̄), w〉|, ∀w ∈ <n, (18)

and

∂̂S(x̄) =

∑
i∈I(x̄)

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) | 0 ≤ λi ≤ 1 ∀i ∈ I(x̄), −1 ≤ λj ≤ 1 ∀j ∈ J

 .

(19)

See [22, Example 7.28, Exercise 8.31 and Corollary 10.9] for more details. In view of (18) and

the definition of LC(x̄), we have

kerdS(x̄) = LC(x̄). (20)

Let

K :=

∑
i∈I(x̄)

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) | λi ≥ 0 ∀i ∈ I(x̄), λj ∈ < ∀j ∈ J

 .

In view of (19) and the definition of positive hull, we have pos(∂̂S(x̄)) = K. By the definition

of LC(x̄), we get from the Farkas lemma (cf. [22, Lemma 6.45]) that LC(x̄)∗ = K. That is, we

have

pos(∂̂S(x̄)) = LC(x̄)∗ = K. (21)
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Theorem 3.1 Let 1
2
< p ≤ 1. The following properties are equivalent:

(a) The `p penalty function has an exact local sharp minimum at x̄.

(b) The linear system

〈∇f(x̄), w〉 ≤ 0, 〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄), 〈∇hj(x̄), w〉 = 0 ∀j ∈ J

has a unique solution w = 0.

(c) span({∇gi(x̄) | i ∈ I(x̄)} ∪ {∇hj(x̄) | j ∈ J}) = <n, and the KKT condition holds at

x̄ with some multiplier satisfying the strict complementarity condition, i.e., there exists

some λ ∈ KKT(x̄) such that λi > 0 for all i ∈ I(x̄).

These properties entail that SPP(f, Sp, x̄) = 0 if 1
2
< p < 1, and

SPP(f, S, x̄) = min{‖λ‖∞ | λ ∈ KKT(x̄)}, (22)

where ‖λ‖∞ denotes the infinity norm of λ.

Proof. First we consider the case of p = 1. The equivalence of (a) and (b) follows immediately

from Theorem 2.2 and (20). By [7, Lemma 2.3] and (21), −∇f(x̄) belongs to the relative

interior of pos(∂̂S(x̄)) if and only if

−∇f(x̄) =
∑
i∈I(x̄)

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄)

for some λi > 0 for all i ∈ I(x̄) and λj ∈ < for all j ∈ J , or in other words, there exists some

λ ∈ KKT(x̄) such that λi > 0 for all i ∈ I(x̄). By Theorem 2.1 and (20), pos(∂̂S(x̄)) has

nonempty interior if and only if the cone LC(x̄) is pointed, i.e.,

{w ∈ <n | 〈∇gi(x̄), w〉 = 0 ∀i ∈ I(x̄), 〈∇hj(x̄), w〉 = 0 ∀j ∈ J} = {0},

or in other words, span({∇gi(x̄) | i ∈ I(x̄)} ∪ {∇hj(x̄) | j ∈ J}) = <n. Thus, we have shown

−∇f(x̄) ∈ int (pos(∂̂S(x̄))) if and only if (c) holds. Then by Theorem 2.2, the equivalence of

(a) and (c) follows. By Theorem 2.2 and (19), we have

SPP(f, S, x̄) = γ∂̂S(x̄)(−∇f(x̄))

= inf{τ ≥ 0 | λ ∈ KKT(x̄), 0 ≤ λi ≤ τ ∀i ∈ I(x̄), −τ ≤ λj ≤ τ ∀j ∈ J}
= inf{‖λ‖∞ | λ ∈ KKT(x̄)}.
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According to [22, Theorem 1.9], the problem of minimizing ‖λ‖∞ over KKT(x̄) attains its

minimum. Thus, (22) follows.

Next we consider the case of 1
2
< p < 1. Since 0 ≤ S(x) ≤ Sp(x) for all x near x̄, we

have kerdSp(x̄) ⊂ ker dS(x̄). By (21), we thus have kerdSp(x̄) ⊂ LC(x̄). Let tk → 0+ and let

w ∈ LC(x̄) be given. In the case of i 6∈ I(x̄) or i ∈ I(x̄) with 〈∇gi(x̄), w〉 < 0, we have

max{gi(x̄+ tkw), 0}
t
1/p
k

→ 0.

