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1. Introduction 

Machine scheduling problems with availability constraints motivated by 

preventive maintenance have received increasing attention from researchers. The 

studies in the literature on this topic mainly deal with three situations, namely 

resumable, nonresumable, and semiresumable. If a job cannot be finished before the 

unavailable period of a machine and the job can continue after the machine becomes 

available again, it is called resumable. On the other hand, if the job has to restart 

rather than continue, the situation is called nonresumable. If the unfinished job will 

have to partially restart after the machine becomes available again, the situation is 

called semiresumable. The recent research results on this subject can be found in the 

review papers by Lee et al. [1], Sanlaville and Schmidt [2], and Schmidt [3].  

The two-machine flowshop scheduling problem with availability constraints was 

first studied by Lee [4]. Under the resumable assumption, he proved that the problem 

is NP-hard when an availability constraint is imposed on only one machine and 

proposed a pseudo-polynomial dynamic programming algorithm to solve the problem 

optimally. He also developed two heuristics. The first heuristic is for solving the 

problem where the availability constraint is imposed on machine 1, which has a 

worst-case error bound of 1/2. The second heuristic is for solving the problem where 

the availability constraint is imposed on machine 2, which has a worst-case error 

bound of 1/3. Lee [5] further studied the semiresumable case and developed a 

pseudo-polynomial dynamic programming algorithm and heuristics. For the 

resumable case, Cheng and Wang [6] developed an improved heuristic when the 

availability constraint is imposed on the first machine, and the heuristic has a 

worst-case error bound of 1/3. Breit [7] presented an improved heuristic for the 

problem with an availability constraint only on the second machine and showed that 

the heuristic has a worst-case error bound of 1/4. Cheng and Wang [8] considered a 

special case of the problem where the availability constraint is imposed on each 

machine, and the two availability constraints are consecutive. They developed a 

heuristic and showed that it has a worst-case error bound of 2/3 for the nonresumable 

situation. In addition, the two-machine flowshop scheduling problem with availability 
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constraints has also been studied under the no-wait processing environment by Cheng 

and Liu [9, 10]. For the general flowshop scheduling problem with availability 

constraints, Aggoune [11] proposed a heuristic based on a genetic algorithm and a 

tabu search.  

In all the above-mentioned flowshop scheduling models, setup times are not 

considered; in other words, setup times are assumed to be included in processing 

times. However, in many industrial settings, it is necessary to treat setup times as 

separated from processing times (see, for example, [12, 13]). In this paper we consider 

the two-machine flowshop scheduling problem with anticipatory setup times, where 

the availability constraint is imposed on only one machine. The setup times are 

anticipatory, i.e., the setup for the second operation of any job on machine 2 can start 

before the completion of its first operation on machine 1 whenever there is some idle 

time on machine 2. We assume that the processing order of jobs is the same on each 

machine. That is, we confine ourselves to finding solutions that are permutation 

schedules for the problem. We also assume that all the jobs and their setups are 

resumable. The objective is to minimize the makespan. It is evident from Lee [4] that 

our problem is NP-hard. In the next section, we introduce the notation and some 

preliminaries. In Sections 3 and 4, we study the cases where the availability constraint 

is imposed on machines 1 and 2, respectively. Some concluding remarks are given in 

the last section. 

 

2. Notation and preliminaries 

For the problem under consideration, we introduce the following notation to be 

used throughout this paper. 

},,{ 1 nJJS L= : a set of n jobs; 

M1, M2: machine 1 and machine 2; 

lll st −=∆ : the length of the unavailable interval on Ml, where Ml is unavailable 

from time sl to tl, ll ts ≤≤0 , l = 1, 2; 
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21, ii ss : setup times of Ji on M1 and M2, respectively, where 0,0 21 >> ii ss ; 

ii ba , : processing times of Ji on M1 and M2, respectively, where 0,0 >> ii ba ; 

   ],,[ )()1( nJJ πππ L= : a permutation schedule, where )(iJπ  is the ith job in π ; 

π *: an optimal schedule; 

CHx: the makespan yielded by heuristic Hx; 

C*: the optimal makespan.  

