Differential expression of lipid metabolism related genes in HepG2 cells treated with neotoralactone

AU Tze-shan¹, YANG Da-jian², ZHANG Yao¹, WONG Man-sau², CHEN Shi-lin², FONG Wan-fung¹, XIAO Pei-ge³, YANG Meng-su¹

(¹. Applied Research Centre for Genomic Technologies, and Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; ². Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; ³. Institute of Medicinal Plant Development and Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100094, China)

Abstract. Aim: To study the biological effect and molecular mechanism of neotoralactone on lipid metabolism in HepG2 cells. Methods: Animal experiments were carried out to examine the biological effects of the compound. Differentiation assay was carried out to determine the effect of the compound on the 3T3-L1 preadipocyte. Finally, a high-density cDNA microarray containing about 10 000 human genes and ESTs was used to analyze the gene expression profiles of the HepG2 cells with and without neotoralactone treatment. Results: Preliminary results showed that neotoralactone can decrease the increase of body weight of rats fed with high nutrient diet. As the differentiation assay showed that neotoralactone has minimal effect on the obese 3T3-L1 preadipocyte cell line, HepG2 hepatocarcinoma cell line was used as the model system because one of the proposed mechanisms of weight reduction effect of Cassia obtusifolia is the alteration of lipid metabolism primarily taken place in the liver. The results showed that neotoralactone regulates a panel of genes related to lipid metabolism. Conclusion: The effects of neotoralactone may be due to the regulation of a panel of important genes related to lipid metabolism.

Key words: Cassia obtusifolia; neotoralactone; cDNA microarray; HepG2

HepG2 cells treated with neotoralactone

HepG2 cells treated with neotoralactone

HepG2 cells treated with neotoralactone

Obesity, defined as an increase in the mass of adipose tissue, is the most prevalent nutritional disorder in industrialized countries and a growing problem in developing countries. Therefore, it has become an acute need to develop new and effective therapeutic strategies for controlling obesity. Neotoralactone (NT, patent-pending), a derivative of toralactone, is a compound extracted from the seed of Cassia obtusifolia (Figure 1). Cassia obtusifolia is a traditional Chinese medicine claimed to have body weight reduction effect and...
has been used as one of the main ingredients for many body weight reduction medicines in the market\(^2\,\,^3\). A study on the subchronic toxicity of \textit{C. obtusifolia} seed found that treatment of ten rats with diets containing 0, 0.15\%, 0.50\%, 1.50\% or 5.00\% \textit{C. obtusifolia} seed for 13 weeks led to decreased body weights\(^3\). However, the physiological effect and molecular mechanism of the herbal medicine is not well understood.

![Chemical structure of toralactone](image)

Figure 1 Chemical structure of toralactone

In this study, animal experiments were carried out to examine the biological effects of the single, purified compound NT. A differentiation assay of 3T3-L1 preadipocytes was employed to examine the effect of NT on adipocyte differentiation. As the effect was shown to be minimal, the HepG2 human hepatocarcinoma cell line was selected as the model system because one proposed mechanism of the weight reduction effect of \textit{Cassia obtusifolia} is the alteration of lipid metabolism primarily taking place in the liver. A high-density cDNA microarray\(^4\,\,^5\) containing about 10 000 human genes and EST (expression sequence tag, EST) was used to analyze the gene expression profiles of the HepG2 cells in the absence and the presence of NT treatment. The results indicated that the effects of NT may be due to the regulation of a panel of important genes related to lipid metabolism.

Experimental section

Materials Human clone set (Unigem V2.0) was obtained from Incyte Genomics. Trizol reagent and Superscript II reverse transcriptase (Invitrogen), Cy3 and Cy5 labeling kit (Amersham Pharmacia Biotech), microcon spin column (Millipore), methylisobutylisobutylxanthine (MIX), insulin, dexamethasone (DEX), and Oil Red O stain (all from Sigma) were used as received. Scanarray 4000 was from GSI Lumonics.

Evaluation of weight reduction effect of NT on rats Twenty female rats (Rattus norvegicus) were equally separated into two groups (group 0 and group 1); with similar body weight (\(\approx 43\) g). All the rats were fed with high nutrient diet for 35 days before experiment and continuously fed with high nutrient diet for another 30 days during the whole experiment. Group 0 was the control and Group 1 was treated with NT (50 mg·kg\(^{-1}\)) for 30 days. The body weight of the rats was measured during the whole experiment.

