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The propagation of traveling Lamb wave in single layer of elastic metamaterial is investigated in

this paper. We first categorized the traveling Lamb wave modes inside an elastic metamaterial

layer according to different combinations (positive or negative) of effective medium parameters.

Then the impacts of the frequency dependence of effective parameters on dispersion characteristics

of traveling Lamb wave were studied. Distinct differences could be observed when comparing the

traveling Lamb wave along an elastic metamaterial layer with one inside the traditional elastic

layer. We further examined in detail the traveling Lamb wave mode supported in elastic

metamaterial layer, when the effective P and S wave velocities were simultaneously imaginary. It

was found that the effective modulus ratio is the key factor for the existence of special traveling

wave mode, and the main results were verified by FEM simulations from two levels: the level of

effective medium and the level of microstructure unit cell. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4965858]

I. INTRODUCTION

Phononic crystals are artificial periodic composite mate-

rials consisting of periodically distributed substructures or

materials with high impedance contrast, which can give rise

to many new wave phenomena such as band gap, defect

mode, and negative refraction. These properties are mainly

derived from the Bragg scattering effect of the elastic (or

acoustic) wave at the periodic interfaces between internal

components, and therefore, the working wavelength has to

be on the same order as the lattice constant.1 During the past

decades, people have conducted extensive research on pho-

nonic crystals, such as the mechanisms of wave band gap

and negative refraction,2–4 tunable phononic crystals,5–7 sur-

face phononic crystals,8,9 and phoxonic crystals.10,11 In addi-

tion, the theory and experiment in recent years have

demonstrated that phononic crystals can also be engineered

to control thermal conductivity which is mainly influenced

by phonon propagation (THz).12–15 More information about

phononic crystals can refer to Refs. 1 and 16.

Based on a kind of built-in localized resonances, Liu

et al.17 gives another concept of phononic crystals whose

lattice constant can be two orders of magnitude smaller

than the wavelength corresponding to its band gap. This

kind of composite is now known as the local resonance

type phononic crystals generally, or elastic metamaterials

(EMs), if the host matrix of the building block (sub-wave-

length unit cell) is a solid material.18 Different from pho-

nonic crystals (Bragg type) where the periodicity is the

decisive factor, the wave properties of EMs are mainly

attributed to individual properties of the sub-wavelength

unit cell with different resonant behaviors. Based on the

concept of EMs, the elastic wave band gaps19,20 have been

studied and the elastic wave cloaking21,22 and negative

refraction23–25 have also been realized recently. At present,

this field is still very active and more information about

metamaterials can refer to Refs. 1 and 26.

As for EMs, the effective medium parameters can be

taken to describe the dispersion properties of elastic waves in

the long wavelength limit. Generally, the effective parameters

of EMs are frequency-dependent, which leads to the depen-

dency of the P wave and S wave velocities on frequency.

In certain frequency regions, those effective parameters

can become negative, owing to the vibrational eigenmodes

of internal microstructure units. Such negative effective

parameters may cause the waves inside having imaginary

velocities (i.e., evanescent waves) to prohibit the propagation.

A variety of microstructure units have been proposed to con-

struct EMs.27–31 Their frequency-dependent effective parame-

ters were obtained by using effective medium theory. EMs

with negative effective density, negative effective bulk modu-

lus, negative effective shear modulus, or their different combi-

nations (i.e., the single-, double-, or triple-negativities) have

been realized.18,19,32 In addition, preliminary studies on wave

reflection and transmission occurring at the interface of two

different EMs were carried out,33 through which unique phe-

nomena such as negative refraction and wave mode conver-

sion were revealed. With those effective parameters not

presented with natural materials, new EM designs were also

proposed for the isolation of some important elastic waves,

especially the seismic waves.34–37

Among all general cases of elastic wave propagation

inside solid medium, how the wave travels in waveguides,

such as elastic waveguide layer, is of great interest to both

the fundamental scientific research and engineering applica-

tions. Although elastic wave motion in solid layered materi-

als has been extensively studied, its research content is

constantly enriched. When an elastic layer is constructed by
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using certain sub-wavelength unit cell with required local

resonant properties as basic element, we can obtain an EM

layer that may exhibit certain wave properties different from

those of conventional elastic layer made of natural medium,

due to the frequency dependence and negative characteristics

of the effective medium parameters of the EM. Actually,

some layers or plates composed of EMs have been investi-

gated in recent years; some elastic wave phenomena like

anisotropic mass density,19 cloaking,21,22 focusing,24 band

gap,38,39 and energy localization40 in such waveguides were

observed within certain frequency ranges. Additionally,

microstructural designs of plate-type EM and their potential

applications were also reviewed.41 However, the researches

on wave propagation in EM layers are still relatively few

and some problems need further investigations, e.g., the

effects of the frequency-dependent and (or) negative effec-

tive medium parameters on the dispersion properties of

Lamb wave, and the possibility of completely isolating the

Lamb wave by means of EMs. In this paper, we will focus

on the propagation of traveling Lamb wave in EM layers.

