Ozone and related gaseous pollutants in the boundary layer of eastern China: Overview of the recent measurements at a rural site

T. Wang, Vincent T. F. Cheung, M. Anson, and Y. S. Li
Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract. We present a summary of the latest measurements of ozone (O₃) and primary air pollutants at a rural/agricultural site in the fast developing Yangtze Delta region of China. The results of this study show elevated levels of primary pollutants (CO, SO₂ and NOₓ), which are about 1-5 times of those typically found in rural areas of North America and Europe. O₃ pollution events are frequently observed. CO and SO₂ levels are particularly high, resulting from the unique energy-use pattern in China. O₃ shows strong positive correlation with NOₓ and CO during periods of high photochemical activity. The O₃-NOₓ slope is comparable to the result from rural North America, but the O₃-CO slope is substantially smaller for the Chinese site. With the anticipation of rapid changes of atmospheric composition in China, long-term measurements of key air pollutants will be necessary for documenting their trends and for studying their environmental impacts.

1. Introduction

China and many other East Asian countries have experienced phenomenal economic growth in the past two decades. The economic expansion has resulted in increasing consumption of fossil fuels, leading to increasing emissions of the major air pollutants into the atmosphere [Galloway et al., 1989; Kato and Akimoto, 1994; Aardenne et al., 1999; Streets and Waldhoff, 2000]. Between 1990 and 1995, emissions in China increased by 9%, 26%, and 16% for SO₂, NOₓ, and CO, respectively [Streets and Waldhoff, 2000]. The large emissions of SO₂ have resulted in acidic deposition over the southern part of China [Wang and Wang, 1995]. Recent studies have suggested that rural ozone and aerosol levels in eastern China may be high enough to cause significant reduction of crop yields [Chameides et al., 1999a, 1999b]. Other studies have shown that emissions from China and East Asia may have significant effects on tropospheric chemistry and the biogeochemical cycles of the remote Pacific [e.g., Crawford et al., 1997; Elliott et al., 1997]. There are also studies to suggest that Asian emissions can make their way across the Pacific Ocean and affect the air quality of the western United States [Jaffe et al., 1999; Jacob et al., 1999]. So far, field measurements of key air pollutants in eastern China have been comparatively sparse, especially in rural locations. Such studies are needed to provide data to elucidate atmospheric processes on the Chinese sub-continent, to reconcile emission inventories, and to constrain regional chemical transport models. The first sizable measurement study was conducted in 1994 in several rural areas of eastern China [Peng et al., 1997; Luo et al., 2000]. In 1999, as a cooperative effort with the China-MAP project (The Yangtze Delta of China as an Evolving Metro-Agro-Plex), a field campaign was carried out in the Yangtze Delta region. During this experiment, the authors measured O₃, CO, SO₂, and NOₓ at a typical rural/agricultural site for over a 1-year period. This report gives an overview of the measurements.

2. Experimental

The study was conducted at the Linan Baseline Air Pollution Monitoring Station (30°25'N, 119°44'E, 132 m) situated on the southern edge of the Yangtze Delta plain of China (Figure 1). The station is 53 km west and 210 km southwest of the major population centers of Hangzhou and Shanghai, respectively, with the Linan township (population ~50,000) 10 km to the south. To the west and further south are sparsely populated and less developed mountainous regions. The site is surrounded by hills planted in pines, mixed deciduous trees, and bamboo, as well as crop fields of various sizes in the valleys between the hills. Small villages are scattered around the station within a distance of a few kilometers. This land-use pattern is typical in the rural part of eastern China. Thus our measurements are believed to be representative for a large region, as opposed to isolated emission 'hot' spots. Indeed, a comparison of the data from the
Linan site with those concurrently obtained at several other non-urban sites situated 100 to 300 km apart shows that the levels of the primary pollutants at Linan are either comparable or lower. It should be noted, however, that due to the large population in rural eastern China, human activities (and thus emissions) are more intense than in the rural/agricultural regions in the western countries. This is reflected in the ambient chemical data obtained from this study.

