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Abstract

We consider a single machine scheduling problem in which the processing time of a job is a simple

linear increasing function of its starting time and the machine is subject to an availability constraint.

We consider the non-resumable case. The objectives are to minimize the makespan and the total

completion time. We show that both problems are NP-hard and present pseudo-polynomial time

optimal algorithms to solve them. Furthermore, for the makespan problem, we present an optimal

approximation algorithm for the on-line case, and a fully polynomial time approximation scheme

for the off-line case. For the total completion time problem, we provide a heuristic and evaluate its

efficiency by computational experiments.

Keywords. Scheduling; Computational complexity; Approximation algorithms; Deteriorating job;

Availability constraint
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1 Introduction

For most scheduling problems it is assumed that the job processing times are fixed parameters [17],

and the machines are available at any time. However, such restrictive assumptions represent an

oversimplified view of reality. Job processing times are not necessarily deterministic because jobs

may deteriorate while waiting to be processed. Examples can be found in financial management,

steel production, resource allocation and national defense, etc., where any delay in processing a job

may result in deterioration in accomplishing the job. For a list of applications, the reader is referred

to Kunnathur and Gupta [12], and Mosheiov [16]. Such problems are generally known as the deteri-

orating job scheduling problem. The assumption of the continuing availability of machines may not

be valid in a real production situation, either. Scheduling problems with machine availability con-

straints often arise in industry due to preventive maintenance (a deterministic event) or breakdown

of machines (a stochastic phenomenon) over the scheduling horizon. In this paper we will study the

deteriorating job scheduling problem with a machine availability constraint due to a deterministic

event.

Work on the deteriorating job scheduling problem was initiated by Brown and Yechiali [3] and

Gupta and Gupta [10]. They focused on the single machine makespan problem under linear dete-

riorating conditions. Since then, scheduling problems with time-dependent processing times have

received increasing attention. An extensive survey of different models and problems was provided

by Alidaee and Womer [1]. Cheng, Ding and Lin [5] recently presented an updated survey of the

results on scheduling problems with time-dependent processing times.

Graves and Lee [9] point out that machine scheduling with an availability constraint is very

important but still relatively unexplored. They studied a scheduling problem with a machine avail-

ability constraint in which maintenance needs to be performed within a fixed period. Lee [13]

presented an extensive study of the single and parallel machine scheduling problems with an avail-

ability constraint with respect to various performance measures. Two cases are usually considered

for such problems. If a job cannot be finished before the next down period of a machine and the job

can continue after the machine becomes available again, it is called resumable. On the other hand,

it is called non-resumable if the job has to restart rather than continue. For more details, the reader

may refer to Lee, Lei and Pinedo [14].

The problem under consideration can be formally described as follows: There are n independent

jobs J = {J1, J2, · · · , Jn} to be processed non-preemptively on a single machine which is available

at time t0 > 0. Let pj , αj and Cj denote the actual processing time, the growth (or deteriorating)

rate and the completion time of Jj , respectively. The actual processing time of job Jj is pj = αjsj ,

where sj is the starting time of Jj in a schedule. We assume that the machine is not available during

the period between time b1 and b2 (which is called the non-available period), where b2 > b1 > t0.

The processing of any job is non-resumable. Let Cmax = max1,···,n{Cj} and Z =
∑n

j=1 Cj denote

the makespan and the total completion time of a given schedule, respectively. The objectives are
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to minimize the makespan and the total completion time. Using the three-field notation of [8], we

denote these two problems as 1/nr− a, pj = αjsj/Cmax and 1/nr− a, pj = αjsj/
∑

Cj , respectively.

Using the same denotation as Lee [13], here nr − a in the second field denotes a non-resumable

availability constraint.

The above defined problems may date back to Mosheiov [15], who first considered a special case

of the problems where the machine is available at any time from t0. The most commonly used

performance measures were considered, such as makespan, total completion time, total weighted

completion time, total weighted waiting time, total tardiness, number of tardy jobs, maximum

lateness and maximum tardiness. He shows that all these models are polynomially solvable. Chen

[4] extended the study to parallel machines, and considered P/pj = αjsj/
∑

Cj . He shows that the

problem is NP-hard even with a fixed number of machines. When the number of the machine is

arbitrary, he proves that there is no polynomial approximation algorithm with a constant worst-case

ratio. He also gives an approximation algorithm with a parameter dependent worst-case ratio for

the two machine case.

