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a b s t r a c t

Solid oxide fuel cells (SOFCs) can be operated in a reversed mode as electrolyzer cells for

electrolysis of H2O and CO2. In this paper, a 2D thermal model is developed to study the

heat/mass transfer and chemical/electrochemical reactions in a solid oxide electrolyzer

cell (SOEC) for H2O/CO2 co-electrolysis. The model is based on 3 sub-models: a computa-

tional fluid dynamics (CFD) model describing the fluid flow and heat/mass transfer; an

electrochemical model relating the current density and operating potential; and a chemical

model describing the reversible water gas shift reaction (WGSR) and reversible methana-

tion reaction. It is found that reversible methanation and reforming reactions are not

favored in H2O/CO2 co-electrolysis. For comparison, the reversible WGSR can significantly

influence the co-electrolysis behavior. The effects of inlet temperature and inlet gas

composition on H2O/CO2 co-electrolysis are simulated and discussed.

Copyright ª 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction H2 production, SOECs have received increasing attention and
Solid oxide fuel cells (SOFCs) are promising electrochemical

devices for clean power generation. At typical working

temperatures (i.e. 1073 K), SOFCs can be operated with

renewable biofuels as internal reforming of hydrocarbon fuels

can occur in the porous anode [1e4]. In addition, the waste

heat from SOFC stacks can be recovered by integrating with

other thermodynamic cycles for combined power and heat-

ing/cooling cogeneration. Apart from generating electricity,

SOFCs can be operated in a reversed mode as solid oxide

electrolyzer cells (SOECs) for H2 production by H2O electrolysis

[5e10]. Compared with H2 production by low temperature

electrolyzers, such as proton exchange membrane electro-

lyzers and alkaline electrolyzers, steam electrolysis by SOEC

can be achieved at a lower operating potential and consumes

less electrical energy [10]. Due to their potential for large-scale
.
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several projects have been initiated by the US Department of

Energy (DOE) [11,12]. There are also growing interests in

integrating SOECswith nuclear energy and geothermal energy

technologies to optimize the H2 production efficiency [13,14].

Several mathematical models have been developed to simu-

late the physicalechemical processes in SOECs at different

levels [15e20]. It is found that the transport characteristics in

SOECs differ significantly from SOFCs [21], thus the results

from SOFCs may not be applicable to SOECs. In addition to

steam electrolysis for H2 production, CO2 electrolysis using

SOECs has been studied for O2 production by US NASA

[22e24]. Several groups also demonstrated the feasibility of

H2O/CO2 co-electrolysis for simultaneous production of H2

and CO [25e29]. Co-electrolysis of H2O and CO2 in SOECs is

much more complicated than electrolysis of H2O or CO2,

respectively. This is because the reversible water gas shift
.hku.hk.
ublications, LLC. Published by Elsevier Ltd. All rights reserved.
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Table 1 e Parameters used in simulation.

Parameter Value

Operating temperature, T (K) 1073

Operating pressure, P (bar) 1.0

Electrode porosity, ε 0.4

Electrode tortuosity, x 3.0

Average pore radius, rp (mm) 0.5

Cathode-supported

Cathode thickness dc (mm) 500

Electrolyte thickness, L (mm) 100

Anode thickness, da (mm) 100

Height of gas flow channel (mm) 1.0

Length of the planar SOEC (mm) 20

Thickness of interconnect (mm) 0.5

Inlet velocity: Uin (m s�1) 1.0

Anode inlet gas molar ratio: O2/N2 0.21/0.79

Molar Fractions of H2O and CO2

at the cathode inleta
0.5/0.5

SOEC operating potential (V) 1.5V

Thermal conductivity of SOEC component (W m�1 K�1)

Cathode 11.0

Electrolyte 2.7

Anode 6.0

Interconnect 1.1

a Variousmolar fractions are studied in the parametric simulations.
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reaction (WGSR, Eq. (1)) and methanation reaction/reversed

direct internal steam reforming (DIR) reaction (Eq. (2)) may

occur in the porous cathode. In the literature, WGSR and DIR

are called internal reforming as well.

COþH2O%CO2 þH2 (1)

COþ 3H2%CH4 þH2O (2)

Due to the complex physical/chemical processes involved in

the SOEC for co-electrolysis, the coupled transport and reaction

phenomenon have not been well understood yet. For example,

it is commonly believed that CO may be produced from

reversed WGSR (Eq. (1)) or from CO2 electrolysis, but it is not

clear how much CO is produced by reversed WGSR [30e32].

However, in the long run, it doesn’t matter which way CO is

formed. In addition, CH4 is usually not observed in the co-

electrolysis process [29] but the mechanisms have not been

fully understood. In order to clarify the above issues, a 2D

thermal model is developed to analyze the coupled heat/mass

transfer and chemical/electrochemical reactions in anSOEC for

H2O/CO2 co-electrolysis. It is based on and extended from the

previousmodels for H2O electrolysis [6,18] and CO2 electrolysis

[33] aswell asa recent electrochemicalmodel for co-electrolysis

[34]. Themodeling results showthatCH4 formationvia reversed

steam reforming (Eq. (2)) is not favorable in the co-electrolysis

process. However, the reversible WGSR could contribute to

the CO production, depending on the operating conditions.
2. The model

The computational domain and working mechanism of

a planar SOEC for H2O/CO2 co-electrolysis are shown in Fig. 1.

Typical thicknesses of cell components are summarized in

Table 1. In operation, amixture consisting of H2O, CO2, H2, CO,

and CH4 is supplied to the inlet of SOEC cathode and air is

supplied to the anode channel. It is considered that the

reversible methanation reaction (reversed internal reforming,

Eq. (1)) and reversible water gas shift reaction (WGSR, Eq. (2))

can occur in the porous cathode layer, depending on the

operating conditions.
Fig. 1 e Computational domain of the SOE
The H2O and CO2 molecules can diffuse through the porous

cathode to the triple phase boundary (TPB) at the cathode-

electrolyte interface, where they react with electrons to

produce H2 and CO, as well as O2� (Eqs. (3) and (4)). The

produced oxygen ions are transported through dense elec-

trolyte to the TPB at the anode-electrolyte interface, where

they lose electrons to form O2 (Eq. (5)).

H2Oþ 2e�/H2 þO2� (3)

CO2 þ 2e�/COþO2� (4)

2O2�/O2 þ 4e� (5)
C for co-electrolysis of H2O and CO2.

http://dx.doi.org/10.1016/j.ijhydene.2012.01.072
http://dx.doi.org/10.1016/j.ijhydene.2012.01.072


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 7 ( 2 0 1 2 ) 6 3 8 9e6 3 9 9 6391
Based on the working mechanisms, a 2D thermal model is

developed to study the coupled heat/mass transfer and

chemical/electrochemical reactions in the planar SOEC used

for co-electrolysis of H2O and CO2. The model consists of 3

sub-models: a computational fluid dynamics (CFD) model

simulating the fluid flow and heat/mass transfer; an elec-

trochemical model calculating the current density distribu-

tion at given operating potentials; and a chemical model

calculating the reversible WGSR and reversible methanation

reaction rates.
2.1. CFD model

In an SOEC, fluid flow andmass transfer occur in the cathode/

anode channels and the porous electrodes. Meanwhile, heat

transfer occurs in the whole computational domain. In the

porous electrodes, local thermal equilibrium condition is

assumed. The governing equations for mass conservation,

momentum conservation, energy conservation are summa-

rized below [18].

vðrUÞ
vx

þ vðrVÞ
vy

¼ Sm (6)

vðrUUÞ
vx

þ vðrVUÞ
vy

¼ �vP
vx

þ v
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vU
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�
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vðrcPUTÞ
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vy

¼ v

vx

�
k
vT
vx

�
þ v

vy

�
k
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�
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vðrUYiÞ
vx
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vy

¼ v

vx

�
rDeff

i;m

vYi

vx

�
þ v

vy

�
rDeff

i;m

vYi

vy

�
þ Ssp (10)

where U and V are the velocity components in x and y direc-

tions; r is the density of gasmixture, m is the viscosity of the gas

mixture; k is the thermal conductivity; cp is the heat capacity;

Deff
i;m is the effective diffusion coefficient of species i in gas

mixture, which can be found in the previous publications [35].

Both r and m depend on the local gas composition and

temperature and the gas mixture is treated as ideal gas in the

present study. In the porous electrodes, effective heat conduc-

tivity and heat capacity are used and can be calculated as [36],

k ¼ εkf þ ð1� εÞks (11)

cp ¼ εcp;f þ ð1� εÞcp;s (12)

where ε is the electrode porosity; kf and ks are the heat

conductivity (W m�1 K�1) of the fluid and solid, respectively;

cp,f and cp,s are the heat capacity (J kg�1 K�1) of the fluid and

solid, respectively. Similar to r and m, both k and cp are

temperature-dependent.

The source term in Eq. (6) represents the mass consump-

tion in the cathode and mass generation in the anode due to

electrochemical reactions (Eqs. (3)e(5)). In Eq. (10), the source

term represents the gas consumption/generation due to

chemical/electrochemical reactions (Eqs. (1)e(5)). The Darcy’s

law ðSx ¼ �mU
Bg

and Sy ¼ �mV
Bg

Þ is used as source terms in
momentum equations (Eqs. (7) and (8)) so that themomentum

equations are applicable for both the gas channels and the

porous electrodes, by assigning a suitable permeability (Bg) to

the porous electrodes and an infinitely large permeability to

the gas channels. The source term in energy equation (Eq. (9))

represents heat generation or absorption by chemical/elec-

trochemical reactions as well as heat generation by irrevers-

ible overpotential losses [37,38]. Detailed descriptions of the

source terms and their calculation methods can be found in

the previous publications [37,38].

The source terms in species equation (Eq. (10)) and energy

equation (Eq. (9)) are related to chemical/electrochemical

reactions. Thus an electrochemical model and a chemical

model are needed to calculate the rate of electrochemical/

chemical reactions.
2.2. Electrochemical model

The electrochemical reaction rate at a given voltage is linked

with the current density, which can be calculated by the

electrochemical model. In operation, the required voltage

applied to the SOEC can be calculated as,

V ¼ Eþ hact;a þ hact;c þ hohmic (13)

where E is the equilibrium potential, which can be calculated

by Eqs. (14) and (15) for H2O electrolysis and CO2 electrolysis

respectively [38].

EH2
¼ 1:253� 0:00024516Tþ RT

2F
ln

2
664P

I
H2

�
PI
O2

�0:5
PI
H2O

3
775 (14)

ECO ¼ 1:46713� 0:0004527Tþ RT
2F

ln

2
664P

I
CO

�
PI
O2

�0:5
PI
CO2

3
775 (15)

In Eqs. (14) and (15), PI
H2
, PI

H2O
, PI

CO2
, PI

CO and PI
O2

are the partial

pressures of H2, H2O, CO2, CO and O2 at the electro-

lyteeelectrode interface, respectively. Therefore, the concen-

tration overpotentials are implicitly included in the Nernst

potentials. R is the universal gas constant (8.3145 J mol�1K�1).

F is the Faraday constant (96,485 C mol�1). hohmic is the ohmic

overpotential and can be calculated by the Ohm’s law [6]. hact,a
and hact,c are the activation overpotentials at the anode and

cathode, respectively. hact,a and hact,c are assumed to vary

linearly with current density as [38],

hact;H2 ;i ¼
RTJH2

nH2
FJ0H2 ;i

(16)

hact;CO;i ¼
RTJCO

nCOFJ0CO;i

(17)

where J0H2 ;i
and J0CO;i are the exchange current densities for

electrolysis of H2O and CO2, respectively. The subscript i (i ¼ a

and c) means the anode and cathode, respectively. nCO and nH2

are the number of electrons (2 in the present study) trans-

ferred per reaction (CO2 electrolysis and H2O electrolysis).

The details on the exchange current densities can be found in

a previous publication [38].
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Fig. 2 e Effect of inlet temperature on current density

distribution in SOEC, with inlet H2O molar fraction of

49.9%, CO2 molar fraction of 50%, CH4 molar fraction of

0.1%, inlet gas velocity of 0.5 m sL1; and operating

potential of 1.5 V; (a) current density for electrolysis of H2O

and CO2; (b) total current density.
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2.3. Chemical model

In this study, it is considered that reversible WGSR and

reversible methanation reaction (reversed direct internal

reforming reaction: DIR) can take place but the actual direc-

tion and magnitude of the reaction rates depends on the

operating conditions. In the literature, the Haberman and

Young’s model is widely used for calculating the reversible

WGSR rate (RWGSR, mol m�3 s�1) and reversible DIR reaction

rates (RDIR, mol.m�3.s�1) [39], thus it is adopted in the present

study.

RWGSR ¼ ksf

�
pH2OpCO � pH2

pCO2

Kps

�
(18)

ksf ¼ 0:0171exp

��103191
RT

�
mol:m�3:Pa�2:s�1 (19)

Kps ¼ exp
�� 0:2935Z3 þ 0:6351Z2 þ 4:1788Zþ 0:3169

�
(20)

Z ¼ 1000
TðKÞ � 1 (21)

RDIR ¼ krf

 
PCH4PH2O � PCO

�
PH2

�3
Kpr

!
(22)

krf ¼ 2395exp

��231266
RT

�
(23)

Kpr ¼ 1:0267�1010 �exp
��0:2513Z4 þ0:3665Z3 þ0:5810Z2

�27:134Zþ3:277
�

(24)

The heat generation/consumption due to chemical reac-

tions can be calculated according to corresponding enthalpy

changes [40]. Between 600 K and 1200 K, the reaction heat

(J mol�1) for reversible WGSR and reversible DIR reaction can

be approximated as [38,40],

HDIR ¼ �ð206205:5þ 19:5175TÞ (25)

HWGSR ¼ 45063� 10:28T (26)

2.4. Numerical scheme

The finite volumemethod (FVM) is used to solve the governing

equations in the CFD model [41,42]. The boundary conditions

can be found in Ref. [43], i.e. adiabatic conditions are applied at

the bottom and the top of the computation zone ( y ¼ 0 and

y ¼ yM). SIMPLEC algorithm is used to couple the velocity and

pressure. A TDMA-based alternative iteration scheme is

employed to solve the discretized equations. The electro-

chemical model and chemical model are solved in each itera-

tion to update the source terms for the CFD sub-model. In the

electrochemical model, the current densities for H2O electrol-

ysis and CO2 electrolysis are determined using their respective

Nernst potentials and overpotential losses [44e46]. Computa-

tion is repeated until convergence is achieved. The in-house

code is written in FORTRAN. The CFD model has been vali-

dated in the previous publications [18,43]. In previous studies,

the mean temperature of the SOEC is found to match the inlet
temperature at thermal neutral voltages for electrolysis of H2O

and CO2, thus the model is reliable for simulating the thermal

field of the SOEC [18,33]. The chemical model and electro-

chemical model have been validated in refs. [34,47].
3. Results and discussion

The dimensions and typical structural/operating parameters

for H2O/CO2 co-electrolysis are summarized in Table 1. At the

cathode inlet, a small value (1%) of CH4 molar fraction is used

to examine the variation of methanation/internal reforming

reaction in SOECs.

3.1. Effect of operating temperature

Fig. 2a and b show the effect of operating temperature on the

distributions of current density in an SOEC, at an operating

potential of 1.5 V, inlet gas velocity of 0.5 m s�1, and inlet gas

composition (molar fraction) of H2O: 49.9%; CO2: 50%; CH4:

0.1%. The total current density in Fig. 2b is the sum of current

http://dx.doi.org/10.1016/j.ijhydene.2012.01.072
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densities for H2O electrolysis and CO2 electrolysis. The current

densities for electrolysis of H2O and CO2 are found to increase

considerably with an increase in temperature. This is because

both activation overpotential and ohmic overpotential

decrease considerably with increasing temperature. In addi-

tion, at a higher temperature, the difference in current

densities for electrolysis of H2O and CO2 are enlarged (Fig. 2a).

This is because the equilibrium potential under standard

conditions for CO2 electrolysis is lower than that for H2O

electrolysis, i.e. at 1200 K, 0.923869 V for CO2 electrolysis and

0.940172 V for H2O electrolysis [34].

To gain a fundamental understanding of the coupled

transport and reaction phenomena in SOEC, the distributions
Fig. 3 e Performance of SOEC at an inlet temperature of 1073 K

cathode; (b) CO molar fraction in cathode; (c) rate of reversible W

ratio.
of gas species’ molar fraction, rates of reversible WGSR and

reversible reforming reaction, temperature, and velocity ratio

are shown in Figs. 3 and 4. Due to electrolysis of H2O and CO2,

the molar fractions of H2 and CO are found to increase along

the SOECmain flow stream (Fig. 3a and b). The difference in H2

molar fraction between the porous cathode and the cathode

channel is small, indicating fast H2 diffusion in the porous

electrode and low concentration overpotential for H2O elec-

trolysis (Fig. 3a). For comparison, the CO molar fraction in the

porous cathode is considerably higher than that in the

cathode channel, indicating slow diffusion of CO and a larger

loss due to mass transfer for CO2 electrolysis (Fig. 3b). For

example, near the outlet, the CO molar fraction at the
and operating potential of 1.5 V e (a) H2 molar fraction in

GSR; (d) rate of reversible DIR; (e) temperature; (f) velocity

http://dx.doi.org/10.1016/j.ijhydene.2012.01.072
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Fig. 4 e Performance of SOEC at inlet temperature of 973 K (4aed) or 873 K (4eeh) and operating potential of 1.5 V e (a) H2

molar fraction at 973 K; (b) COmolar fraction at 973 K; (c) rate of WGSR at 973K; (d) rate of DIR at 973 K; (e) H2 molar fraction at

873 K; (f) CO molar fraction at 873 K; (g) rate of WGSR at 873 K; (h) temperature distribution at an inlet temperature of 873 K.
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cathode-electrolyte interface is about 19%, while it is about

13% in the cathode channel (Fig. 3b). This is consistent the

results from the literature that the concentration over-

potential for CO is usually higher than H2 fuel [48].

Fig. 3c shows the distribution of reversible WGSR in the

cathode of SOEC. The reaction rate of WGSR is positive near

the inlet and negative in most of the porous cathode in the

downstream. The positive rate ofWGSR is caused by relatively

high concentration of CO at the cathode-electrolyte interface

near the inlet, since CO is more difficult to diffuse to the

cathode channel than H2 due to higher diffusion coefficient of

H2 than CO [18,33,48]. In the downstream, the reversed WGSR

is favored due to considerably increased H2 concentration by

H2O electrolysis. TheWGSR rate also varies considerably in the

cathode depth. For example, near the outlet, the WGSR reac-

tion rate is decreased from about �26 mol m�3 s�1 near the

cathode surface to about �10 mol m�3 s�1 at the cathode-

electrolyte interface. Since the average reaction rate of

WGSR is negative under the present simulation conditions,

the reversible WGSR contributes to CO production. This also

explains why the molar fractions of H2 and CO are almost the

same at the outlet of the cathode channel (Fig. 3 a and b),

despite of higher current density for H2 production from H2O

electrolysis (Fig. 2). Compared with the reversible WGSR, the

reaction rate of reversible DIR is very small and positive

(Fig. 3d), means that the methanation (reversed DIR) is not

favored for CH4 production. This is consistent with experi-

mental measurements, from which no CH4 is detected [29].

Although both H2O electrolysis and CO2 electrolysis are

endothermic, the cell temperature is increased by about 32 K

from1073 K at the inlet to be about 1105 K at the outlet (Fig. 3e).