Measurement instruments were housed in a semi temperature-controlled laboratory. Ambient air samples were drawn through a PFA Teflon tube (OD: 12.7 mm; ID: 9.55 mm; length: 8.5 m) which was connected to a PFA manifold. A bypass pump drew air at a rate of 15 liters per minute. With four analyzers, the residence time of sampled air in the tube and the manifold was less than 2 seconds. An in-line Teflon filter (Fluoroware Inc., Chaska, Minnesota) was placed upstream of each analyzer to prevent particles from entering into the analyzer. The inlet of the sample line was located 5 m above the rooftop of the laboratory.

\[\text{O}_3 \] was measured using with a commercial UV photometric instrument (Thermo Environmental Instruments, Inc. (TEI), model 49) which had a detection limit of 2 ppbv and a 2-sigma (2-\(\sigma\)) precision of 2 ppbv for a 2-minute average.

\[\text{SO}_2 \] was measured by a pulsed UV fluorescence (TEI, model 43S), with a detection limit of 0.06 ppbv and 2-\(\sigma\) precision of 3% for ambient levels of 10 ppbv (2-minute average). The uncertainty was estimated to be about 9%.

\[\text{CO} \] was measured with a gas filter correlation, nondispersive infrared analyzer (Advanced Pollution Instrumentation, Inc., model 300) with a heated catalytic scrubber (as purchase) to convert CO to CO\(_2\) for baseline determination. Our tests showed that water vapor was able to pass through the converter near 100%, although it could take a few minutes for the signal to reach an equilibrium. In our study the analyzer was zeroed every two hours, each lasting 12 minutes. The last two-minute data from each zeroing was taken as the baseline and was automatically subtracted from the signals. The detection limit was 30 ppbv for a 2-minute average. The 2-\(\sigma\) precision was about 1% for a level of 500 ppbv (2-minute average) and the overall uncertainty was estimated to be 10%. The in situ CO data were compared with those from the analyses of 16 canister samples taken at the site between October 26 and November 2, 1999 and analyzed at the University of California-Irvine using the gas chromatographic methods. The two sets of CO data correlate very well in the observed range of 350-1065 ppbv \[(\text{CO})_{\text{in situ}} = 0.92(\text{CO})_{\text{canister}} + 20; r^2 = 0.97). \] The in situ data are slightly lower than the canister results.

NO was detected with a chemiluminescence analyzer (TEI, model 42S) with a detection limit of 0.05 ppbv. The 2-\(\sigma\) precision of this instrument was 4% (for NO=10 ppbv) and the uncertainty was about 10%. \[\text{NO}_2 \] was converted to NO by a hot molybdenum oxide maintained at 325\(^\circ\)C with the NO subsequently measured by the chemiluminescence detector. This technique is known to convert not only \[\text{NO}_2 \] but also other reactive nitrogen species such as peroxyacetyl nitrate anhydride (PAN), aerosol nitrates and nitric acid. In our experiment, aerosol nitrate was most likely collected on the in-line Teflon filter (which was replaced normally every 10 days). Nitric acid was believed to have passed the PFA sample line [Neuman et al., 1999] during the short residence time, but some could be absorbed by aerosols collected on the filter. The \("\text{NO}_2\)" measured in this study is thus an approximate summation of \[\text{NO}, \text{NO}_2, \text{PAN}, \text{nitrates, and nitric acid, hereafter referred to as \(\text{NO}_x\). The afternoon \(\text{NO}_x\) levels were found to approach \(\text{NO}_x\) at several rural sites in eastern United States, with aerosol nitrate contributing less than 10% to total \(\text{NO}_x\) [Parrish et al., 1993a]. It is possible that particulate nitrate has a larger contribution to \(\text{NO}_x\), in China due to the higher loading of particles (which can absorb and react with gas-phase nitric acid).

The analyzers were checked every 5-9 hours by injecting scrubbed ambient air (TEI, model 111) and a span gas mixture. A NIST traceable standard (Scott-Marrin Inc., California) containing 100.5 ppmv CO (± 2%), 11.28 ppmv \[\text{SO}_2 \] (± 5%), and 11.28 ppmv NO (± 5%) was diluted using a custom-made calibrator. The span gas and zero air were introduced to the analyzers through the in-line particulate filter to account for possible losses of measured gas during normal measurement cycles. The \[\text{O}_3 \] analyzer was spanning using an internal ozonator in the analyzer. The multi-point calibrations were performed at approximately 3-month intervals by our own personnel making the journey to the site. Local observatory staff carried out daily inspection of the instruments and replaced the in-line filters. A data logger (Environmental Systems Corporation, model 8816) was used to control the automatic zero/span and to acquire data. One-minute averaged data were stored in the data logger and hourly-averaged values are presented in this paper.

3. Results and Discussion

3.1. Seasonal and Diurnal Cycles

Monthly variations of the measured gases are shown in Figure 2 for the August 1999 to July 2000 period. For ozone, daytime (08:00-19:59) data were chosen while for others all of the 24 hourly values were included. Monthly mean \[\text{O}_3 \]
concentrations show a maximum in May (57 ppbv) and a lowest value in January. This seasonal trend is similar to those observed in rural areas of the United States and Europe [e.g., Logan, 1989] except that O3 from this study shows a sharper drop in July and August, which is attributable to the Asian monsoon circulation. (The Asian monsoon brings in maritime air masses and unstable rainy weather to the region in summer.) Although monthly averaged O3 is relatively low compared to autumn, several extremely high O3 episodes occurred in summer, as indicated in the daily maximum 1-h concentrations (Figure 3). Hourly values of 137 and 145 ppbv were observed at the site in 1994-1995, which showed an autumn maximum [Chameides et al., 1999]. This difference may be due to year-to-year alternation in the meteorological conditions.