For the problem with a machine availability constraint, Wu and Lee [18] studied the resum-

able case of the makespan problem, denoted by 1/r − a, pj = αjsj/Cmax. They show that the

problem can be transformed into a 0-1 integer program and a linear equation problem. However,

the computational complexity of this problem is still unknown. To the best of our knowledge,

1/nr − a, pj = αjsj/Cmax and 1/nr − a, pj = αjsj/
∑

Cj are still unexplored.

In scheduling theory, a problem is called on-line (over list) if jobs come one by one in a list, and

they are scheduled irrevocably on the machines as soon as they arrive without any information about

the jobs that will come later. On the other hand, if we have full information about the jobs before

constructing a schedule, the problem is called off-line. Algorithms for on-line and off-line problems

are called on-line and off-line algorithms, respectively. The quality of an approximation algorithm

is usually measured by its worst-case ratio (for off-line problems) or competitive ratio (for on-line

problems), respectively. Specifically, let CA(I) (or briefly CA) denote the objective value yielded by

an approximation algorithm A, and COPT (I) (or briefly COPT ) denote the objective value produced

by an optimal off-line algorithm. Then the worst-case ratio (or competitive ratio) of algorithm A

is defined as the smallest number c such that for any instance I, CA(I) ≤ cCOPT (I). An on-line

algorithm A is called optimal if there does not exist any other on-line algorithm with a competitive

ratio smaller than that of A.

In this paper we show that both of the problems 1/nr − a, pj = αjsj/Cmax and 1/nr − a, pj =

αjsj/
∑

Cj are NP-hard and present their respective pseudo-polynomial time optimal algorithms.

Furthermore, for the problem 1/nr − a, pj = αjsj/Cmax, we present an optimal approximation

algorithm for the on-line case, and a fully polynomial time approximation scheme for the off-line

case. For the problem 1/nr − a, pj = αjsj/
∑

Cj , we provide a heuristic and evaluate its efficiency

by computational experiments.
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In the following, we use the symbol [ ] to denote the order of jobs in a sequence. Thus, the actual

processing time of the job scheduled in the first position is p[1] = α[1]t0, and its completion time is

C[1] = t0 + p[1] = t0(1 + α[1]). Similarly, by induction, the completion time of the job in the jth

position is C[j] = C[j−1] + p[j] = t0
∏j

i=1(1 + α[i]), if it is processed before the non-available period.

2 Minimizing the makespan

2.1 NP-hardness

Theorem 1 The problem 1/nr − a, pj = αjsj/Cmax is NP-hard.

Proof. We show the result by reducing the Subset Product problem, which is NP-hard [6, 11], to

our problem in polynomial time. An instance I of the Subset Product problem is formulated as

follows:

Given a finite set S = {1, 2, · · · , k}, a size xj ∈ Z+ for each j ∈ S, and a positive integer A,

does there exist a subset T ⊆ S such that the product of the sizes of the elements in T satisfies
∏

j∈T xj = A?

In the above instance, we can omit the element j ∈ S with xj = 1 because it will not affect the

product of any subset. Therefore, without loss of generality, we can assume that xj ≥ 2 for every

j ∈ S. Furthermore, we can assume that B =
∏

j∈S xj/A is an integer since otherwise it can be

immediately answered that there is no solution to the instance. We set D =
∏

j∈S xj = AB. Then

D ≥ 2k, since every xj ≥ 2.

For any given instance I of the Subset Product problem, we construct the corresponding instance

II of our problem as follows:

– Number of jobs: n = k.

– Jobs’ available time: t0 > 0, arbitrary.

– The start time of the non-available period: b1 = t0A.

– The end time of the non-available period: b2 > b1, arbitrary.

– Jobs’ growth rates: αj = xj − 1, for j = 1, 2, · · · , n.

– Threshold: G = b2B.

It is clear that the reduction can be done in polynomial time. We prove that the instance I has

a solution if and only if the instance II has a schedule with makespan no greater than G.

If I has a solution, then we can process the jobs in {Jj |j ∈ T} before b1 since t0
∏

j∈T (1 + αj) =

t0
∏

j∈T xj = t0A = b1, and process the jobs in {Jj |j ∈ S \ T} at or after b2 without introducing any

idle time between consecutive jobs. Thus, we get a feasible schedule with makespan

Cmax = b2

∏

j∈S\T
(1 + αj) = b2

∏

j∈S\T
xj = G.