Following the notation of Lee [1], we denote the problem under study as F2/setup, 

r-a(Ml)/Cmax, i.e., the makespan minimization problem in a two-machine flowshop 

with setup times and a resumable availability constraint on Ml. As an example, 

consider a problem instance of F2/setup, r-a(M1)/Cmax with 3n = . Let 1
1 2s = , 

2
1 3s = , 1 8a = , 1 5b = , 1

2 6s = , 2
2 10s = , 2 5a = , 2 4b = , 1

3 5s = , 2
3 7s = , 3 3a = , 

3 6b = , 1 19s = , and 1 26t = . A schedule 1 2 3[ , , ]J J Jπ =  for the instance is shown in 

Fig. 1.  

The classical two-machine permutation flowshop scheduling problem with setup 

times, denoted as F2/permu, setup/Cmax, can be optimally solved by the Yoshida and 

Hitomi algorithm (YHA) in O(nlogn) time [14]. YHA works in the following manner: 

Divide S into two disjoint subsets A and B, where }|{ 21
iiiii bsasJA ≤−+=  and 

}|{ 21
iiiii bsasJB >−+= . Sequence the jobs in A in nondecreasing order of 

21
iii sas −+  and the jobs in B in nonincreasing order of ib . Arrange the ordered 

subset A first, followed by the ordered subset B. 

 

3. The unavailable interval is on M1   

In this section we develop a heuristic for the problem F2/setup, r-a(M1)/Cmax and 

evaluate its worst-case error bound. The basic ideas of our heuristic are to combine a 

few simple heuristic rules and then improve the schedules by re-arranging the order of 

some special jobs with large setup times or large processing times on M2 in different 

situations.  
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Heuristic H1: 

(1) Find jobs Jp and Jq such that 

}},{\|max{ 222
qpiiiqqpp JJSJbsbsbs ∈+≥+≥+ . 

(2) Sequence the jobs by YHA. Let the corresponding schedule be 1π  and the 

corresponding makespan be Cmax( 1π ). 

(3) Sequence the jobs in nonincreasing order of )/()( 12
iiii asbs ++ . Let the 

schedule be 2π  and the corresponding makespan be Cmax( 2π ). 

(4) Place job Jp in the first position and keep the other 1−n  jobs in the same 

positions as those in Step (3). Let the corresponding schedule be 3π . 

(5) If 1
11 )()( sasas qqpp ≤+++ , then sequence jobs Jp and Jq as the first two jobs 

such that the completion time of the last one is minimized. The remaining 

2−n  jobs are sequenced randomly. Let the corresponding schedule be 4π . 

(6) Select the schedule with the minimum makespan from the above four 

schedules. Let CH1=min{Cmax( 1π ), Cmax( 2π ), Cmax( 3π ), Cmax( 4π )}. 

    

The time complexity of Heuristic H1 is O(nlogn). In the following, we analyze 

the performance bound of Heuristic H1.  

Let π  be a schedule for the problem F2/setup, r-a(M1)/Cmax. We define the 

critical job )(kJπ  in π  as the last job in π  such that its starting time on M2 is 

equal to its finishing time on M1. 

 

Lemma 1. For schedule 2π  defined in Step (3) of Heuristic H1, we assume that the 

completion time of the critical job )(2 kJπ  on M1 is t, and let )(vJπ  be the last job that 

finishes no later than time t on M1 in a schedule π . The following inequality holds: 
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2
)1()(2 2

)()( +++≤ vkmaxmax sbCC ππππ . 

 

Proof  For schedule 2π , its makespan is 

∑ +=
+++=

n

kj jjkmax bsbtC
1 )(

2
)()(2 )()(

222 ππππ .            (1) 

Under the assumption of Lemma 1, we have 

∑∑ ==
+≤+

k

j jj
v

j jj asas
1 )(

1
)(1 )(

1
)( )()(

22 ππππ , 

then 

∑∑ +=+=
+≥+

n

kj jj
n

vj jj asas
1 )(

1
)(1 )(

1
)( )()(

22 ππππ .            (2) 

Since all the jobs are sequenced in nonincreasing order of 

)/()( )(
1

)()(
2

)( 2222 jjjj asbs ππππ ++  in 2π , and from (2), it is not difficult to check that the 

following inequality holds: 

∑∑ +=+=
+≥+

n

kj jj
n

vj jj bsbs
1 )(

2
)(1 )(

2
)( )()(

22 ππππ .            (3) 

For schedule π , we have 

∑ += +−++≥
n

vj vjjmax sbstC
1

2
)1()(

2
)( )()( ππππ .              (4) 

Therefore, from (1), (3) and (4), we have 

2
)1()(2 2

)()( +++≤ vkmaxmax sbCC ππππ .   □ 

 

Theorem 1. For the problem F2/setup, r-a(M1)/Cmax, 3/2*/*)( 1H ≤− CCC . 