The primary pollutants (CO, SO2, and NOx) are high in winter and low in summer. The observed winter peaks are presumably due to continuous emissions at night and daytime chemical conversion and vertical dilution after the breakup of the nocturnal boundary layer. It is very interesting to see that SO2 concentration dropped more quickly than that of NOx during the daytime, suggesting downward mixing of NOx (or NO2)-rich air masses and/or SO2 being removed at a faster rate. The latter would be particularly interesting since it is normally thought that NOx is removed more quickly.

3.2. The Relationships of O3 with Other Trace Gases

The correlations of O3 with NOx* and CO are shown in Figure 5 for the photochemically active afternoon hours (13:00-17:00) in four seasons. The result indicates that summertime afternoon O3 concentrations are strongly correlated with NOx (and CO as well) with a few exceptions which are mostly associated with rainy/cloudy days. If the measured NOx* were taken as a surrogate of commonly used NOx (NOx = NOx - NOx), then the slope (ΔO3/ΔNOx* ≈ 8) would suggest that about eight O3 molecules are produced with one NOx oxidized, which is similar to result from rural Germany [Volz-Thomas et al., 1993] and the rural United States [e.g., Trainer et al., 1993]. The intercept in the O3-NOx* correlation implies the summertime background O3 of about 16 ppbv in eastern China. The overall O3-NOx* correlation deteriorates in autumn/spring and becomes negative in winter, presumably due to a decreasing photochemical production from summer to winter. The O3-CO correlation has a similar seasonal dependence. As a result of high CO concentrations, summer ΔO3/ΔCO is about 0.1 for this eastern China site, much smaller than that found in North America (~0.3) [Parrish et al., 1993b]. The low O3/CO ratios may be used as indications of urban airmass from eastern China.

4. Conclusions

The measurements from this rural/agricultural site in eastern China show elevated concentrations of CO, SO2, and NOx*, with ozone pollution frequently impacting the site. Given that
the measurements were conducted in a setting reflecting a
typical land-use pattern, the observed concentrations are likely
to represent the situation for a large portion of eastern China.
Consequently the ecological impacts of the high air pollution
levels may be widespread. Indeed, acid rain (for which SO2
was found to be the most important precursor [Wang and Wang,
1995]) has already been recognized as a regional-scale
environmental problem in China. The results from this study
indicate that at present rural air masses are characterized by
high CO and SO2. However, in view of the likely stabilization/reduction in SO2 and CO emissions by planned
control measures and a projected continuing upward trend in
NOx emissions [Streets and Waldhoff, 2000; Streets et al.,
2000], the atmospheric composition of chemically active gases
in China is likely to change in the coming years. Such changes
may have important implications for the regional atmospheric
chemistry. For example, our study suggests that
photochemically produced ozone is linearly dependent on
NOx. Thus increasing NOx may cause more serious ozone
pollution in eastern China. Control efforts for CO and SO2 are
also likely to reduce the levels of atmospheric particles (CO
and particulate are co-pollutants from the burning of biomass
and biofuel, and SO2 is the dominant gaseous precursor to
sulfate). A reduced loading of atmospheric aerosols, however,
may allow more solar radiation to reach the earth's surface and
result in a smaller loss of reactive gases on aerosol surfaces.
Both effects would lead to higher ozone concentrations in the
atmosphere in China. It is therefore of critical importance to
monitor, on a long-term basis, chemically and radiatively
important trace gases and aerosols so that their environmental
implications can be reliably assessed. In this regard, The
measurements from this study may serve as a baseline against
which further changes can be compared and evaluated.

Acknowledgments. This work is funded primarily by the Hong Kong
Polytechnic University, with supplementary support from the National
Natural Science Foundation of China (Project No. 49899270).
The authors thank Professors Zhou Xiaji, Tang Xiaoyang, Ding Guoan,
and Wang Muling for their support and help during this study. The
assistance of the Linan station staff is gratefully acknowledged, with
special thanks going to Mr Yu Xiangming and Liu Guoping. We thank
Professor Zhou Xiuji, Tang Xiaoyang, Ding Guoan, and Professors
Zhou Xiuji, Tang Xiaoyang, and Liu Guoping for their support and help during this study. The assistance of the Linan station staff is gratefully acknowledged, with special thanks going to Mr Yu Xiangming and Liu Guoping. We thank
Professor Zhou Xiuji, Tang Xiaoyang, Ding Guoan, and
to Professors Zhou Xiaji, Tang Xiaoyang, Ding Guoan,
and Wang Muling for their support and help during this study. The
assistance of the Linan station staff is gratefully acknowledged, with
special thanks going to Mr Yu Xiangming and Liu Guoping. We thank
Professor Zhou Xiuji, Tang Xiaoyang, Ding Guoan,
and Wang Muling for their support and help during this study. The
assistance of the Linan station staff is gratefully acknowledged, with
special thanks going to Mr Yu Xiangming and Liu Guoping. We thank
Professor Zhou Xiuji, Tang Xiaoyang, Ding Guoan, and