Hence, we obtain a solution for II.
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If II has a solution, then there exists a schedule in the form of (R1, R2) with Cmax ≤ G, where

R1 and R2 are subsets of S. The jobs in {Jj |j ∈ R1} start before b1, while the jobs in {Jj |j ∈ R2}
start at or after b2. We have t0

∏
j∈R1

(1 + αj) ≤ b1. It implies that
∏

j∈R1
xj ≤ A.

If
∏

j∈R1
xj < A, then

∏
j∈R2

xj = D/(
∏

j∈R1
xj) > B. It follows that

Cmax = b2

∏

j∈R2

(1 + αj) = b2

∏

j∈R2

xj > b2B = G,

a contradiction. So
∏

j∈R1
xj = A, and we get a solution for I. 2

To show the problem is not strongly NP-hard, we give a pseudo-polynomial time algorithm based

on dynamical programming for our problem. In this paper, we assume that all parameters of the

problems are integers when we present pseudo-polynomial time algorithms. In the remainder of this

section, we assume that t0
∏n

j=1(1+αj) > b1. Otherwise, all jobs can be finished by the non-available

period and the problem becomes trivial. It is clear that the jobs processed before the non-available

period are sequence independent, and so are the jobs processed after the non-available period in our

problem.

Let fj(u) be the minimum total processing time of the jobs that are processed at or after b2, if

(i) we have assigned jobs J1, J2, · · · , Jj , and (ii) the total processing time of the jobs assigned before

b1 is u. Given fj−1(u) for 0 ≤ u ≤ b1 − t0, we can process Jj at time either sj < b1 or sj ≥ b2. In

the former case, the total processing time of the jobs processed at or after b2 does not change, but

u increases by αj(u + t0). In the latter case, the makespan increases by αj(fj−1(u) + b2), while u

does not change. We have the following initial condition:

fj(u) =

{
0, if j = 0, u = 0,
∞, otherwise.

And the recursion for j = 1, · · · , n, and u = 0, · · · , b1 − t0, is

fj(u) =

{
min

{
fj−1

(
u−αjt0
1+αj

)
, fj−1(u) + αj(b2 + fj−1(u))

}
, if u−αjt0

1+αj
is an integer,

fj−1(u) + αj (b2 + fj−1(u)) , otherwise,

=

{
min

{
fj−1

(
u−αjt0
1+αj

)
, (1 + αj)fj−1(u) + ajb2

}
, if u−αjt0

1+αj
is an integer,

(1 + αj)fj−1(u) + ajb2, otherwise.

The optimal makespan is then determined as

COPT = b2 + min
0≤u≤b1−t0

fn(u).

It is clear that this algorithm requires at most O(n(b1 − t0)) time. Hence, we have the following

conclusion.

Corollary 2 The problem 1/nr − a, pj = αjsj/Cmax is NP-hard in the ordinary sense.
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2.2 On-line algorithm

In this section we give an optimal approximation algorithm for the on-line case of the problem

1/nr − a, pj = αjsj/Cmax.

Algorithm LS: Always schedule an incoming job such that it can be completed as early as possible.

It is clear that the time complexity of algorithm LS is O(n). The following theorem shows that

this algorithm is optimal. In the remainder of this section, denote by TOPT the set consisting of

all of the jobs processed after the non-available period, and by EOPT the remaining jobs that are

processed before the non-available period, in an optimal schedule.

Theorem 3 Algorithm LS is an optimal online algorithm for the problem 1/nr−a, pj = αjsj/Cmax

with a competitive ratio b1
t0

.

Proof. It is clear that TOPT 6= ∅. Otherwise, we would obtain CLS = COPT = t0
∏n

j=1(1 + αj). So

we have

t0
∏

Jj∈EOPT

(1 + αj) ≤ b1, (1)

and

COPT = b2

∏

Jj∈TOPT

(1 + αj). (2)

Eq. (2) implies that b2
∏n

j=1(1 + αj) = COPT
∏

Jj∈EOPT
(1 + αj). Combining this with (1), we get

b2
∏n

j=1(1+αj) ≤ b1
t0

COPT . On the other hand, we have CLS ≤ b2
∏n

j=1(1+αj), since b2
∏n

j=1(1+αj)

is the objective value if we process all the jobs after the non-available period. So we have

CLS ≤ b1

t0
COPT .