The temperature field of the SOEC is determined by 3 factors:

(1) endothermic electrolysis of H2O and CO2; (2) irreversible

overpotential losses, which generate heat; and (3) reversible

WGSR, which can generate heat for positive reaction rate and

consume heat for negative reaction rate (reversed reaction).

The effect of WGSR is small due to a small average WGSR rate

of the cell. As the operating potential (1.5 V) is higher than the

thermal neutral voltages (TNV) for electrolysis of H2O and CO2

[18,33], the heat generation from overpotential losses exceeds

heat demand for electrolysis reaction. Fig. 3f shows the ratio of

local velocity to the inlet velocity in the SOEC. The gas velocity

in the porous electrodes is found to be very low (close to 0),

while the gas velocity ratio in the gas channels is found to

follow the inlet flow pattern near the inlet and fully developed

flow pattern in the downstream e increases from the solid

surface to themaximumat the center line of the gas channels.

The results are consistent with flow field and velocity varia-

tion pattern in an SOFC duct [49].

With a decrease in inlet temperature from 1073 K to 973 K

and 873 K, themolar fractions of both H2 and CO are decreased

(Fig. 4a,b,e,f), due to considerably reduced current densities

for electrolysis of H2O and CO2 (Fig. 2). The reaction rate of

reversible WGSR is found to decrease significantly with

decreasing temperature (Fig. 4c and g). As less CO2 is

consumed by electrolysis and less H2 is produced from H2O

electrolysis, reversed WGSR is not favored at reduced

temperature, as can be seen from positive reaction rate of

WGSR in Fig. 4c and g. For comparison, the reversible DIR

reaction rate is still negligibly small at various operating
temperatures (Fig. 4d), indicating that both CH4 formation and

reforming are not favored in co-electrolysis of H2O and CO2. At

a reduced current density, the heat generation by over-

potential losses is also reduced. Thus, the temperature

increase along themain flow stream is found to decrease from

about 32 K (between outlet and inlet) at 1073 K to be about 3.5 K

at an inlet temperature of 873 K (Fig. 4h).

3.2. Effect of inlet gas composition

Fig. 5 shows the effect of inlet gas molar fraction on perfor-

mance of SOEC for H2O/CO2 co-electrolysis. Two cases are

considered in the present study. In case 1, the inlet gas molar

fractions for H2O and CO2 are 75% and 25%, respectively. In

case 2, the inlet gas molar fractions for H2O and CO2 are 25%

and 75%, respectively.

It is found that the current densities for H2O electrolysis

and CO2 electrolysis in case 1 are higher than in case 2 (Fig. 5a).

This finding is out of expectation, since CO2 electrolysis

should not be favored with a lower concentration of CO2, but

the corresponding current density is higher in case 1 than in

case 2, especially in the downstream. This phenomenon is

caused by the different reaction rates of WGSR in the SOEC

(Fig. 5b and c). In case 1, much larger molar fraction of H2O

than that of CO2 favors forward reaction of WGSR thus the

WGSR rate is positive in case 1 (Fig. 5b). For comparison,

backward reaction of WGSR is favored with large molar frac-

tion of CO2, leading to strongly negative reaction rate ofWGSR

in case 2 (Fig. 5c).

Due to higher current density for H2O electrolysis and

positive reaction rate ofWGSR, theH2molar fraction increases

considerably along the SOEC cell and reaches about 17% at the

outlet in case 1 (Fig. 5d), significantly higher than that in case 2

(about 7e8% at the outlet, Fig. 5e). Although the current

density for CO2 electrolysis in case 1 is slightly higher than in

case 2, the strongly positive reaction rate of WGSR consumes

CO. The combined effects result in lower molar fraction of CO

in case 1 than in case 2 (Fig. 5f and g).

3.3. Effect of operating potential

The effect of operating potential on co-electrolysis behaviors

of an SOEC is shown in Fig. 6. As expected, the current density

increases with increasing operating potential (Fig. 6a), leading

to higher rate of electrolysis for H2O and CO2.