References

Hordijk, Anthropogenic NOx emissions in Asia in the period
Brasseur, G. B., J. Orlando, and G. S. Tyndall, Atmospheric
Chemistry and Global Change, 654pp, Oxford University Press,
Buhr, M. P., et al., Evaluation of ozone precursor source types using
principal component analysis of ambient air measurements in rural
Chameides, W. L. et al., Case study of the effects of atmospheric
aerosols and regional haze on agriculture: An opportunity to
enhance crop yields in China though emission controls?
Proceedings of the National Academy of Sciences, 26, 13626-
13633, 1999.
Chameides, W. L., et al., Case study of the effects of atmospheric
aerosols and regional haze on agriculture: An opportunity to
enhance crop yields in China though emission controls?
Proceedings of the National Academy of Sciences, 26, 13626-
13633, 1999.
Crawford, J., et al., An assessment of ozone photochemistry in the
extratropical western North Pacific: Impact of continental outflow
during the late winter/early spring, J. Geophys. Res., 102, 28,469-
McNair, F. S., Rowland, and A. G. Russell, Motorization of China
implies changes in Pacific air chemistry and primary production,
Galloway, J. N., Atmospheric acidification: Projections for the future,
Ambio, 18, 161-166, 1989.
Hallock--Waters, K. B., G. B. Doddridge, R. R. Dikerson, S.
Spitzer, and J. D. Ray, Carbon monoxide in the U.S. Mid-Atlantic
26, 2861-2864, 1999.
Holloway, T., H. Levy, and P. Kasibhatla, Global distribution of
Jacob J. J. A. Logan, and P. P. Murti, Effects of rising Asian
emissions on surface ozone in the United States, Geophys Res. Lett.,
Jaffe, D., et al., Transport of Asian air pollution to North America,
Kato, N. and H. Akimoto, Anthropogenic emissions of SO4 and NO,
Klemman, L., S. N. Lee, S. Springston, L. Nunnermacker, X. Zhou, R.
Brown, K. Hallock, P. Klots, D. Leathy, L. J. Lee, and L. Newman,
Ozone formation at a rural site in the southeastern United States, J.
Logan, J. A., Ozone in rural areas of the United States, J. Geophys.
Chameides, A nonurban ozone air pollution episode over eastern
China: Observation and model simulations, J. Geophys. Res., 105,
Neuman, J. A., L. G. Huey, T. B. Ryerson, and D. W. Fahey, Study of
inlet materials for sampling atmospheric nitric acid. Environ. Sci.
Fehsenfeld, Carbon monoxide concentrations and their relation to
centralization of total reactive oxidized nitrogen at two rural U.
Parrish, D. D., et al., The total reactive oxidized nitrogen levels and
their partitioning between the individual species at six rural sites in
Parrish, D. J. S. Holloway, M. Trainer, F. C. Fehsenfeld, P. C.
Murphy, and G. L. Forbes, Export of North America ozone
pollution to the North Atlantic Ocean, Science, 259, 1436-1439,
1993b.
Yu, The study of distribution character of O3, NO2, and SO2 at rural
Trainer, M., et al., Correlation of ozone with NOx in photochemically
Streets, D. G. and T. T. M. Vost, Present and future emissions of air
pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34, 363-
Streets, D. G., N. Y. Tsui, H. Akimoto, and K. Oka, Sulfur dioxide
emissions in Asia in the period 1985-1997, Atmos. Environ., 34,
Volz-Thomas et al., Photo-oxidants and precursors at Schauinsland,
Black Forest, A contribution to subproject TGR, in: Photo-oxidants:
Precursors and Products, Proc. EUROTRAC Symposium '92 P.
Borrell, P. M. Borrell, M. Berrel, and W. Seiler, eds., SPB Academic
Wang, W.X., and T. Wang, On the origin and the trend of acid rain
precipitation in China, Water, Air and Soil Pollution, 85, 2295-

(Received September 21, 2000; revised March 5, 2001; accepted March 8, 2001.)