To show the optimality of algorithm LS, we consider the following instances. The first job J1

with α1 = ε comes. Suppose an algorithm A processes J1 at time x. If x ≥ b2, then no more job

comes. We have CA ≥ (1 + α1)b2, COPT = (1 + α1)t0, and CA
COPT

≥ b2
t0

> b1
t0

. If x < b1, then the last

job J2 with α2 = b1
t0
− 1 comes. We have CA ≥ (1 + α2)b2 = b1

t0
b2, COPT = (1 + α1)b2 = (1 + ε)b2,

and thus CA
COPT

≥ b1/t0
1+ε → b1

t0
when ε → 0. Hence, we conclude that any on-line algorithm A has a

competitive ratio no less than b1
t0

and algorithm LS is optimal. 2

2.3 Off-line algorithm

In this subsection we consider the off-line case. It is natural to modify algorithm LS by adding a

preparatory step that re-orders the jobs in non-increasing order of their growth rates. Denote the

modified algorithm by algorithm LGR (largest-growth-rate first). However, we show in the following

that this greedy-like algorithm cannot have a constant worst-case ratio.
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Algorithm LGR: First re-order the jobs such that α1 ≥ α2 ≥ · · · ≥ αn, then schedule them in this

order by algorithm LS.

It is clear that the time complexity of algorithm LGR is O(n log n).

Theorem 4 Algorithm LGR has a tight worst-case ratio of

c =

{
1 + αmin, if 1 + αmin ≤ b1

t0
,

1, else,

where αmin = minj=1,2,···,n αj.

Proof. If 1 + αmin > b1
t0

, i.e., t0(1 + αmin) > b1, then all the jobs must be processed after the non-

available period, and hence LGR produces an optimal schedule. So we are left to consider the case

1 + αmin ≤ b1
t0

. We prove the result by contradiction. Suppose that there exists a counterexample

that violates our ratio 1+αmin, hence a minimal counterexample with the fewest possible jobs should

exist. From now on, we assume that we are dealing with the minimal counterexample, denoted by

I = (J , t0, b1, b2).

Lemma 5 In the minimal counterexample, if a job Jj is processed before the non-available period in

the LGR schedule, then it must be processed after the non-available period in the optimal schedule;

and if a job Jj is processed after the non-available period in the LGR schedule, then it must be

processed before the non-available period in the optimal schedule.

Proof. We only prove the first conclusion, and the second one can be proved similarly. If a job Jj

is completed before the non-available period not only in the LGR schedule but also in the optimal

schedule, we can construct a new instance I ′ from I with I ′ = (J \ {Jj}, t0, b1 = b1/(1 + αj), b2 =

b2/(1 + αj)). It is obvious that CLGR(I ′) = CLGR(I)/(1 + aj) and COPT (I ′) ≤ COPT (I)/(1 +

αj). Then, CLGR(I′)
COPT (I′) ≥

CLGR(I)/(1+αj)
COPT (I)/(1+αj)

≥ CLGR(I)
COPT (I) , and hence I ′ is a smaller counterexample, a

contradiction. 2

Lemma 6 In the minimal counterexample, the job Ji with αi = αmin must be processed after the

non-available period in the LGR schedule.

Proof. If the job Ji is processed before the non-available period in the LGR schedule, then we

can construct a new instance I ′ from I by deleting the job Ji from J . It is clear that CLGR(I ′) =

CLGR(I) and COPT (I ′) ≤ COPT (I). Therefore, CLGR(I′)
COPT (I′) ≥ CLGR(I)

COPT (I) , which states that I ′ is a smaller

counterexample, a contradiction. 2

Now we turn to the proof of Theorem 4. Denote TLGR={the jobs processed after the non-available

period in the LGR schedule}. Then, from Lemma 5, we know that in the minimal counterexample:

(i) all of the jobs in TOPT are processed before the non-available period in the LGR schedule,

(ii) all of the jobs in TLGR are processed before the non-available period in the optimal schedule.



7

From (i), we know that t0
∏

Jj∈TOPT
(1 + αj) · (1 + αi) > b1 for any Ji ∈ TLGR. Then by Lemma 6,

we get t0
∏

Jj∈TOPT
(1 + αj) · (1 + αmin) > b1, or equivalently

∏
Jj∈TOPT

(1 + αj) > b1
t0
· 1

1+αmin
. On the

other hand, from (ii) it follows that t0
∏

Jj∈TLGR
(1+αj) ≤ b1, or equivalently

∏
Jj∈TLGR

(1+αj) ≤ b1
t0

.

Since CLGR = b2
∏

Jj∈TLGR
(1 + αj) and COPT = b2

∏
Jj∈TOPT

(1 + αj), we have

CLGR

COPT
≤

b1
t0

b1
t0
· 1

1+αmin

= 1 + αmin,

this is the desired contradiction.