Proof  If ∑ =
≤+

n

i ii sas
1 1

1 )( , it is obvious that schedule 1π  obtained from Heuristic 

H1 is an optimal schedule for the problem under study. Hence, in the following text, 

we assume that ∑ =
>+

n

i ii sas
1 1

1 )( .  

Notice that since all the jobs are resumable for the problem F2/setup, r-a(M1)/Cmax, 

we have 11 *)( ∆+≤ CCmax π . If 3/*21 C≤∆ , then we are done. So, in the following, 

we focus on the situation where 3/*21 C>∆ . 

   Because 3/*21 C>∆ and *)( 11
1 Casn

i ii <∆++∑ =
, we have 



 7

3/*)(
1

1 Casn

i ii <+∑ =
. Let },,2,1,3/*|{ 2 niCbsJS iii L=>+=′ . It is obvious 

that 2|| ≤′S . When 0|| =′S , for an optimal schedule *π , according to Lemma 1, 

we have 3/*5*)( 2
)1*()(2 2

CsbCC vkmax <++≤ +πππ . Thus, we only need to consider 

the following two cases. 

Case 1:  1|| =′S  

   In this case, }.{ pJS =′  If 3/*2 Cs p ≤  and 3/*Cbp ≤ , then from Lemma 1, 

we are done. Otherwise, we consider schedule 3π  obtained in Step (4) of Heuristic 

H1.  

   For subcase ,1
1 sas pp ≤+ suppose that the critical job does not exist in 3π , then 

*)()( )(
2

)(13 33
CbsC ii

n

imax =+= ∑ = πππ . Otherwise, we denote the critical job as )(3 uJπ . 

If 1)(
1

)(1
)(

33
sas ii

u

i
≤+∑ = ππ , then 

))(()()( )()(
2

)(1)(
1

)(13 33333 uii
n

uiii
u

imax bbsasC ππππππ ++++= ∑∑ +==
 

3/*4*3/* CCC =+≤ ; 

otherwise, since 1)(
1

)(1
)(

33
sas ii

u

i
>+∑ = ππ , pJ is the first job in 3π  and 

,1
1 sas pp ≤+ then 1>u . Thus, we have 

))(())(()( )(
2

)(1)(1)(
1

)(13 33333 ii
n

uiuii
u

imax bsbasC ππππππ +++∆++= ∑∑ +==
 

.3/*53/*2* CCC =+≤  

   For subcase ,1
1 sas pp >+ we have .*1

1 Cbas ppp ≤+∆++  If the critical job 

does not exist or job Jp is the critical job, then we have 

)(},max{)( )(
2

)(
\

2
1

1
3 33 ii

JSJ
ppppmax bsbsasC

pi

πππ +++∆++= ∑
∈

 

3/*53/*2* CCC =+≤ ; 

otherwise, for the critical job )(3 uJπ , u > 1, we have 

)())(()( )(
2

)(1)(1)()(13 33333 ii
n

uiuii
u

imax bsbasC ππππππ +++∆++= ∑∑ +==
 

.3/*53/*2* CCC =+≤  
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Case 2: 2|| =′S  

   Similar to Case 1, it is not difficult to check that schedule 2π  or 3π  may yield a 

solution with an error bound of no more than 2C*/3. In the following, we further 

prove that the error bound of schedule 4π  obtained in Step (5) is no more than C*/3 

for this case. 

   For schedule 4π , if no critical job exists, then  

      *)()( )(
2

)(14 44
CbsC ii

n

imax =+= ∑ = πππ ; 

otherwise, for the critical job )(4 uJπ , if 2>u , we have  

))(()()( )()(
2

)(11)(
1

)(14 44444 uii
n

uiii
u

imax bbsasC ππππππ +++∆++≤ ∑∑ +==
 

3/*43/** CCC =+≤               . 

If u ≤ 2, then u must be equal to 1; otherwise, a contradiction arises because 

∑ =
+>

n

i ii asC
1

1 )(3/* )()( 11
qqpp asas +++> },min{ 22

qqpp bsbs ++≥ 3/*C> . Thus, 

we have 

))((},max{)( )(
2

)(2)1(
11

4 444 ii
n

iqqppmax bsbasasC ππππ +++++≤ ∑ =
 

.3/*4*3/* CCC =+≤   □ 

 

From the proof of Theorem 1, we see that Steps (1)-(4) of Heuristic H1 can 

produce a solution with an error bound of no more than 2C*/3, and schedule 4π  in 

Step (5) can produce a solution with an error bound of no more than C*/3 in some 

special situations. 

   Although we do not know whether the bound is tight or not, the following 

instance shows that the worst-case error bound of H1 is no less than 1/2. Consider an 

instance with 41
1 =s , 41 =a , 72

1 =s , hb 31 = , hs =1
2 , ha =2 , hs 32

2 = , 82 =b , 

ε=1
3s , ε=3a , 12

3 =s , 13 =b , 81 =s , and 841 += ht , where 1>>h  and 

)73/(80 +<< hε . It is easy to check that ],,[* 321 JJJ=π  with 186* += hC  (see 
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Fig. 2(c)). Applying Heuristic H1, we obtain ],,[ 13231 JJJ== ππ  with  

179)()( 31 +== hCC maxmax ππ (see Fig. 2(a)), and ],,[ 2132 JJJ=π  with 

επ 210)( 2 += hCmax 16+  (see Fig. 2(b)). Since 1
11 82)()( shasas qqpp >+=+++ , 

we need not consider Step (5) of H1. Thus, 1791H += hC . Hence, we see that 

**)( 1H CCC −  approaches 1/2 as h approaches infinity.  

 

4. The unavailable interval is on M2 

In this section we provide a heuristic for the problem F2/setup, r-a(M2)/Cmax and 

analyze its worst-case error bound. 

 

Heuristic H2: 

(1) Find two jobs Jp and Jq such that 

}}{\|max{ 22
piiipp JSJbsbs ∈+≥+  

and 

       }}{\|max{ 11
qiiiqq JSJasas ∈+≥+ . 

(2) Sequence the jobs by YHA. Let the corresponding schedule be 1π  and the 

corresponding makespan be Cmax( 1π ). 

(3) Sequence the jobs in nonincreasing order of )/()( 12
iiii asbs ++ . Let the 

schedule be 2π  and the corresponding makespan be Cmax( 2π ). 

(4) Sequence job Jq in the last position, and sequence the remaining 1−n  jobs 

by YHA. Let the corresponding schedule be 3π . 

(5) Sequence job Jp in the first position, and sequence the remaining 1−n  jobs 

in the same positions as those in Step (3). Let the corresponding schedule be 

4π . 

(6) Choose the schedule with the minimum makespan from the above four 
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schedules. Let CH2 = min{Cmax( 1π ), Cmax( 2π ), Cmax( 3π ), Cmax( 4π )}. 

    

Since Steps (2) and (3) of H2 dominate the algorithm, the complexity of Heuristic 

H2 is O(nlogn). 

For the problem F2/setup, r-a(M2)/Cmax, since an unavailable period exists on M2, 

we assume that all the jobs must be processed on M1 and M2 as early as possible, and, 

for a given π , define again the critical job )(kJπ  in it as the last job in π  such that 

its starting time on M2 is equal to its finishing time on M1 or the job in π  before 

which the last idle time on M2 occurs. 

 

Lemma 2. For schedule 2π  defined in Step (3) of Heuristic H2, we assume that the 

completion time of the critical job )(2 kJπ  on M1 is t and let π  be a given schedule.  

i)  If 2st ≤  or 2tt > , let )(vJπ  be the last job that finishes no later than time t 

on M1 in π , then  2
)1()(2 2

)()( +++≤ vkmaxmax sbCC ππππ . 

ii) If 22 tts ≤< , let )(2 hJπ be the job that finishes just before time 2s  on M1 in 

2π , and )(uJπ  the last job that finishes no later than )(2 hJπ  on M1 in π , then 

)()()()( )1(
1

)1()1(
1

)1(2 22 ++++ ++++≤ uuhhmaxmax asasCC ππππππ . 

 

Proof  i) Similar to the proof of Lemma 1. 

     ii) Let 
2π

I  be the total idle time on M2 in 2π . Under the assumption that 

)(2 hJπ  finishes just before time 2s  on M1 in 2π , we have 

)( )(
2

)(12 222 jj
h

j
bssI πππ +−≤ ∑ =

. Let πI  be the total idle time on M2 in π . So, 

)()()( )1(
1

)1()1(
1

)1()(
2

)(12 22 ++++=
+−+−+−≥ ∑ uuhhjj

u

j
asasbssI πππππππ . 

Notice that since )()( )(
1

)(1)(
1

)(1 22 jj
h

jjj
u

j
asas ππππ +≤+ ∑∑ ==

 and all the jobs are 

sequenced in nonincreasing order of )/()( 12
iiii asbs ++ in 2π , it is not difficult to 
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prove that )()( )(
2

)(1)(
2

)(1 22 jj
n

ujjj
n

hj
bsbs ππππ +≤+ ∑∑ +=+=

. We know that =)( 2πmaxC  

222 2)(
2

)(1
)( πππ Ibs jj

n

j
+∆++∑ =

 and ππππ IbsC jj
n

jmax +∆++= ∑ = 2)(
2

)(1
)()( . Hence,  

2)(
2

)(122 )()(
22

∆+++≤ ∑ += jj
n

hjmax bssC πππ  

2)(
2

)(12 )( ∆+++≤ ∑ += jj
n

uj
bss ππ  

))(()( )(
2

)(12 ππππ IbssC jj
u

jmax −+−+= ∑ =
              

)()()( )1(
1

)1()1(
1

)1( 22 ++++ ++++≤ uuhhmax asasC πππππ .   

This completes the proof.  □ 

 

   The following theorem establishes the worst-case error bound of Heuristic H2 for 

the resumable case.  

 

Theorem 2. For the problem F2/setup, r-a(M2)/Cmax, 3/2*/*)( 2H ≤− CCC . 

 

Proof  We know that YHA can produce an optimal solution for 

maxCsetuppermuF /,/2 . Since when 02 =t , maxCMarsetupF /)(,/2 2−  is 

equivalent to maxCsetuppermuF /,/2 , it is obvious that 21 *)( tCCmax ≤−π . If 

3/*22 Ct ≤ , then we are done. So, in the following, we focus on the case where 

3/*22 Ct > . 

   Let },,2,1,3/*|{ 1 niCasJS iii L=>+=′ and ,3/*|{ 2 CbsJS iii >+=′′  

},,2,1 ni L= . We can easily show that 2|| ≤′S and 2|| ≤′′S  from the lower bound 

*})(),(max{ 2
2

1 1
1 Cbsas ii

n

i

n

iii ≤∆+++∑ ∑= =
. When 0|| =′S and 0|| =′′S , from i) and 

ii) of Lemma 2, we have 3/*5)( 2 CCmax ≤π . Hence, in the remainder of proof, we 

only need to consider the following two situations. 

Case 1: 0|| =′′S and 0|| >′S  
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   In this case, we consider schedule 3π . If no critical job exists in 3π , then 

.*)()( 2)(
2

)(13 33
CbsC ii

n

imax =∆++= ∑ = πππ  Next, we assume that there exists a critical 

job in 3π . Let Jq be the critical job, then 

3/*43/**}),(max{)( 2)(
1

)(13 33
CCCbtasC qii

n

imax =+≤++≤ ∑ = πππ . 

Otherwise, suppose )(3 kJπ  (k < n) is the critical job, then we have 

))(()()( )(
2

)(1)(2)(
1

)(13 33333 ii
n

kikii
k

imax bsbasC ππππππ +++∆++≤ ∑∑ +==
 

.3/*5*3/*2 CCC =+≤  

Case 2: 1|| ≥′′S  

   We check schedule 4π  obtained in Step (5) of Heuristic H2. If no critical job 

exists in 4π , then 
4 4

2
4 ( ) ( ) 21

( ) ( ) *.n
max i ii

C s b Cπ ππ
=

= + + ∆ =∑  In the following, we 

assume that there exists a critical job in 4π . Since 1|| ≥′′S , we assume that 

3/*2 Cbs pp >+  for Jp. If 

2
2

2
1211

1
}},0,max{},max{max{)( ∆++−+−+≥+∑ =

αpppppppii
n

i
bssassasas , 

where 1=α  if pppp bsass ++< },max{ 21
2 ; otherwise, 0=α . Then, we have 

)()1()()( 2
}\{2

1
14 iiJSJii

n

imax bsasC
pi

++∆−++≤ ∑∑ ∈=
απ  

.3/*53/*2* CCC =+≤  

Otherwise, Jp is the critical job. From 3/*2 Cbs pp >+ and 

*},max{ 21 Cbsas pppp <++ , we obtain that 3/*2}0,max{ 21 Csas ppp <−+ ; so 

)(}0,max{)( 2
12

21
4 ii

n

ipppmax bssasC ++∆+−+≤ ∑ =
π .3/*5*3/*2 CCC =+<  

The proof is completed.  □ 

    

   Although we do not know whether the bound is tight or not, the following 

instance shows that the worst-case error bound of H2 is no less than 1/3. Consider an 

instance with 21
1 −= hs , 11 =a , 32

1 −= hs , 11 =b , 12/1
2 += hs , 12/2 += ha , 
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12
2 =s , 22 += hb , hs =1

3 , 13 =a , 12
3 =s , 53 =b , hs =2 , and ht 22 = , where 

1>>h . It is easy to check that ],,[* 321 JJJ=π  with 93* += hC  (see Fig. 3(d)). 

Applying Heuristic H2, we obtain ],,[ 1321 JJJ=π  with 64)( 1 += hCmax π  (see 

Fig. 3(a)), ],,[ 31242 JJJ== ππ  with 64)()( 42 +== hCC maxmax ππ  (see Fig. 

3(b)), and ],,[ 2133 JJJ=π  with 64)( 3 += hCmax π (see Fig. 3(c)). Thus, 

642H += hC . Hence, we see that ( ) **2H CCC −  approaches 1/3 as h approaches 

infinity.  

 

5. Conclusions 

In this paper we studied the two-machine flowshop scheduling problem with 

anticipatory setup times and a resumable availability constraint imposed on only one 

of the machines. Since the problem is NP-hard, we developed two polynomial-time 

heuristics and analyzed their worst-case error bounds. 
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    M1 

           2         10      16  19       26  28    33  36 

    M2 

                 7  10     15  18           28    32        39      45 

 

Fig. 1. A schedule π  for the example instance. 
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M1  

       8                       4h+8 5h    6h    6h+2ε+8 

M2 

                      3h                  6h 6h+8   6h+17              9h+17 

(a) Schedule 1 3 2 3 1[ , , ]J J Jπ π= = . 

 

M1  

        8                       4h+8    5h+2ε+8  6h+2ε+8 

M2 

     2                           4h+2ε+8             7h+2ε+8          10h+2ε+8 

(b) Schedule 2 3 1 2[ , , ]J J Jπ = . 

 

M1  

    4  8                       4h+8   5h+8  6h+8 6h+2ε+8 

M2 

    1  8                 3h+8                6h+8    6h+18              

(c) Optimal schedule 1 2 3* [ , , ]J J Jπ = . 

 

Fig. 2(a). Solution of Steps (2) and (4); Fig. 2(b). Solution of Step (3); Fig. 2(c). 

Optimal solution. 
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M1  

        h/2+1    h+2       2h+2           3h+2  

M2 

               h          2h          3h+2   3h+8         4h+6      

 (a) Schedule 1 2 3 1[ , , ]J J Jπ = . 

 

M1  

        h/2+1   h+2        2h         3h+1 3h+2  

M2 

               h          2h            3h+2    4h-1      4h+6      

 (b) Schedule 2 4 2 1 3[ , , ]J J Jπ π= = . 

 

M1  

               h            2h   5h/2+1   3h+2  

M2 

           h-1  h          2h   2h+5   3h+2  3h+4         4h+6      

 (c) Schedule 3 3 1 2[ , , ]J J Jπ = . 

 

M1  

           h-2 h-1    3h/2   2h+1          3h+2  

M2 

     2      h-1 h         2h  2h+1      3h+3     3h+9          

       (d) Optimal schedule 1 2 3* [ , , ]J J Jπ = . 

 

Fig. 3(a). Solution of Step (2); Fig. 3(b). Solution of Steps (3) and (5); Fig. 3(c). 

Solution of Step (4); Fig. 3(d). Optimal solution.   

 

 

  

 

 

  

  

  

  

 

 

 

 

 

 