3T3-L1 differentiation assay 3T3-L1 preadipocytes (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10\% calf serum until 2 days after confluence. Differentiation was induced by addition of inducing medium (methylisobutylisobutylxanthine 0.5 mmol·L\(^{-1}\), DEX 1 \(\mu\)mol·L\(^{-1}\), insulin 1 g·mL\(^{-1}\), and 10\% fetal bovine serum (FBS) in DMEM). After 2 days, the medium was replaced with DMEM containing insulin 1 \(\mu\)g·mL\(^{-1}\) and 10\% FBS. Then, the cells will be fed every other day with 10\% FBS in DMEM without insulin\(^6\,\,^7\). During the course, 3T3-L1 cells were treated with NT 30 \(\mu\)g·mL\(^{-1}\) by adding the drug to the culture medium and incubated for 8 days. Cells without treatment were used as control.

Oil Red O staining\(^3\) was used to evaluate the change in cytoplasmic triglyceride of 3T3-L1 adipocytes after NT treatment. 3T3-L1 cell monolayers were fixed with 10\% formalin, stained with 0.5\% Oil Red O-isopropyl alcohol solution for photography and destained with isopropanol. The absorbance (\(A\)) of the destaining isopropanol was measured at 510 nm. Finally, the ratio of differentiation was counted by the formula \(A\) (sample)/\(A\) (control) \(*100\%\).

HepG2 cell culture and cDNA microarray hybridization HepG2 cells (ATCC) were cultured in DMEM supplemented with 10\% FBS. NT 30 mg·L\(^{-1}\) was added to the culture medium of confluent HepG2 cells and then incubated for 24 hours. Cells without treatment were used as control. The cells were harvested and total RNA was isolated with TRIZOL reagent according to the manufacturer’s instruction. The quantity and quality of the extracted total RNA was checked by a biophotometer and agarose gel electrophoresis, respectively 150 \(\mu\)g of total RNA samples were reverse-transcribed into cDNA using SuperScript II reverse transcriptase in the presence of either of the two distinct fluorescent dyes Cy3-dUTP and Cy5-dUTP, for the control and treated samples, respectively. The dye-labeled cDNA samples were mixed in 1:1 ratio and hybridized at 65 °C overnight with a home-made cDNA microarray containing 10k genes and ESTs from a human cDNA library (Incyte Genomics). After washing, the microarrays were scanned using a fluorescence scanner (ScanArray 4000, GSI Lumonics) and the microarray images were analyzed with ScanAnalyse software\(^4\,\,^5\,\,^8\).

Results and discussion
1 Effect of NT on rats and 3T3-L1 differentiation assay

Table 1 shows that the body weights of NT-treated rats were lower than those of the control rats. During the course of NT treatment, the treated rats displayed an average of 10% – 35% decrease in body weight gain compared with those of the untreated rats. The results suggest that NT showed body weight reduction effect in rats. The 3T3-L1 pre-adipocyte cells were treated with NT during the period when the cells were induced to differentiate into adipocytes. After 8 days of induction, there was no obvious difference in morphology and oil red O staining assay between NT treated 3T3-L1 cells and the control cells (data are not shown). It suggests that NT does not affect the pathways in adipocyte differentiation and the target of NT may not be at the pre-adipocyte / adipocyte level.

Table 2 Genes up-regulated in HepG2 cells treated with neotoralactone

Unigene ID	Gene name	Genbank	Ratio
Hs. 73849 | Apolipoprotein CII | APOC3 | 2.2
Hs. 1925 | Serum amyloid A4 | SAA4 | 2.1
Hs. 177516 | High density lipoprotein binding protein | HDLP | 0.18
Hs. 48876 | Farnesyl diphosphate farnesyltransferase 1 | FDTF1 | 2.5
Hs. 76088 | Isopenteny1 diphosphate delta isomerase | IDI1 | 2.2

Table 1 Comparison of the body weight change between obese rats with and without NT treatment.