Our findings suggest that, on one hand, the classical disper-

sion of traveling Lamb wave in elastic layer may have signif-

icant changes due to the frequency dependence of effective

parameters induced by EM. On the other hand, the traveling

Lamb wave in EM layer cannot be completely suppressed no

matter which combination of negative parameters (single-,

double-, or triple-negativities) is taken in EM design, unless

certain requirement of effective modulus ratio is met. We

believe that the results obtained here can definitely provide

instructive information for future design of EMs, especially

in the field of EM-based elastic wave isolation and object

protection.

The paper is organized as follows. The model and basic

wave equations together with the dispersion relations are given

in Section II, and the traveling Lamb wave modes are catego-

rized according to the combinations of positive or negative

effective medium parameters. The only possible traveling

Lamb wave mode is recognized when the effective P and S

wave velocities are simultaneously imaginary. In Section III,

we briefly demonstrate the effect of EM with typical frequency-

dependent effective density on traveling Lamb wave dispersion

characteristics. In Section IV, the unique traveling Lamb wave

mode recognized in Section II is further discussed in detail. The

supporting condition is mathematically proved. The theoretical

results given in this part are also verified by FEM simulations

from two levels: the level of effective medium and the level of

microstructure unit cell. Finally, a concluding summary and

potential future works are given in Section V.

II. MODE CLASSIFICATION OF THE TRAVELING LAMB
WAVE

As schematically shown in Fig. 1, the upper and lower

boundaries of the elastic layer are stress-free. The thickness is

2h. The effective density, P wave modulus, and S wave modu-

lus of the EM are denoted as qef f ;Eef f ; lef f , respectively. For

homogeneous isotropic natural medium, E, l, and q are posi-

tive constants and independent on wave frequency. However,

when it comes to EMs, their artificially designed sub-

wavelength structures allow for spectral variation of effective

parameters. Different negativities such as single-negativity,

double-negativity, and triple-negativity within certain fre-

quency bands are also achievable by subtle design of unit cells.

For the Lamb wave propagating in the layer, the dis-

placement potentials can be written as (the detailed deriva-

tion is given in Appendix A)

u ¼ ½A1 sinðpx2Þ þ A2 cosðpx2Þ�ejðkx1�xtÞ

w ¼ ½B1 sinðqx2Þ þ B2 cosðqx2Þ�ejðkx1�xtÞ ; (1)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
L

� k2
q

; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
T

� k2
q

; c2
L ¼ E

q, c2
T ¼

l
q (For

brevity, the subscripts of the effective parameter symbols are

omitted here and hereafter), k is the wave number, p and q
denote the P and S wave numbers, respectively, in the thick-

ness direction (i.e., the x2 direction) of the layer. Clearly, the

real number of p (q) represents the shape of standing wave,

while the imaginary number represents the form of evanes-

cent wave in the thickness direction.

The solution in Equation (1) contains symmetric and anti-

symmetric wave components. According to the stress condi-

tions of free boundaries (x2 ¼ 6h), the famous Rayleigh-

Lamb frequency equation can be subsequently written as

For symmetric mode

tan qhð Þ
tan phð Þ ¼ �

4k2pq

q2 � k2ð Þ2
: (2)

For antisymmetric mode

tan qhð Þ
tan phð Þ ¼ �

q2 � k2
� �2

4k2pq
; (3)

where the wave number k can take real, imaginary, or com-

plex values.

Generally, for a given frequency, Equations (2) and (3)

have limited number of real and purely imaginary solutions.

Instead, the satisfying complex wave numbers are infinite in

number. What we are interested here is the real wave number

solutions, that is, the traveling wave modes which can propa-

gate along the layer direction (the x1 direction as shown in

Fig. 1). In fact, these modes are more important in practical

problems since they are directly related to the harmful elastic

FIG. 1. Model of the EM Layer.
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waves. Apparently, if k takes a positive real number, the

wave numbers p (q) of P wave (S wave) in the thickness

direction should be real or purely imaginary, and cannot be

complex.

We have, therefore, summarized the possible traveling

wave modes inside the EM layer according to the different

combinations of positive or negative effective parameters. The

results are shown in Tables I and II with the square of two

effective wave velocities, and the wave numbers p and q. It is

very clear that, on one hand, when all three effective parame-

ters of the EM layer (q, E, and l) are simultaneously positive

or negative (namely, triple-positive or triple-negative), the

constitution of the traveling wave solution in EM layer is simi-

lar to that in traditional elastic layer. The wave numbers in the

thickness direction, i.e., p and q, have four different positive-

negative combinations. Here, the determining factors for dis-

persion relations are the values of c2
L and c2

T . Since they are

positive in both triple-negative and triple-positive cases, the

constitution of the traveling wave solution remains unchanged.

On the other hand, if the number of negative effective parame-

ters is less than three (namely, single-negative or double-nega-

tive), one or both of c2
L and c2

T would be negative, leading to

the imaginary corresponding wave velocity (velocities) and

the conversion of some of the traveling wave modes into eva-

nescent modes. Therefore, the number of the traveling wave

solutions reduces. As listed in Tables I and II, only two possi-

ble traveling wave modes remain when either c2
L or c2

T is nega-

tive. When c2
L and c2

T are both negative, we can anticipate one

single traveling wave mode.

It is worth noting that, our study shows the traveling

Lamb waves always exist in the EM layer and cannot be

eliminated completely, no matter which combination of

the effective parameters, i.e., the single-, double- or triple-

negatives, is taken. This is obviously different from the

case of unbounded space, where all the elastic waves can be

suppressed completely only by using EM with double-

imaginary wave velocities (since all traveling wave modes

are entirely converted into evanescent ones). This differ-

ence is due to the boundary effects. For the case of the EM

layer with finite thickness, the two free boundaries will

make the P wave and SV wave couple with each other.

Moreover, they can also trigger surface traveling waves of

which the P and (or) SV wave potentials take the shape of

evanescent mode in the thickness direction of the EM layer.

These surface traveling wave modes exist not only in the

layers of natural mediums (triple-positive case), but also in

the EM layers regardless of the combination of effective

parameters.

As can be observed from Tables I and II, a special mode

exists in all cases, i.e., the one of which both p and q are

imaginary. More importantly, it may be excited as the only

mode in two particular cases: q < 0;E > 0; l > 0 and

q > 0;E < 0; l < 0, which correspond to the case with

double-imaginary wave velocities. Apparently, this specific

traveling wave mode deserves special attention, especially

from the angle of elastic wave isolation, since it seems rather

hard to be suppressed even though the EM with double-

imaginary wave velocities is used.

III. DISPERSION CHARACTERISTICS
WHEN EFFECTIVE PARAMETERS
ARE FREQUENCY-DEPENDENT

All the three effective parameters of EM can be

designed to be frequency-dependent, which have additional

impacts on the dispersion relation of the Lamb wave in EM

TABLE I. Possible traveling wave solutions when the effective density of the EM is positive. Re—real number Im—imaginary number.

Effective density Effective modulus Effective wave velocity Range of wave number Properties of p and q

q > 0 E > 0 & l > 0 c2
L > 0 & c2

T > 0 k < x=cL & k < x=cT p: Re q: Re

k > x=cL & k > x=cT p: Im q:Im

x=cT < k < x=cL p: Re q:Im

x=cL < k < x=cT p: Im q:Re

E > 0 & l < 0 c2
L > 0 & c2

T < 0 k > x=cL p: Im q:Im

k < x=cL p: Re q:Im

E < 0 & l > 0 c2
L < 0 & c2

T > 0 k > x=cT p: Im q:Im

k < x=cT p: Im q:Re

E < 0 & l < 0 c2
L < 0 & c2

T < 0 … p: Im q:Im

TABLE II. Possible traveling wave solutions when the effective density of the EM is negative.

Effective density Effective modulus Effective wave velocity Range of wave number Properties of p and q

q < 0 E > 0 & l > 0 c2
L < 0 & c2

T < 0 _ p: Im q:Im

E > 0 & l < 0 c2
L < 0 & c2

T > 0 k > x=cT p: Im q:Im

k < x=cT p: Im q:Re

E < 0 & l > 0 c2
L > 0 & c2

T < 0 k > x=cL p: Im q:Im

k < x=cL p: Re q:Im

E < 0 & l < 0 c2
L > 0 & c2

T > 0 k < x=cL & k < x=cT p: Re q: Re

k > x=cL & k > x=cT p: Im q:Im

x=cT < k < x=cL p: Re q:Im

x=cL < k < x=cT p: Im q:Re
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layer. The effects are exhibited directly through the effective

P wave and S wave velocities. Here, we pick the effective

density to be frequency-dependent to demonstrate the

changes of dispersion curves. The effective P and S wave

moduli remain positive constants. The effective density used

here is borrowed from Ref. 30 (see Eq. (14) therein), and

the Frequency Response Function (FRF) curve is shown in

Fig. 2, where x0 is the characteristic frequency of the built-

in unit of the EM (see the inset), qef f and qst represent the

effective and static densities, respectively.

The dispersion equations (2) and (3) are solved numeri-

cally for a set of parameters: h¼ 0:5m, Eef f ¼ 10:84�1010 Pa,

lef f ¼ 2:87�1010 Pa, qst¼ 2700 kg=m3. The dispersion curves

are depicted in Fig. 3, where the horizontal axes are the dimen-

sionless frequency thickness product and the vertical axes

represent the real wave numbers (Figs. 3(a) and 3(b)) and phase

velocities (Figs. 3(c) and 3(d)), respectively. For comparison,

the dispersion curves of traditional elastic medium layer with

static density qst were also calculated and depicted in the

figures.

As shown in Fig. 3, dispersion changes produced by

introducing the frequency-dependent density are distinct. On

one hand, the symmetric and antisymmetric mode curves

tend to be similar as those of the constant density cases in

the vicinity of zero frequency, where the system can be

regarded as in a quasi-static state and the impact of fre-

quency dependence is not prominent. However, when the

wave frequency increases, eventually getting close to x0, the

characteristic frequency of the internal unit of EM, the dis-

persion curves of these modes differ significantly from the

classical results. The wave numbers of the curves shown in

Figs. 3(a) and 3(b) will tend to reach infinity with the fre-

quency approaching x0; therefore, the phase velocities will

get close to zero simultaneously which can be seen clearly in

Figs. 3(c) and 3(d). Meanwhile, the group velocities of these

modes also approach zero when the frequency tends to x0

which can be found from the slope of the curves in Figs. 3(a)

and 3(b), meaning that the energy of these wave modes can

hardly be transferred. For the classical natural medium layer

case, when the wave frequency approaches infinity, the

phase velocities of A0 and S0 modes tend to the Rayleigh

wave velocity, while those of all non-zero modes tend to the

S wave velocity. However, if we check the EM layer, the

two effective wave velocities, hence the effective Rayleigh

wave velocity, decrease gradually. As shown in Fig. 2, they

reach zero as the effective density increases and approaches

infinity when the frequency increases close to x0. Thus, the

phase velocities of both zero-order modes become zero, the

effective Rayleigh wave velocity, while those of the non-

zero modes will also tend to become zero, the effective S

wave velocity.

In addition, in the classical natural medium layer case,

the dispersion curves cover a wide frequency range. While

for the EM layer, all the curves can be observed to be within

the frequency region 0 < x < x0, and converge towards

each other when the frequency approaches x0. This means

the nonexistence of any traveling wave inside the EM layer

when the frequency x > x0. The two effective wave veloci-

ties are imaginary simultaneously since the effective density

becomes negative, while both effective moduli are positive

constants. In other words, a Lamb wave band gap is formed.

Only the Lamb wave modes below this characteristic fre-

quency x0 can go through, while those above will be

blocked.

We mentioned in Sec. II that, a unique traveling mode

with purely imaginary p and q can exist in the frequency

region x > x0 where both the two effective velocities are

imaginary (see Table II). It is in contradiction with the con-

clusion we draw from the dispersion curves shown in Fig. 3.

Thus, a natural question appears, i.e., indeed, is this unique

traveling wave mode supported or not in the EM layer within

the frequency region where the effective wave velocities are

both imaginary?

IV. THE SPECIAL TRAVELING LAMB WAVE MODE
WITH IMAGINARY p AND q

To answer the question raised above, we focus on

the important case of which the effective P wave and S

wave velocities are both imaginary. Actually, it contains

two different combinations of effective parameters,

namely, the case q < 0;E > 0; l > 0 and the case q > 0;
E < 0; l < 0.

A. Further discussion on the dispersion relation

We start from the relationship between the phase

velocity c ¼ x
k and the normalized frequency X ¼ 2hx

(frequency-thickness product). The dispersion relations (2)

and (3) can be rewritten as

1� e
X
c

ffiffiffiffiffiffiffi
1�c2

c2
L

q� �
� 1þ e

X
c

ffiffiffiffiffiffiffiffi
1�c2

c2
T

q� �

1þ e
X
c

ffiffiffiffiffiffiffi
1�c2

c2
L

q� �
� 1� e

X
c

ffiffiffiffiffiffiffiffi
1�c2

c2
T

q� �

¼

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
L

 !
� 1� c2

c2
T

 !vuut
c2

c2
T

� 2

 !2
; (4)

FIG. 2. FRF curve of the typical effective density.
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1� e
X
c

ffiffiffiffiffiffiffi
1�c2

c2
L

q� �
� 1þ e

X
c

ffiffiffiffiffiffiffiffi
1�c2

c2
T

q� �

1þ e
X
c

ffiffiffiffiffiffiffi
1�c2

c2
L

q� �
� 1� e

X
c

ffiffiffiffiffiffiffiffi
1�c2

c2
T

q� �

¼

c2

c2
T

� 2

 !2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
L

 !
� 1� c2

c2
T

 !vuut
: (5)

To facilitate the discussion, the effective modulus ratio

r ¼ E
l ¼

c2
L

c2
T

is introduced here. It can also be expressed as the

effective wave velocity ratio
ffiffiffi
r
p
¼ cL

cT
. For simplicity, we

bring in four additional parameters, b ¼ X
c , a ¼ � c2

c2
T

,

m ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p

, s ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

r

p
, where b > 0; a > 0;m > 1; s > 1

are required. Then, the Equations (4) and (5) can be reduced

as follows:

For symmetric mode

ebs � 1ð Þ � ebm þ 1ð Þ
ebs þ 1ð Þ � ebm � 1ð Þ ¼

4ms

m2 þ 1ð Þ2
: (6)

For antisymmetric mode

ebs � 1ð Þ � ebm þ 1ð Þ
ebs þ 1ð Þ � ebm � 1ð Þ ¼

m2 þ 1ð Þ2

4ms
: (7)

FIG. 3. Dispersion curves of the traveling Lamb wave modes propagating in traditional elastic layer and EM layer.
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When r � 1, 1 < s � m. The left-hand side (LHS) of

Eq. (7) is less than or equal to 1, while the right-hand side

(RHS) is always greater than 1. Therefore, the equation can-

not be satisfied at all, meaning that no antisymmetric travel-

ing wave modes occur under this circumstance.

As for Eq. (6), the RHS is indeed less than 1 which

seems to indicate that Eq. (6) could have valid solution in

the form of existing symmetric traveling wave. However, if

we construct the following function:

f sð Þ ¼ ebs � 1ð Þ � ebm þ 1ð Þ
ebs þ 1ð Þ � ebm � 1ð Þ �

m2 þ 1ð Þ2

4ms
� 1:

Then, Eq. (6) is equivalent to f ¼ 0. Now let us assume

that s ¼ m; it can be seen that f ðmÞ ¼ m2�1ð Þ2
4m2 > 0. The first

derivative of function f with respect to s is

df

ds
¼ ebm þ 1

ebm � 1
� m2 þ 1ð Þ2

4m
� d

ds

1

s
� e

bs � 1

ebs þ 1

� �

¼ ebm þ 1

ebm � 1
� m2 þ 1ð Þ2

4m
� 1

s2 ebs þ 1ð Þ2

� 1þ ebs 2bs� ebsð Þ
	 


: (8)

When bs > 0, we have 1þ ebsð2bs� ebsÞ < 0, and sub-

sequently df
ds < 0. Therefore, f ðsÞ � f ðmÞ > 0 is obtained

since 1 < s � m, which means f ¼ 0 is invalid and hence

Eq. (6) cannot be satisfied. Obviously, it can be concluded

that when the proposed effective modulus ratio parameter

r � 1, the special traveling wave mode with imaginary

p and q cannot exist in the frequency region where the

two effective wave velocities are imaginary. With the param-

eters we used to calculate the dispersion curves presented in

Fig. 3, r ¼ E
l ¼ 10:84

2:87
¼ 3:8 > 1, eventually leading to the no

observation of such traveling wave mode.

Now there is another scenario of 0 < r < 1. With the aid

of similar analysis process, it can be proved that the Eqs. (4)

and (5) (or Eqs. (6) and (7)) have solutions. Nevertheless,

the explicit expressions of their solutions cannot be obtained

and only numerical ones may be presented. We have calcu-

lated them by giving the parameters a set of specific values

(r ¼ 0:35; 0:50; 0:66; 0:80; 0:95, cT ¼ 3200 i ðm=sÞ). The

results are shown in Fig. 4 with the symmetric and antisym-

metric modes represented by solid lines and dotted lines,

respectively. For simplicity purpose, these parameters are

assumed to be nondispersive and constants within the whole

frequency band. It is clear that these curves are just the coun-

terparts of the A0 and S0 modes in classical results. However,

the components of wave modes contained are with imaginary

p and q. Additionally, no traveling wave modes of non-zero

order appears.

We would like to discuss the characteristics of the sym-

metric mode first. When the frequency-thickness product

approaches zero, i.e., X! 0 (X ¼ 2hx), c
jcT j ! 2

ffiffiffiffiffiffiffiffiffiffiffi
1
r� 1

q
(j � j represents modulus operation) can be obtained by using

L Hospitals rule. The phase velocity c of the traveling wave

mode tends to reach a fixed value determined by r and jcT j,
when the frequency reaches the lower limit. According to the

set of values of r given above, these fixed values of phase

velocity c are obtained as follows: 2.73, 2.00, 1.44, 1.00,

0.46. They are also the vertical ordinates of the intersection

points of the solid lines and the vertical axis in Fig. 4. As the

frequency increases, the symmetric wave velocity decreases

gradually and approaches a fixed value when X!1 (the

details can be found in Appendix B), which is similar to the

classical elastic wave case where the velocity eventually

tends to reach the Rayleigh wave velocity.

Similar analysis process can be conducted for the anti-

symmetric mode. Considering X! 0 and X!1, we find

c! 0 when X! 0, and reach Eq. (A4) once again when

X!1. Therefore, the phase velocities of the symmetric

and antisymmetric modes tend towards the same fixed value,

namely, the Rayleigh wave velocity (
ffiffiffi
a
p
� jcT j), (see also

Appendix B) of the EM layer.

It should be noted that, the constant r and cT are

assumed in above analyses for simplicity. However, these

parameters are always frequency-dependent for real EMs,

and hence, no such EM layer can have the dispersion curves

given in Fig. 4. In spite of this, these curves are still mean-

ingful. In fact, for any practical EM layer possessing double

imaginary wave velocities and satisfying 0 < r < 1 within

certain frequency region, every point of its practical disper-

sion curve (i.e., the unique traveling wave mode with imagi-

nary p and q) should be located on one of these curves (like

those given in Fig. 4) according to its corresponding r and

cT values.

B. Finite Element Simulation based on the model
of effective medium

Finite element simulations were carried out by using the

software COMSOL Multiphysics 5.0. A two-dimensional

simulation model is used here with line load applied at the

left boundary. The mesh model is shown in Fig. 5, where

the EM layer is 8 m with a PML layer of 2 m in length, and

FIG. 4. Dispersion curves of the traveling wave mode with imaginary p and

q:r < 1.
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the thickness is 1 m. In the case of symmetric loading,

two loads in different directions are applied on the upper

half section of the layer’s left boundary, one direction is

towards the right and the other is straight up, while the load

directions on the lower half section are towards the right and

straight down. On the other hand, for the antisymmetric load-

ing case, the loading directions on the upper half section are

towards the right and straight up, and the loading directions

on the lower half section are towards the left and straight up.

All the loads have the same amplitudes (10 kN/m) and

phases.

In the following, two different cases, i.e., 0 < r < 1 and

r > 1, were considered, respectively. Since the simulation

here is based on the model of effective medium, the simula-

tion model is assumed to be homogeneous and isotropic.

(1) 0 < r < 1

Here we select r ¼ 0:66, cT ¼ 3200 i ðm=sÞ, and

two frequency points (4 kHz and 0.8 kHz) for calcula-

tions. In order to facilitate the comparison with the

following simulation results, the dispersion curves of

EM layer with the same parameters are computed

first according to Eqs. (6) and (7), and the results are

depicted in Fig. 6. The wave velocities corresponding

to the selected frequencies are also marked in Fig. 6.

At 4 kHz, the velocities of the symmetric and antisym-

metric modes are same value 3154 m/s and the wave-

length is about 0.78 m. At 800 Hz, the velocity of the

symmetrical mode (red solid line) is 3910 m/s, while

that of the antisymmetric mode (blue dotted line) is

2483 m/s. The corresponding wavelengths are around

4.89 m and 3.10 m, respectively.

(a) The simulation results at 4 kHz.

Figure 7 shows the displacement field fluctuations

at 4 kHz in the EM layer. It can be observed that

the propagation of expected traveling wave in the

EM layer is rather clear although the effective

wave velocities are both imaginary. From the simu-

lation results, the displacement field close to the

center of EM layer is almost zero. The traveling

waves are only visible in a form of surface wave

near the free surfaces, indicating the imaginary val-

ues of p and q. Further examination of the displace-

ment field shows that both the symmetric and

antisymmetric modes of the traveling wave have

the same wavelength (around 0.76 m) as marked in

Figs.7(c) and 7(f), in good agreement with the the-

oretical result (0.78 m).

(b) The simulation results at 0.8 kHz.

Fig. 8 shows the simulated displacement field in the

EM layer at 0.8 kHz. It can be seen that significant

traveling wave still exists at this low frequency.

Those traveling wave modes with imaginary p and q
still appear mainly in the vicinity close to the free

surfaces. However, since the corresponding wave-

lengths are relatively large, the displacement fields

inside the layer are much more remarkable than

those at 4 kHz. Through measuring the distance

between displacement peaks as marked in Fig. 8, it

is found that the wavelengths of the symmetric and

antisymmetric modes are around 4.87 m and 3.11 m,

respectively, fairly consistent with theoretical results

(4.89 m and 3.10 m, respectively).

All the results at the two frequencies show that,

when 0 < r < 1, EM layer can support significant

traveling wave in surface wave form, even though

both of the effective P and S wave velocities are

imaginary simultaneously.

(2) r > 1

In this part, we select r ¼ 1:5 and keep all other parame-

ters in the previous case. The distributions of wave fields

at the two frequencies, 4 kHz and 0.8 kHz are simulated

and depicted in Figs. 9 and 10. Apparently, no traces of

traveling wave can be observed in the EM layer in both

cases, which further confirms the prediction from our

theoretical analysis. Now if one would like to suppress

or completely isolate the elastic waves propagating in a

waveguide layer with the introduction of EM having

double-imaginary effective wave velocities, a require-

ment that has to be met is r > 1. So the EM layer will be

able to eliminate all possible traveling waves so as to

achieve the desired elastic wave isolation and target

protection.

C. Finite Element Simulation based
on the microstructure unit cell of EM

To verify the theoretical results with practical materials,

an appropriate unit cell of EM is borrowed from Ref. 42,

however, the triangular lattice is replaced by a square lattice

here for convenience. It is composed of three-componentFIG. 6. Dispersion curves under the condition:r ¼ 0:66, cT ¼ 3200 i ðm=sÞ.

FIG. 5. Finite element mesh model.
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continuum media by a Polyethylene coated lead cylinder

embedded in Epoxy matrix. The structural parameters are

given in Fig. 11 (left panel, unit: mm) and the material prop-

erties are as follows:

Polyethylene: density 920 kg=m3, bulk modulus 0:57� 109 Pa,

shear modulus 0:13� 109 Pa;

Lead: density 11600 kg=m3, bulk modulus 52:6� 109 Pa,

shear modulus 14:9� 109 Pa;

Epoxy: density 1110 kg=m3, bulk modulus 3:14� 109 Pa,

shear modulus 0:89� 109 Pa.

The band structure along the CX direction for the square

lattice is presented also in Fig. 11 (right panel). In addition,

the effective parameters of the EM built with the unit cells

are calculated by using the numerical method proposed also

in Ref. 42, and the normalized effective mass density, bulk

modulus, and shear modulus are depicted in Fig. 12, where

the symbol a is lattice constant (10 mm) and ~c is the S wave

velocity of the matrix (epoxy).

The band structure shows that the first band gap is located

within the normalized frequency region 0.190� 0.201 where

qef f is negative and Eef f (Eef f ¼ jef f þ lef f , the effective lon-

gitudinal wave modulus) and lef f are both positive (actually,

lef f remains positive and almost unchanged within the inter-

ested frequency range), i.e., both of the effective P wave and S

wave velocities are imaginary. With the increase of wave fre-

quency, jef f decreases gradually and tends to become �1
below frequency 0.218. Apparently, Eef f will become negative

when beyond certain frequency point (0.201 here); therefore, a

negative energy band curve occurs owing to qef f and Eef f neg-

ative simultaneously which can be observed in Fig. 11 (right

panel). In this frequency band (0.201� 0.218), the effective S

wave velocity is imaginary while the P wave velocity is real.

Additionally, there exists second band gap in the frequency

band 0.218� 0.410 where both the wave velocities become

imaginary again (i.e., qef f < 0;Eef f > 0; lef f > 0) since jef f

turns positive beyond 0.218.

Twelve cells are adopted along the thickness direction

to construct the EM layer. The surface Lamb wave modes of

the EM layer are calculated by super cell simulation with

software COMSOL 5.0. The calculated dispersion curves of

the surface Lamb wave modes are shown in Fig. 13 by the

FIG. 7. Traveling wave mode with imaginary p and q in the EM layer possessing double imaginary effective wave velocities:r ¼ 0:66, 4 kHz.
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FIG. 9. No traveling wave occurring in the EM layer of which both effective wave velocities are imaginary: r ¼ 1:5, 4 kHz.

FIG. 10. No traveling wave occurring in the EM layer of which both effective wave velocities are imaginary: r ¼ 1:5, 0.8 kHz.

FIG. 8. Traveling wave mode with imaginary p and q in the EM layer possessing double imaginary effective wave velocities: r ¼ 0:66, 0.8 kHz.
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star markers (antisymmetric mode) and plus sign markers

(symmetric mode). For convenience, part of the band struc-

ture of the unit cell is also given in Fig. 13. Clearly, small

parts of the dispersion curves of the surface Lamb wave

mode fall within the first band gap of the band structure of

the unit cell. They are very close to the lower edge of the

negative energy band curve of the unit cell and just the pre-

dicted unique traveling Lamb wave modes with imaginary p
and q, since both of the effective P and S wave velocities are

imaginary. As a matter of fact, Eef f equals to 0 just at the

lower edge of the negative energy band curve (normalized

frequency 0.201), in another word, jef f ¼ �lef f . When the

wave frequency decreases gradually from the point, Eef f will

become positive and increase gradually since jef f increases

at the same time (see Fig. 12). During the process, the condi-

tion 0 < r < 1 will be satisfied until jef f equals to 0 (corre-

sponding frequency is around 0.197), and therefore the

unique traveling Lamb wave modes will exist in the normal-

ized frequency region 0.197� 0.201 which agrees with

Fig. 13 well. Below frequency 0.197, jef f turns positive and

hence Eef f is bigger than lef f , meaning that the occurring

condition of the unique traveling Lamb wave mode is not

reached any longer.

The displacement field distributions of the surface Lamb

wave modes with normalized wave number ka=2p ¼ 0:49

are given in Fig. 14. It can be observed that these modes are

really confined near to the free surfaces of the EM layer,

and the symmetric and anti-symmetric modes can also be

identified.

V. SUMMARY AND CONCLUSION

The traveling Lamb wave modes in EM layer are dis-

cussed based on the effective medium parameters in this

paper. According to different combinations of positive or

negative effective parameters, the possible traveling wave

modes in the layer are categorized. Then, the impacts of the

frequency dependency of typical effective density on the dis-

persion characteristics are investigated. Finally, we focus on

the existential condition of a unique traveling wave mode

(i.e., the one with imaginary p and q) and discuss it in detail.

Our research shows that

(1) The traveling elastic wave solutions change with differ-

ent combinations of effective parameters, owing to the

distinct effective P wave and S wave velocities. The EM

layer supports different number of possible traveling

wave modes according to the wave numbers in the

FIG. 11. Unit cell of the 2D EM and

its band structure.

FIG. 12. Effective parameters of the EM.

FIG. 13. Surface Lamb wave modes located in the band gap of bulk wave,

calculated by a super cell simulation of 12 cells. FIG. 14. Field distributions of the surface Lamb wave modes with ka=2p¼0:49.
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thickness direction (p and q): four, if the effective P and

S wave velocities are both real; two, if either of the

effective wave velocities is imaginary while another

remains real; and only one possible traveling wave mode

with imaginary p and q when both of the effective wave

velocities are imaginary.

(2) The frequency dependency of the effective parameters

has significant impacts on the dispersion characteristics

of the traveling Lamb wave in EM layer. Although we

cannot discuss all the possible frequency dependencies

one by one, the conclusion is confirmed by analyzing a

typical and common effective density case. For example,

the dispersion curves concentrate in the frequency region

0 < x < x0 and converge together when approaching

the characteristic frequency x0 of the EM unit cell.

Meanwhile, the phase velocities of all symmetric and

antisymmetric branches tend to reach zero. Moreover, all

the traveling wave modes vanish completely above x0

when r � 1.

(3) For the EM layer with double-imaginary effective wave

velocities, whether the only possible traveling wave

mode (with imaginary p and q) appears or not depends

on the value of the effective modulus ratio r (or the

effective wave velocity ratio
ffiffiffi
r
p

). When r � 1, this

unique mode is not supported and ideal wave isolation

can be realized. However, such mode will come into

being in the EM layer when 0 < r < 1. When it does

exist, this traveling mode is mainly concentrated in the

vicinity around the two free surfaces, hence, it is a kind

of surface wave. Since it is not attenuated along the

propagation direction without considering damping

effects, this surface traveling wave needs to be moni-

tored if we wish to achieve elastic wave isolation with

the EM layer. On the other hand, it may contribute to the

production of pure surface wave mode in waveguide

structure, which is hard to achieve with natural elastic

medium layers.

Various types of waveguides are commonly used in

practical applications. Analyzing the waves inside those

structures is rather important. We have conducted a theo-

retical and numerical study on the traveling Lamb wave in

the EM waveguide layer based on the dispersion equations.

The potential future direction to explore includes two

major aspects: first, it is meaningful for overall understand-

ing to investigate the traveling wave characteristics of

other cases listed in Tables I and II; second, it is also

important to consider some other practical waveguides

such as multi-layer materials built with EMs and half space

with EM coating.
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APPENDIX A: BASIC THEORETICAL DERIVATION FOR
EQ. (1)

For Lamb wave propagating in the elastic metamaterial

layer (shown in Fig. 1), the basic equations of the displace-

ment potentials can be written as43

@2u

@x2
1

þ @
2u

@x2
2

¼ 1

c2
L

@2u
@t2

@2w

@x2
1

þ @
2w

@x2
2

¼ 1

c2
T

@2w
@t2

; (A1)

where c2
L ¼ E

q, c2
T ¼

l
q (For brevity, the subscripts of the effec-

tive parameter symbols are omitted).

The relationship between the displacements and the dis-

placement potentials is

u1 ¼
@u
@x1

þ @w
@x2

u2 ¼
@u
@x2

� @w
@x1

: (A2)

Substituting the formal solution / ¼ Uðx2Þejðkx1�xtÞ;
w ¼ Wðx2Þejðkx1�xtÞ in Eq. (A1), we obtain

u ¼ ½A1 sinðpx2Þ þ A2 cosðpx2Þ�ejðkx1�xtÞ

w ¼ ½B1 sinðqx2Þ þ B2 cosðqx2Þ�ejðkx1�xtÞ ; (A3)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
L

� k2
q

; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
T

� k2
q

; k is the wave num-

ber, p and q denote the P and S wave numbers, respec-

tively, in the thickness direction (i.e., the x2 direction)

of the layer.

FIG. 15. Numerical solutions of Equation (A4).
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APPENDIX B: DETAILS OF THE SYMMETRIC WAVE
VELOCITY AS Xfi‘

When X!1, the equation that relates the wave

velocity ratio (a ¼ � c2

c2
T

) to the effective modulus ratio

(r ¼ E
l ¼

c2
L

c2
T

) can be derived from Eq. (6)

aþ 2ð Þ2 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ að Þ 1þ a

r

� �s
: (A4)

Obviously, Equation (A4) has the same form as the

phase velocity equation of Rayleigh wave. Despite this, it

should be noted that the value of a is positive here and

0 < r < 1, while the value of a in the phase velocity equa-

tion of Rayleigh wave is negative (a ¼ � c2

c2
T

, c2
T > 0) and

r > 1 (r ¼ c2
L

c2
T

; cL > cT). The numerical solution of Eq. (A4)

has been shown in Fig. 15. Apparently, with r (0 < r < 1)

decreasing gradually, the value of
ffiffiffi
a
p

increases monotoni-

cally, leading to the phase velocity increase of the traveling

wave mode (c ¼
ffiffiffi
a
p
� jcT j). This is consistent with the trend

shown in Fig. 4.
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