By the second-order Taylor expansion, we have

hj(x̄+ tkw)

t
1/p
k

=
1

2
t
2−1/p
k 〈w,∇2hj(x̄)w〉+

o(t2k)

t2k
t
2−1/p
k → 0 ∀j ∈ J,

and in the case of i ∈ I(x̄) with 〈∇gi(x̄), w〉 = 0,

max{gi(x̄+ tkw), 0}
t
1/p
k

= max{1

2
t
2−1/p
k 〈w,∇2hj(x̄)w〉+

o(t2k)

t2k
t
2−1/p
k , 0} → 0.

Therefore, we have
S(x̄+ tkw)

t
1/p
k

→ 0 ∀w ∈ LC(x̄),

or equivalently,
Sp(x̄+ tkw)

tk
→ 0 ∀w ∈ LC(x̄).

This entails that LC(x̄) ⊂ kerdSp(x̄). Thus, we have kerdSp(x̄) = LC(x̄) and more generally

kerdS p̃(x̄) = LC(x̄) ∀p̃ ∈ (
1

2
, 1].

Let w ∈ dom dSp(x̄). By the definition of subderivative, we can find sequences tk → 0+ and

wk → w such that

Sp(x̄+ tkwk)− Sp(x̄)

tk
=
Sp(x̄+ tkwk)

tk
→ dSp(x̄)(w),

implying that S(x̄+ tkwk)→ 0. Then for any p′ with p < p′ ≤ 1, we have

Sp
′
(x̄+ tkwk)

tk
=
Sp(x̄+ tkwk)S

p′−p(x̄+ tkwk)

tk
→ 0,

which implies that w ∈ kerdSp
′
(x̄) and hence dom dSp(x̄) ⊂ kerdSp

′
(x̄) = LC(x̄). Therefore,

we have

kerdSp(x̄) = dom dSp(x̄) = LC(x̄).
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By Theorem 2.1 (a), we have ∂̂Sp(x̄) = LC(x̄)∗, implying that ∂̂Sp(x̄) is a cone. Applying

Theorem 2.2, statement (a) holds if and only if 〈∇f(x̄), w〉 > 0 for all w ∈ kerdSp(x̄) = LC(x̄)

with w 6= 0, or if and only if −∇f(x̄) ∈ int (pos(∂̂Sp(x̄))) = int (∂̂Sp(x̄)) = int (LC(x̄)∗). Now

following the same arguments as for the proof of the case p = 1, statements (a), (b) and (c)

are equivalent with each other. Moreover, in view of the facts that ∂̂Sp(x̄) is a cone and that

−∇f(x̄) ∈ int (∂̂Sp(x̄)), we obtain from Theorem 2.2 that SPP(f, Sp, x̄) = γ∂̂Sp(x̄)(−∇f(x̄)) =

0. This completes the proof. 2

Remark 3.1 Theorem 3.1 (c) in its current form is new, though an equivalent condition in

an abstract form was presented in [24, Theorem 3.4] to show that it is sufficient for x̄ to be a

local sharp minimum of (NLP). In [11], it was shown that Theorem 3.1 (b) is sufficient for the

`1 penalty function to have a strict local minimum at x̄, i.e., there exist some µ > 0 and δ > 0

such that

f(x) + µS(x) > f(x̄) + µS(x̄) ∀x ∈ Bδ(x̄)\{x̄}.

While in [4, Theorem 4.8], it was shown that the `1 penalty function has an exact local sharp

minimum at x̄ if Theorem 3.1 (b) holds and KKT(x̄) 6= ∅. The latter condition turns out to be

unnecessary in our result.

3.1.2 The case of p = 1
2

The calculus rules [22, Example 13.16 and Proposition 13.19] yield that

d2S(x̄ | 0)(w) =


max

ρ∈KKT0(x̄)∩B

〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
if w ∈ LC(x̄),

+∞ otherwise,

where B := {x ∈ <m+q | |xi| ≤ 1 ∀i} denotes the closed unit ball induced by the infinity norm,

and

KKT0(x̄) :=

ρ ∈ <m+q

∣∣∣∣∣∣∣
∑
i∈I

ρi∇gi(x̄) +
∑
j∈J

ρj∇hj(x̄) = 0

ρi = 0 ∀i ∈ I\I(x̄), ρi ≥ 0 ∀i ∈ I(x̄)

 .

By the definition of the second-subderivative, we have

d2S(x̄ | 0)(w) = 2[dS
1
2 (x̄)(w)]2 ∀w ∈ <n,
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which gives

dS
1
2 (x̄)(w) =


√

2

2

√√√√ max
ρ∈KKT0(x̄)∩B

〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
if w ∈ LC(x̄),

+∞ otherwise.

(23)

With the formula (23) at hand, we can describe the kernel of dS
1
2 (x̄) by virtue of the original

data of (NLP) in several ways as follows.

Proposition 3.1 w ∈ ker dS
1
2 (x̄) if and only if one of the following conditions holds:

(a) w ∈ LC(x̄) and〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
≤ 0 ∀ρ ∈ KKT0(x̄).

(b) w ∈ LC(x̄) and there exists some z ∈ <n such that

〈∇gi(x̄), z〉+ 〈w,∇2gi(x̄)w〉 ≤ 0, ∀i ∈ I(x̄) with 〈∇gi(x̄), w〉 = 0,

〈∇hj(x̄), z〉+ 〈w,∇2hj(x̄)w〉 = 0, ∀j ∈ J.

(c) w ∈ LC(x̄) and 〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
≤ 0 ∀ρ ∈ A,〈[∑

j∈J

ρj∇2hj(x̄)

]
w,w

〉
= 0 ∀ρ ∈ B,

where B is a basis of the linear subspace {ρ ∈ <m+q | ρi = 0 ∀i ∈ I,
∑
j∈J

ρj∇hj(x̄) = 0}

and A is finite subset of KKT0(x̄) such that

KKT0(x̄) = con (posA) + spanB. (24)

Proof. Let

F (w, ρ) :=

〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
.

By (23), w ∈ ker dS
1
2 (x̄) if and only if w ∈ LC(x̄) and

max
ρ∈KKT0(x̄)∩B

F (w, ρ) = 0. (25)
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As the function F (w, ρ) is linear in ρ, (25) holds if and only if

max
ρ∈KKT0(x̄)

F (w, ρ) = 0. (26)

That is, w ∈ ker dS
1
2 (x̄) if and only if (a) holds. From the duality theorem of linear programming

(see [15]), (26) holds if and only if there exists some z ∈ <n such that

〈∇gi(x̄), z〉+ 〈w,∇2gi(x̄)w〉 ≤ 0, ∀i ∈ I(x̄) with 〈∇gi(x̄), w〉 = 0,

〈∇hj(x̄), z〉+ 〈w,∇2hj(x̄)w〉 = 0, ∀j ∈ J.

This suggests that (a) and (b) are equivalent. By the linearity of F (w, ρ) in ρ again, and the

construction of A and B, we obtain the equivalence of (a) and (c). This completes the proof.

2

Applying Theorem 2.2 and Proposition 3.1, we can characterize exact local sharp minima

of the ` 1
2

penalty function as follows.

Theorem 3.2 The following properties are equivalent:

(a) The ` 1
2

penalty function has an exact local sharp minimum at x̄.

(b) The system of finitely many quadratic forms mixed with linear equations and inequalities

〈∇f(x̄), w〉 ≤ 0,

〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄),

〈∇hj(x̄), w〉 = 0 ∀j ∈ J,〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
≤ 0 ∀ρ ∈ A,〈[∑

j∈J

ρj∇2hj(x̄)

]
w,w

〉
= 0 ∀ρ ∈ B,

(27)

has a unique solution w = 0, where A and B are given as in Proposition 3.1 (c).

(c) The following second-order sufficient condition holds:

sup
ρ∈KKT0(x̄)

〈[∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
≡ +∞ > 0 ∀w ∈ V(x̄)\{0}, (28)
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where

V(x̄) :=

w ∈ <n
∣∣∣∣∣∣∣∣
〈∇f(x̄), w〉 ≤ 0

〈∇gi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄)

〈∇hj(x̄), w〉 = 0 ∀j ∈ J


denotes the critical cone of (NLP) at x̄.

Remark 3.2 Let the set of Fritz John multipliers of (NLP) at x̄ be denoted by

FJ(x̄) :=

(λ0, ρ) ∈ < × <m+q

∣∣∣∣∣∣∣∣∣
λ0∇f(x̄) +

∑
i∈I

ρi∇gi(x̄) +
∑
j∈J

ρj∇hj(x̄) = 0

ρi = 0 ∀i ∈ I\I(x̄), ρi ≥ 0 ∀i ∈ I(x̄)

λ0 ≥ 0, (λ0, ρ) 6= (0, 0)

 .

It has been shown in [3, Proposition 5.48] that, if

sup
(λ0,ρ)∈FJ(x̄)

〈[
λ0∇2f(x̄) +

∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
> 0 ∀w ∈ V(x̄)\{0}, (29)

then x̄ is a local minimum of (NLP) satisfying the second-order growth condition, i.e., there

exist some α > 0 and δ > 0 such that

f(x) ≥ f(x̄) + α‖x− x̄‖2 ∀x ∈ C ∩Bδ(x̄). (30)

In what follows, we consider three circumstances under which (29) may hold: (i) V(x̄) = {0};
(ii) V(x̄) 6= {0} and KKT(x̄) = ∅; (iii) V(x̄) 6= {0} and KKT(x̄) 6= ∅. In case (i), (29) holds

automatically, and according to Theorem 3.1, it says nothing but that the `1 penalty function

has an exact local sharp minimum at x̄; In case (ii), it is easy to verify that (29) holds if and

only if Theorem 3.2 (c) holds. From Theorems 3.1 and 3.2, it follows that (29) holds in case

(ii) if and only if the `p penalty function has an exact local sharp minimum at x̄ with p = 1
2

but not with p = 1. And in case (iii), (29) reduces to the well-known second-order sufficient

condition (see [13, 21] and also [3, Remark 5.49]):

sup
ρ∈KKT(x̄)

〈[
∇2f(x̄) +

∑
i∈I

ρi∇2gi(x̄) +
∑
j∈J

ρj∇2hj(x̄)

]
w,w

〉
> 0 ∀w ∈ V(x̄)\{0}.

According to [21, Corollary 4.5], the latter condition implies that the `1 penalty function with a

finite penalty parameter has a local minimum at x̄ satisfying the second-order growth condition,

i.e., there exist some µ > 0, α > 0 and δ > 0 such that

f(x) + µS(x) ≥ f(x̄) + µS(x̄) + α‖x− x̄‖2 ∀x ∈ Bδ(x̄). (31)
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To sum up, corresponding to cases (i)-(iii), one of the following happens when (29) is

fulfilled: (I) The `1 penalty function has an exact local sharp minimum at x̄; (II) The `1 penalty

function does not have an exact local sharp minimum at x̄, but the ` 1
2

penalty function does;

(III) The `1 penalty function does not have an exact local sharp minimum at x̄, but it has an

exact local minimum satisfying the second-order growth condition (31).

3.2 Exact Local Sharp Minima with Constraint Qualifications

In this subsection, we will show that under a constraint qualification, a local sharp minimum

of (NLP) can be an exact local sharp minimum of the `p penalty function with p ranging in an

interval depending the constraint qualification assumed. To simplify our presentations, we will

not utilize all constraint qualifications available, but only take advantage of some weakest pos-

sible constraint qualifications, such as the Guignard constraint qualification (for short, GCQ),

and its generalized version, called the generalized Guignard constraint qualification (for short,

g-GCQ).

The GCQ originating with [9] holds at x̄ if by definition, TC(x̄)∗ = LC(x̄)∗. Among various

constraint qualifications ensuring KKT conditions, the GCQ is the weakest one in the sense

that the GCQ holds at x̄ if and only if the KKT condition holds at x̄ for any objective function

having a local minimum at x̄ subject to the same constraints; see [8] for the original version of

this result, and [22, Theorem 6.11] for some new features of this result. In the following, we

introduce a generalized version of the GCQ.

Definition 3.1 We say that the g-GCQ holds at x̄ if TC(x̄)∗ = [ker dS
1
2 (x̄)]∗.

Clearly, the g-GCQ is a consequence of the GCQ, but not vice versa. Taking the single inequality

constraint x2 ≤ 0 for instance, the g-GCQ holds at x̄ = 0 as TC(x̄) = ker dS
1
2 (x̄) = {0}, but

the GCQ does not hold at x̄ = 0 as LC(x̄)∗ = {0} 6= < = TC(x̄)∗.

Theorem 3.3 Assume that the GCQ holds at x̄. The following properties are equivalent:

(a) x̄ is a local sharp minimum of (NLP);

(b) The `p penalty function with 0 ≤ p ≤ 1 has an exact local sharp minimum at x̄.

These properties entail that SPP(f, Sp, x̄) = 0 if p < 1, and

SPP(f, S, x̄) = min{‖λ‖∞ | λ ∈ KKT(x̄)}.
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Proof. To begin with, we recall that x̄ is a local sharp minimum of (NLP) if and only if (7)

holds or equivalently by [22, Excercise 6.22], −∇f(x̄) ∈ int (TC(x̄)∗). From the GCQ at x̄, it

then follows that (a) holds if and only if −∇f(x̄) ∈ int (LC(x̄)∗). Thus, in the case of p = 1,

(a) and (b) are equivalent, and hence the formula for SPP(f, S, x̄) follows from Theorem 3.1.

Now let 0 ≤ p < 1. Observing that 0 ≤ S(x) ≤ Sp(x) ≤ S0(x) for all x near x̄, we have by

the definition of subderivative,

TC(x̄) = ker dS0(x̄) ⊂ ker dSp(x̄) ⊂ dom dSp(x̄) ⊂ ker dS(x̄) = LC(x̄).

By the GCQ at x̄, we thus have [ker dSp(x̄)]∗ = [dom dSp(x̄)]∗ = LC(x̄)∗. According to Theorem

2.1, we have ∂̂Sp(x̄) = LC(x̄)∗. In view of Theorem 2.2, all the results follow readily. 2

Theorem 3.4 Assume that the g-GCQ holds at x̄. The following properties are equivalent:

(a) x̄ is a local sharp minimum of (NLP);

(b) The `p penalty function with 0 ≤ p ≤ 1
2

has an exact local sharp minimum at x̄.

These properties entail that SPP(f, Sp, x̄) = 0 if p < 1
2
.

Proof. As in the proof of Theorem 3.3, (a) holds if and only if −∇f(x̄) ∈ int (TC(x̄)∗). By

the g-GCQ at x̄, (a) holds if and only if −∇f(x̄) ∈ int [ker dS
1
2 (x̄)]∗ or equivalently by [22,

Excercise 6.22],

〈∇f(x̄), w〉 > 0 ∀w ∈ ker dS
1
2 (x̄)\{0}.

In view of Theorem 2.2, (a) and (b) are equivalent in the case of p = 1
2
.

Now let 0 ≤ p < 1
2
. Observing that 0 ≤ S

1
2 (x) ≤ Sp(x) ≤ S0(x) for all x near x̄, we have

by the definition of subderivative,

TC(x̄) = ker dS0(x̄) ⊂ ker dSp(x̄) ⊂ dom dSp(x̄) ⊂ ker dS
1
2 (x̄).

Thus, by the assumption that TC(x̄)∗ = [ker dS
1
2 (x̄)]∗, we have

[ker dSp(x̄)]∗ = [dom dSp(x̄)]∗ = [ker dS
1
2 (x̄)]∗.

According to Theorem 2.1, we thus have ∂̂Sp(x̄) = [ker dS
1
2 (x̄)]∗. In view of Theorem 2.2, all

the results follow readily. 2
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4 Conclusions

In this paper, we conducted variational analysis on local sharp minima of a nonlinear program-

ming problem via exact penalization. Utilizing some generalized differentiation tools such as

subderivatives and regular subdifferentials, we first presented some primal and dual charac-

terizations for exact local minima of a general penalty function associated with the nonlinear

programming problem. We then applied these characterizations to the `p (0 ≤ p ≤ 1) penalty

function. By virtue of the original data of the nonlinear programming problem, we gave pri-

mal and dual characterizations for exact local sharp minima of the `p penalty function with

p ∈ (1
2
, 1] and p = 1

2
respectively. By assuming the Guignard constraint qualification (resp.

the generalized Guignard constraint qualification), we showed that a local sharp minimum of

the nonlinear programming problem can be an exact local sharp minimum of the `p penalty

function with p ∈ [0, 1] (resp. p ∈ [0, 1
2
]). Moreover, we gave some formulas for calculating the

smallest penalty parameter for a penalty function to have an exact local sharp minimum.
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