<table>
<thead>
<tr>
<th>Group</th>
<th>High nutrient diet fed rats control / g (without NT treatment)</th>
<th>High nutrient diet fed rats Net gain in body weight / g</th>
<th>Body weight / g before high nutrient diet treatment</th>
<th>35 days after high nutrient diet treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight / g</td>
<td>42.8 ± 2.4</td>
<td>43.3 ± 3</td>
<td>81 ± 7</td>
<td>180 ± 19</td>
</tr>
</tbody>
</table>

*Calculation based on: (Net body weight gain for Group O – Net body weight gain for Group 1) / Body weight after 35 days obese treatment

2 HepG2 cells and cDNA microarray hybridization

HepG2 cells were selected as an alternate model to 3T3-L1 since one possible mechanism of NT action is the alteration of lipid metabolisms in liver. The gene expression profiles of HepG2 cells treated with NT were obtained by using a high-density cDNA microarray (Figure 2). The fluorescence intensities were normalized and the Cy3 Cy5 ratio for each spot was calculated. The genes with ratios over 2 and below 0.5 were considered as up-regulated and down-regulated genes, respectively, following NT treatment. When comparing NT-treated HepG2 cells with untreated HepG2 cells, a total of 46 genes and ESTs showed differential expressions. 12 genes and 1 EST were up-regulated and 21 genes and 12 ESTs were down-regulated, respectively (Table 2).

Table 2 Genes up-regulated in HepG2 cells treated with neotoralactone

<table>
<thead>
<tr>
<th>Unigene ID</th>
<th>Gene name</th>
<th>Genbank</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hs. 73849</td>
<td>Apolipoprotein CII</td>
<td>APOC3</td>
<td>2.2</td>
</tr>
<tr>
<td>Hs. 1925</td>
<td>Serum amyloid A4</td>
<td>SAA4</td>
<td>2.1</td>
</tr>
<tr>
<td>Hs. 177516</td>
<td>High density lipoprotein binding protein</td>
<td>HDLP</td>
<td>0.18</td>
</tr>
<tr>
<td>Hs. 48876</td>
<td>Farnesyl diphosphate farnesyltransferase 1</td>
<td>FDTF1</td>
<td>2.5</td>
</tr>
<tr>
<td>Hs. 76088</td>
<td>Isopenteny1 diphosphate delta isomerase</td>
<td>IDI1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

3 Functional Analysis of Differentially Expressed Genes

The 33 differentially expressed genes may be classified into 4 clusters according to their functions (Table 2), including (1) lipid metabolism, (2) amino acid metabolism, (3) immune response, and (4) cell growth and differentiation. The results are consistent with the previous studies, which suggest that NT can reduce body weight, triglycerides, and cholesterol levels.
acid (and protein) and nucleic acid metabolism, (3) proliferation, apoptosis and tumor, and (4) other functions.

The genes related to lipid metabolism are the most interesting in this research. The up regulation of apolipoprotein C-III (APOC3), which has the function of inhibiting lipoprotein lipase and hepatic lipase and also decreases the uptake of lymph chylomicrons by hepatic cells, is considered to be one possible cause of the body reduction effect of NTs. When the lipoprotein lipase and hepatic lipase are inhibited, the catabolism of triglyceride particles would be delayed. Thus, the cells cannot absorb and utilize the triglyceride and may cause body weight reduction effect. This mechanism is similar to the weight loss mechanism of Xenical. Serum amyloid A4, constitutive (SAA4), an apolipoprotein component of non-acute phase high-density lipoprotein, was also up regulated. It may also play a role in helping the cells produce apolipoprotein CIII. As a feedback mechanism, some genes related to cholesterol metabolism may need to be regulated to compensate for the reduced production of cholesterol. These include the down regulation of high-density lipoprotein binding protein (HDLBP), with the function of protecting cells from over-accumulation of cholesterol, and up-regulation of farnesyl-diphosphate farnesyltransferase 1 (FDFT1), involving in the first step of cholesterol biosynthesis and as a control point in sterol and isoprene synthesis. Similarly, isopentenyl diphosphate delta isomerase (IDI1) encodes a peroxisomally localized enzyme, catalyzes the interconversion of isopentenyl diphosphate (IPP) to its highly electrophilic isomer, dimethylallyl diphosphate.
Figure 3 Biochemical pathways involving APOC, FGD1, IDH1 and HDLBP genes. Regulation of these genes results in decreased catabolism of triglyceride and a feedback accumulation of cholesterol

Conclusion

In this paper, the in vivo effect of NT on body weight of obese rat and the in vitro cell based assay in 3T3-L1 adipocytes were investigated. The global gene expression profiles in HepG2 cells after NT treatment were analyzed using cDNA microarrays. The results of animal experiment suggested that NT has weight reduction effect. The results of differentiation assay suggested that NT has minimal effect on adipocyte differentiation. The microarray results indicate that NT regulates several groups of genes involving in cellular metabolisms and proliferation and other functions, and that the weight reduction effects of NT may be due to the regulation of a panel of important genes related to lipid metabolism pathways.

References:

