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and zero-surface-strain contours of flexural
vibration with time-averaged speckle pattern
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A new time-averaged frame subtraction technique is introduced for vibration analysis by digital speckle
shearing interferometry. The technique permits the enhancement of fringes by subtracting two Bessel
fringe patterns at different forcing levels. Compared with the phase-shift method, this method is more
efficient and easier to implement for qualitative vibration measurement, providing a means for fast
inspection of plate vibration behavior. It is also capable of tracing contours of zero strain and locating
antinodes on vibrating plates. © 1997 Optical Society of America
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1. Introduction

In vibration and acoustics, a knowledge of modal fre-
quency and shape of vibration is important for gain-
ing insight into the vibration behavior of structures.
In mathematical terms, these two characteristics are
related to the eigenvalues and eigenfunctions of the
system. In a general bending vibration problem,
however, they are not readily available, as the closed-
form solutions to the fourth-order differential equa-
tion may not exist.1 Mode shapes and frequencies
are therefore required to be measured experimen-
tally. Traditional methods use accelerometers and
signal analyzers for modal analysis. Although they
are precise and reliable for measuring modal param-
eters for structural modeling, the methods are point-
wise, time consuming, and contacting. Optical
vibrometers are the modern alternative to accelerom-
eters. They are noncontacting. However, they are
still a pointwise instrument and would be time con-
suming for modal analysis.
Holographic interferometry has been a well-known
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noncontacting technique for vibration measurement
in the full field. It has been deterred by dark-room
film-development practice from wide applications.
However, the principle has been employed to develop
a dry type of interferometry, known as electronic
speckle pattern interferometry ~ESPI!. The further
development of the basic technique has led to a more
convenient setup, shearography, which measures the
vibration amplitude gradient directly.2,3 The elec-
tronic version of this is often referred to as electronic
speckle shearing interferometry. The capability of
ESPI or shearography has now been enhanced by the
use of high-speed computers with modern image
processors.3–5 The phase-shift method has permit-
ted both techniques for analyzing vibration quantita-
tively.6
ESPI-basedmethods of measuring vibration have a

few different techniques, for example, the time-
averaged technique, the stroboscopic technique, and
the pulsed laser technique. This paper concerns the
time-averaged technique only. In the traditional
time-averaged ESPI technique, after dc filtering and
rectification, the monitored fringe pattern is the
squared zero-order Bessel function of the vibration
amplitude with a very low high-order fringe contrast.
Only a few orders can be visualized directly from the
screen, making the quantitative measurement of vi-
bration difficult if not impossible. The sinusoidal
phase-modulation technique2 permits a complete
mapping of the amplitude and the phase contours



across any vibrating surface. In this technique, one
of the light paths is modulated with a sinusoidal
frequency equal to the frequency of and in synchro-
nization with the vibration of the structure. This
permits the time-averaged ESPI to measure the
phase of vibration.7
Comparing ESPI and shearography, one would

sometimes favor shearography. This is because
ESPI is influenced by vibration and the temperature
of the environment, whereas shearography is rela-
tively insensitive to rigid body motion and environ-
mental factors. Moreover, when higher-order
derivatives of vibration amplitude are measured,
shearography is more suitable than ESPI.8
Nakadate et al.3 have used a frame subtraction

method in speckle shearing interferometry to mea-
sure the vibration amplitude gradient, showing bet-
ter fringe contrast but less measurement sensitivity
than that of single-image time-averaged shearogra-
phy. In the regions of high vibration gradients, the
presence of nonzerominimal points of the fringe func-
tion would limit the fringe visibility. For a given
background noise level, the nonzero minima are re-
sponsible for the deterioration of the fringe contrast.9
Nakadate10 and Saldner et al.6 have employed the
phase-step method, trying to measure plate vibration
mode shapes quantitatively. By this method, they
obtained better fringe visibility and quantitative vi-
bration values on the plates. The method they used
requires one to grab several frames of images for one
measurement and to process the image data point by
point. Recent advancements in computer and
image-processing technologies may help to improve
the speed. Nevertheless, for certain vibration anal-
yses, a quantitative measurement might not be nec-
essary. In such a situation, fringe visibility and
measurement efficiency are relatively more impor-
tant.
In this paper, a new time-averaged frame subtrac-

tion technique is introduced for vibration analysis by
digital speckle shearing interferometry. The exper-
imental setup is similar to the traditional shearo-
graphic measurement system, but the technique
permits the enhancement of fringes by the subtrac-
tion of two Bessel fringe patterns at different forcing
levels. As far as the qualitative measurement of vi-
bration is concerned, the present technique is more
efficient and easier than the phase-shift method for
fringe enhancement. Furthermore, the new tech-
nique provides a means for the fast inspection of the
vibration behavior of a structure. A fringe interpre-
tation method is also described for the convenient
identification of antinodal positions and contours of
zero strains of plate vibration.

2. Theory of Measurement

Transverse vibration is measured by using the time-
averaged shearing interferometry method. The
schematic diagram of the optical setup is shown in
Fig. 1. The object is either a cantilever beam or a
clamped circular plate, each with a diffuse surface.
Vibration is assumed to be linear in this study. Pho-
tographic films will not be used. Instead a CCD im-
aging system is used with a shearing lens of the
birefringent type. A suitable polarizer is employed
to bring the two emerged orthogonally polarized wave
fronts to the same polarization to ensure the best
interference. The framegrabber is controlled by a
microcomputer for image processing. A He–Ne la-
ser is used as a light source. Its wavelength is l.
The shearing lens brings the rays from two points

P and P9 on the object surface to a point O in the CCD
camera. The shearing lens is made and oriented to
let points P and P9 be represented by coordinates ~x,
y, z! and ~x 1 dx, y, z!, respectively. That is, the
image of the object is sheared in the x axis; dx should
be small enough to obtain a sufficient accuracy of the
gradient measurement and a good interference of the
light beams. The intensity of the image recorded by
the camera is written as11

Is 5 2 Io~1 1 cos f!, (1)

where Io is the object image intensity at O and f is
the phase difference between light paths from P9 and
P to O. Here Io and f are random in space over the
image surface.
Consider vibration at the nth natural mode of fre-

quency vn. The out-of-plane displacement of the ob-
ject is expressed as

w~x, y, t! 5 wo~x, y!cos vnt, (2)

where wo~x, y! is the vibration amplitude at ~x, y!,
representing a standing wave at frequency vn.
The vibrations of P and P9 are, in general, repre-

sented by ~u, v, w! and ~u 1 du, v 1 dv, w 1 dw!,
respectively. These produce a further phase shift
between the light paths to point O in the image plane.
Equation ~1! then becomes

I 5 2Io@1 1 cos~f 1 D!#, (3)

Fig. 1. Schematic setup of time-average speckle pattern shearing
interferometry.
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Fig. 2. Comparison of different
Bessel fringe functions ~normal-
ized values!.
where

D 5
2p

l
~Adx 1 Adu 1 Bdv 1 Cdw!, (4)
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Ro
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1
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2 5 xs

2 1 ys
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According to Hung,12 A, B, and C are sensitivity fac-
tors relating to the illumination position point S~xs,
ys, zs! and the camera image point O~xo, yo, zo!.
Because dx is small, Eq. ~4! can be rewritten as

D 5
2p

l SA 1 A
]u
]x

1 B
]v
]x

1 C
]w
]xDdx. (6)

With normal illumination and normal viewing xs 5 ys
5 xo 5 yo 5 0, and for Ro and Rs to be large compared
with the object dimensions, A > 0, B > 0, and C > 2.
Then, by substitution of Eq. ~2! into Eq. ~6!,

D 5
4p

l
~dx!

]w
]x

5
4p

l
~dx!

]wo

]x
cos~vnt!. (7)

For vn very much higher than the grabbing rate of
the imaging system, the intensity distribution re-
corded by the CCD camera will be the average inten-
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sity value expressed by

Iavg 5
1
T *

0

T

2IoF~1 1 cos~f 1 D!#dt

5
1
T *

0

T

2IoH1 1 cosFf 1
4p

l
~]x!

]wo

]w
cos~vnt!GJdt

5 2IoH1 1 cosf JoF4p

l
~dx!

]wo

]x
cos~vnt!GJ, (8)

where Jo is the Bessel function of the first kind of the
zeroth order and T is the grabbing time of one image
record.
Subtracting Eq. ~1! from Eq. ~8!, one obtains

DI 5 Is 2 Iavg

5 2Io cos fH1 2 JoF4p

l
~dx!

]wo~x, y!
]x GJ . (9)

To evaluate the average brightness of the fringe on
the TV monitor, one may assume that the resultant
light amplitude at the CCD obeys zero-mean circular
complex Gaussian statistics.13 The assumption is
justified as the object in this study has a diffuse sur-
face. According to Nakadate et al.,3 if the signal
after subtraction is square-law detected, the average
brightness of the fringe is proportional to

E~x, y! 5 cH1 2 JoFk ]wo~x, y!
]x2 , (10)

where c 5 ~^Is&
2 T2y2! and k 5 4p~dxyl!. In time-

averaged ESPI, the vibration analyzed is usually a
normal mode. Therefore, wo~x, y! in Eq. ~10! is the
mode shape written as rFn~x, y!, with r depending on
the magnitude of the force excitation. Here Fn~x, y!
is referred to as the normalized mode shape; c is a



function of x and y. For a specified x and y, c is a
constant with a value depending on the optical image
setup and the grabbing time.
Equation ~10! and Fig. 2 show that the method of

Ref. 3 has a disadvantage. It is because the fringe
visibility described by the Bessel function is decreas-
ing at higher-order loops because of the presence of
nonzero minima of the fringe function. From Eq. ~8!
and the same figure, the traditional single-frame Jo

2

fringe pattern also has low visibility at higher-order
loops. This is due to the presence of the self-
interference term, 2Io, of the equation.
In view of the above, an attempt is made here to

improve the Bessel fringe visibility by a new fringe-
generation method. The method generates time-
averaged vibration fringes by subtracting two Bessel
fringe patterns at two different forcing levels. By
rewriting Eq. ~2! for these two levels, we see that the
linear vibration displacements are

w1~x, y, t! 5 r1Fn~x, y!cos vnt, (11a)

w1~x, y, t! 5 r1Fn~x, y!cos vnt, (11b)

where r1 and r2 are amplitudes determined by the
forcing levels used andFn is the nth normalizedmode
shape. The brightness of the new fringe function is
then proportional to

E~x, y! 5 cHJoFr1k ]Fn~x, y!
]x G 2 JoFr2k ]Fn~x, y!

]x GJ2.
(12)
Fig. 3. Normalized brightness
of time-averaged Bessel fringes
with the vibration amplitude and
vibration amplitude gradient of a
cantilever beam, calculated with
~a! Eq. ~10!, ~b! Eq. ~12!.
1 June 1997 y Vol. 36, No. 16 y APPLIED OPTICS 3779



Quite clearly, Eq. ~10! can be treated as a special case
ofEq. ~12!when r1 is zero. Takeacantileverbeamasan
example. Figure 2 shows the brightness function com-
puted by Eq. ~12!. As we can see in the figure, for the
higher-order loops, the visibility is markedly improved
compared with the contrast of the fringes calculated by
Eq. ~10! or by Jo

2. Such enhancement can be obtained
by adjusting the ratio between r1 and r2. In this case, r1
5 1 and r2 5 0.8. From our analysis, the result shows
that electronic noise and camera noise would exert ap-
preciable influences on the fringe contrast value. A sep-
arate paper has already been prepared to study this and
will be published elsewhere.
According to the mathematical table, J0

2@k~]Fny
]x!# is close to @2y~pk]Fny]x!#cos2@k~]Fny]x! 2 ~py4!#
when the argument k~]Fny]x! is very large. The
fringe function described by Eq. ~12! has zeros at
intervals approximately equal to 2py~r1 1 r2!.
Thus, not only has the fringe contrast been improved,
but also the loss of sensitivity of the subtraction
method of Nakadate et al.3 has been recovered.
With this enhancement of fringe pattern, the number
of fringes that can be resolved by this method is in-
creased dramatically, leading to a better spatial res-
olution of the vibration mode measurement.

3. Shearographic Image Pattern: Interpretation

A. Fringe Pattern Caused by Beam Vibration

As an illustration, the third bending vibration mode
shape of the cantilever beam of length L and its de-
rivative are considered first. They are calculated
and plotted as curves D and C in both Figs. 3~a! and
3~b!. The curves are simply for reference in the de-
scription of the features of the fringe functions, which
are given below. The vertical axes are the ratios of
the local vibration amplitudes or their gradients to
the maximum values at the free end of the cantilever
beam. Figure 3~a! is for the brightness functions
calculated by Eq. ~10!, shown as curvesA andB in the
diagram for two forcing levels. Figure 3~b! is for the
same functions calculated by Eq. ~12!, also shown as
curves A and B, respectively, for two forcing levels.
We can see in Fig. 3~b! that, except for the location

of contraflexure, the minimum brightness value as it
occurs is zero. As mentioned above, the fringe visi-
bility in the case of Fig. 3~b! should be much better
than that of Fig. 3~a!.
There are two interesting features about the fringe

patterns. One, Eqs. ~10! and ~12! show that ~]Fny
]x! 5 0 at the antinodal positions, implying that the
fringes should be completely dark because E 5 0.
~For a cantilever beam, of course, the gradient at the
built-in end is also zero. A dark fringe also appears
there.! Two, at the points of contraflexure of the
vibrating beam, the brightness values are either
maxima or minima. We can see this by using the
following equations derived from differentiating Eqs.
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~10! and ~12!, respectively:

]E
]x

5 2ckH1 2 JoFk ]Fn~x!
]x GJJ1Fk ]Fn~x!

]x GF]2Fn~x!
]x2 G ,

(13)

]E
]x

5 2ckHJoFr1k]Fn~x!
]x G 2 JoFr2k]Fn~x!

]x GJ
3 Hr1J1Fr1k]Fn~x!

]x G 2 r2J1Fr2k]Fn~x!
]x GJ

3 F]2Fn~x!
]x2 G , (14)

where J1 is the Bessel function of the first order. At
these locations of maxima and minima, the second
derivative ]2Fny]x2 5 0. The surface strains in-
duced by bending at these locations should be zero.
As vibration of the beam at a natural frequency be-
haves as a standing wave, the locations of zero-
bending strains and antinodes should be stationary.
The fringes formed there should be unmoved.
As shown in Figs. 3~a! and 3~b!, the zeroth-order

fringes of high contrast appear at the antinodeswhile the
high-order fringes of low contrast appear at the con-
traflexure locations. As we can see from the figures, in
between the consecutive zero-strain and antinodal loca-
tions, we can increase the number of fringes by increas-
ing the amplitude of the standing wave. Because k 5
4p~dxyl! in Eqs. ~10! and ~12!, we can conclude that we
can also increase the number of fringes by increasing the
shearing amount, dx, reducing the light wavelength, or
both. Thus, a continuous increase of any one of these
factors, e.g., vibration amplitude, will apparently gener-
ate higher-order fringes starting from the locations of
contraflexure to the antinodes. Therefore, the zero-
strain positions can be identified as the emanators of
higher-order fringes and antinodal positions can be iden-
tified as attractors of them.

B. Fringe Pattern Caused by Flexural Plate Vibration

The first asymmetrical bending vibrationmode shape
of a circular plate is considered here for illustration.

Fig. 4. First asymmetrical bending mode shape of a circular plate
with a clamped boundary condition.



The equation used to calculate themode shape shown
in Fig. 4 is from Chen and Zhou.14 For flexural plate
vibration, antinodal points occur when ]Fny]x 5 0
and ]Fny]y 5 0. Substituting the first condition
into Eq. ~12! gives

E1~x, y! 5 cHJoFr1k ]Fn~x, y!
]x G 2 JoFr2k ]Fn~x, y!

]x GJ2
5 0. (15)

By shearing the plate image in the y direction, a
procedure similar to that in Eqs. ~3!–~12! will give

E2~x, y! 5 cHJoFr1k ]Fn~x, y!
]y G 2 JoFr2k ]Fn~x, y!

]y GJ2
5 0. (16)

Equations ~15! and ~16! indicate that high-contrast dark-
fringe curves represent the zero gradient contours in the
x and y directions, respectively. If these two fringe pat-
terns are made to overlap properly, the intersections of
these contours will give the locations of the plate vibra-
tion antinodes. These contours would be unmoved
when the plate vibration is of a normal mode.
For a plate in flexure, the relationships between

surface strains and deflection are given as

εx 5 h
]2w
]x2

,

εy 5 h
]2w
]y2

,

gyx 5 2 h
]2w
]y]x

, (17)

where εx, εy are the flexural strains of the plate in the
x and y directions, respectively; gyx is the surface
shear strain; and h is half the thickness of the plate.
Differentiating Eq. ~15! with respect to x gives

]E1

]x
5 2ckHJoFr1k]Fn~x!

]x G
2 JoFr2k]Fn~x!

]x GJ Hr1J1Fr1k]Fn~x, y!
]x G

2 r2J1Fr2k]Fn~x!
]x GJ F]2Fn~x, y!

]x2 G . (18)

Furthermore, ]E1y]x 5 0 gives local maxima or
minima for the brightness function E1 at the loca-
tions where the second derivatives, ]2Fny]x2 5 0,
form unmoved locations of contraflexural ~in the x
direction! points of the vibrating plate at a natural
frequency. At these contraflexural locations, εx 5
0. The loci tracing these contraflexural points
would represent the zero-strain contours on the sur-
face of the vibrating plate. These points can be
located by finding the points on the shearographic
fringe pattern, ]Fny]x, that have tangent lines par-
allel to the x axis. They are points of zero slope in
Fig. 5. Contours of the vibration amplitude gradient and zero
flexural strain of a circular plate with a clamped boundary.

Fig. 6. Contours of the vibration amplitude gradient and zero
shear strain of a circular plate with a clamped boundary.

Fig. 7. Contours of the surface shear strain of a circular plate
with a clamped boundary.
1 June 1997 y Vol. 36, No. 16 y APPLIED OPTICS 3781



the fringe pattern, as illustrated in Fig. 5. Simi-
larly, the loci of zero shear strain, gyx 5 0, can be
traced by finding the points on the similar fringe
pattern that have tangent lines parallel to the y
axis, as shown in Fig. 6. Figures 7 and 8 give

Fig. 8. Contours of the surface flexural strain of a circular plate
with a clamped boundary.
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fringe patterns, representing the contours of ]2Fny
]y]x and ]2Fny]x2, respectively; each is computed
by numerical differentiation of Fig. 4 directly.
From the two figures, we can see that the contours
for ]2Fny]y]x 5 0 and ]2Fny]x2 5 0 are exactly the
same curves as in Figs. 6 and 5, traced by the
method introduced above. By the same procedure
as above, differentiating E2 of Eq. ~16! with respect
to y or x will give a similar conclusion as for the
contours of εy 5 0 and gxy 5 0.

4. Experiments

Experiments are carried out to verify the theory and
to prove the observations based on the above analyses
of the computed fringe patterns.
Figure 1 shows the experimental shearographic

system setup. Shearograms are generated by a real-
time frame subtraction method at a video rate of 30
framesys. They can be stored in a hard disk or dis-
played on a monitor. Hard copies of the fringe pat-
terns can be printed by a video printer.
Figures 9 and 10 show the shearographic results for

the third bending mode of the cantilever and the first
asymmetrical mode of the clamped plate, respectively.
That is, wo 5 rFn, n 5 3 for the beam, or n 5 2 for the
Fig. 9. Time-averaged fringes of
a cantilever beam vibrating at
the third bending mode: ~a!
shearographic fringe pattern of
]w0/]x, ~b! shearographic fringe
pattern of ]w0/]x of the object vi-
brating at a larger amplitude
than that of ~a!, ~c! enhanced
fringe pattern of ~b!.



Fig. 10. Time-averaged fringes of a circular plate with a
clamped boundary vibrating at the first asymmetric mode:
~a! shearographic fringe pattern of ]woy]x, ~b! shearo-
graphic fringe pattern of ]woy]y, ~c! enhanced fringe pattern
of ~a!.
plate. The fringe patterns are experimentally ob-
tained with the time-averaged subtraction method,
based on the principle of Eq. ~9!. The fringe density of
the pattern shown in Fig. 9~b! appears to be higher
than that shown in Fig. 9~a! because the vibration
amplitude for the Fig. 9~b! case is larger. By increas-
ing the excitation force level, we can observe that the
fringes appear to be unmoved at the locations num-
bered by the arrows. The fringes marked with nu-
merals 1 and 3 are the dark fringes corresponding to
the zero gradient locations, i.e., antinodal positions.
The fringes marked with numerals 2 and 4 have
brightness eithermaxima orminima, corresponding to
zero-strain locations, i.e., contraflexural regions. The
fringes at these two locations are somewhat obscure.
However, when the method of Eq. ~12! is used, the
fringe contrast is markedly improved, as we can see
from Fig. 9~c!. In the regions between 1 and 2, 2 and
3, or 3 and 4, fringes appear to be generated from 2 and
4, travel through the in-between regions, and approach
1 and 3 with a denser and denser fringe appearance.
In Figs. 10~a! and 10~b!, the fringe patterns are also

experimentally generated by the use of the time-
averaged subtraction method. Figure 10~a! is opti-
cally sheared in the x direction, whereas Fig. 10~b! is
sheared in the y direction. The fringe pattern in Fig.
10~a! is quite similar in pattern to that computed
~Fig. 5!. As we can see in Figs. 10~a! and 10~b!, the
dark fringe circles can be understood to be caused by
the clamped condition along the rim of the plate.
They represent the lines of zero gradients, i.e., ]woy
]x 5 0 for the former figure and ]woy]y 5 0 for the
latter. Away from the clamped rim toward the cen-
tral regions, the thick crossed lines in Fig. 10~a! rep-
resent contours of ]woy]x 5 0. The thick dark
elliptic curve in Fig. 10~b! represents the contour of
]woy]y 5 0. Overlapping the two patterns can lo-
cate the antinodal position of the vibration mode.
The locations are circled as shown in the figures.
To apply the method of Eq. ~12!, the fringe quality is

markedly enhanced for the higher-order fringe loops.
As shown in Fig. 10~c!, the fringes of the four eyes are
clearly visible. These eyes provide a means to trace
the elliptic loci of the zero-strain or shear contours as
plotted in Figs. 5 and 6. The improvement of the
fringe visibility will also facilitate the tracing of such
loci in the x as well as in the y directions.
Quite obviously in Fig. 10, the number of fringes in

Fig. 10~c! is more than that in Fig. 10~a!, although the
two patterns represent the same plate vibration level.
Similarly, the same is true when comparing Figs. 9~c!
with 9~b!. This is attributed to the increase in sen-
1 June 1997 y Vol. 36, No. 16 y APPLIED OPTICS 3783



sitivity with the use of the present frame subtraction
method compared with the use of the traditional sub-
traction method.3

5. Conclusion

The principle of a new time-averaged frame subtrac-
tion digital shearographic technique for vibration
analysis has been described, and experiments have
been done for demonstration. The method of sub-
tracting two Bessel fringe patterns at different forc-
ing levels has been found to be capable of enhancing
the higher-order Bessel fringes. It facilitates the
tracing of the zero-shear-strain and zero-flexural-
strain contours. Compared with the phase-shift
method, this new frame subtraction method has been
found to be more efficient and easier to implement for
qualitative vibration measurement. This provides a
means for fast inspection of plate vibration behavior.
A fringe interpretation method has been introduced

for identifying the antinodal positions and contours of
zero strains in beam and plate vibrations, including
zero-shear-strain contours in the plate vibration case.
A good agreement between theoretical and experimen-
tal results has been found in this study.
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