Near the inlet of the SOEC, the reversibleWGSR is primarily

positive and the reaction rate is increased with an increase in

operating potential from 1.0 V to 1.5 V (Fig. 6b and c). This is

consistent with the previous 1D study that reversible WGSR

could be positive and consume CO at a high potential under

certain operating conditions [34]. However, in the down-

stream, the reversible WGSR become reversed due to signifi-

cant change in gas composition (Fig. 6b and c). At a lower

operating potential (i.e. 1.0 V), the reversible WGSR rate is

negative near the cathode surface and positive near the

cathode-electrolyte interface, in the downstream of the SOEC

(Fig. 6b). This is because of a higher concentration of CO2 and

H2 at the cathode surface due to fast diffusion of H2. For

comparison, near the cathode-electrolyte interface, relatively

higher CO molar fraction (due to slow diffusion rate to the
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Fig. 5 e Effect of inlet gas composition on SOEC performance. Case 1 e H2O: 75%; CO2: 25%; Case 2 e H2O: 25%; CO2: 75%. (a)

distribution of current density; (b) rate of WGSR for case 1; (c) rate of WGSR for case 2; (d) H2 molar fraction for case 1; (e) H2

molar fraction for case 2; (f) CO molar fraction for case 1; (g) CO molar fraction for case 2.
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Fig. 6 e Effect of operating potential on SOEC performance

at inlet gas velocity of 0.2 m sL1 with inlet gas molar

fractions of H2O: 50% and CO2: 50%; inlet temperature:

1073 K e (a) current density distribution; (b) rate of WGSR at

1.0 V; (c) rate of WGSR at 1.5 V.
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cathode surface) favors positive reaction rate of WGSR

(Fig. 6b). At a higher operating potential (i.e. 1.5 V), the

reversible WGSR is negative (Fig. 6c), due to high rate of H2

production by H2O electrolysis, as can be seen from Fig. 6a.

From the above analyses, it can be seen that 1D electro-

chemical model can serve as the basis for 2D thermal-

electrochemical analyses. However, it should be also
mentioned that due to large variations of gas composition

along the flow channel, the chemical/electrochemical reac-

tion rates vary significantly. Therefore, the conclusions drawn

from 1D model may not be directly applicable to 2D cell and

need to include the variation along the flow stream. In addi-

tion, the porous microstructure also influences the co-

electrolysis processes, as it determines the diffusion resis-

tance for gas flow in the porous media. For example, smaller

pore size can cause large diffusion resistance and high

concentration polarization loss. Analyses of the microstruc-

tural effects can be found in the previous studies conducted by

the author or other researchers [43,49].
4. Conclusions

In this paper, a 2D thermal model is developed to predict the

performance of an SOEC used for H2O/CO2 co-electrolysis for

H2/CO syngas production. Both the reversible WGSR and DIR

reaction are included in the model.

Simulations are performed at inlet temperatures of 873 K,

973 K and 1073 K. It is found that methanation reaction

(reversedDIR reaction) is not favored,which is consistentwith

experimental observations in the literature. For comparison,

the effect of reversible WGSR on the co-electrolysis behavior

is significant and cannot be neglected. The WGSR could

contribute to CO production or consume CO, depending on

various operating conditions. Under the simulation condi-

tions with an inlet gas composition (molar fraction) of H2O:

50% and CO2: 50%, the magnitude of WGSR reaction rate is

found to increase with increasing temperature and reversed

WGSR is favored at a high temperature. At an inlet tempera-

ture of 1073 K, current densities for electrolysis of both H2O

and CO2 are found to increase when the inlet gas composition

is changed from case 2 (H2O: 25%; CO2: 75%)to case 1 (H2O: 75%;

CO2: 25%). With an increase in operating potential from 1.0 V

to 1.5 V, current densities for co-electrolysis are increased

considerably. However, the reversibleWGSR contributes to CO

production at 1.5 V as the rate of WGSR is strongly negative in

the downstream. The 2D modeling results presented in this

paper provide good information on the underlying processes

pertinent to the SOEC operation, and may guide the future

design optimization.
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