To show that the worst-case ratio cannot be smaller than 1 + αmin, we consider the following

instance: I = ({J1, J2, J3}, t0, b1, b2) with α1 =
√

b1
t0

+ ε − 1, α2 = α3 =
√

b1
t0
− 1. It is not difficult

to obtain that CLGR(I) = b2
b1
t0

and COPT (I) = b2(
√

b1
t0

+ ε). Thus, the worst-case ratio tends to√
b1
t0

= 1 + αmin when ε tends to 0. By now we have completed the proof of Theorem 4. 2

In the remainder of this subsection, we give an FPTAS for the problem 1/nr−a, pj = αjsj/Cmax.

We apply the FPTAS for the classical 0-1 Minimum Knapsack problem as a sub-procedure. Recall

that for any instance of the 0-1 Minimum Knapsack problem, we are given n items, each with a profit

cj and a weight wj , and a knapsack with capacity C. We wish to put items into the knapsack such

that the total weight of the selected items is not greater than C and the total profit of unselected

items is minimized. For this problem, Babat [2] presented an FPTAS with time complexity O(n4/ε),

and Gens and Levner [7] proposed an FPTAS with time complexity O(n2/ε).

To construct an FPTAS for our problem, it is crucial to determine which jobs are processed

after the non-available period. We do it as follows: For any instance I of our problem and any

positive number ε > 0, we set D =
∏n

j=1(1 + αj) and δ = logD(1 + ε). We construct the instance

II of the Minimum Knapsack problem in the following way: For each job Jj , j = 1, · · · , n, define

an item with profit cj = ln(1 + αj) and weight wj = cj , and set the capacity of the knapsack as

C = ln b1
t0

. Let BKNAP denote the optimal value of the constructed instance II. Apply any FPTAS

to instance II such that its objective value is not larger than (1 + δ)BKNAP . Thus we obtain a

partial solution for instance I. Namely, for every item put into the knapsack by the FPTAS, we

schedule the corresponding job before the non-available period, and schedule all remaining jobs after

the non-available period. Since if we denote by EKNAP all the selected items in the instance II,

then we have
∑

Jj∈EKNAP
ln(1 + αj) ≤ C = ln b1

t0
, which implies that t0

∏
Jj∈EKNAP

(1 + αj) ≤ b1.

Algorithm KP :

Step 1. If t0
∏n

j=1(1 + αj) ≤ b1, then output CKP = t0
∏n

j=1(1 + αj). Else, goto Step 2.

Step 2. Determine the jobs processed after the non-available period by applying the FPTAS for

the Minimum Knapsack problem as above. Denote by TKP the set consisting of all jobs processed

after the non-available period. Then, the resulting makespan is CKP = b2
∏

Jj∈TKP
(1 + αj).
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Theorem 7 Algorithm KP is an FPTAS for the problem 1/nr − a, pj = αjsj/Cmax, which runs in

O(n2/ε), i.e., for any positive number ε > 0, we have CKP
COPT

≤ 1 + ε.

Proof. It is clear that TOPT 6= ∅. Otherwise, we obtain CKP = COPT = t0
∏n

j=1(1 + αj). Hence,

COPT = b2
∏

Jj∈TOPT
(1 + αj). Denote BOPT =

∑
Jj∈TOPT

ln(1 + αj). Then BKNAP ≤ BOPT holds

obviously. From the rule of algorithm KP , we have
∑

Jj∈TKP

ln(1 + αj) ≤ (1 + δ)BKNAP ≤ (1 + δ)BOPT . (3)

Eq. (3) implies that

∏

Jj∈TKP

(1 + αj) ≤

 ∏

Jj∈TOPT

(1 + αj)




δ

·

 ∏

Jj∈TOPT

(1 + αj)




≤ Dδ ·
∏

Jj∈TOPT

(1 + αj)

= (1 + ε)
∏

Jj∈TOPT

(1 + αj). (4)

It follows that
CKP

COPT
=

b2
∏

Jj∈TKP
(1 + αj)

b2
∏

Jj∈TOPT
(1 + αj)

≤ 1 + ε. (5)

It is clear that algorithm KP has the same time complexity O(n2/ε) as that of the FPTAS for

the Minimum Knapsack problem. 2

3 Minimizing the total completion time

3.1 NP-hardness

Theorem 8 The problem 1/nr − a, pj = αjsj/
∑

Cj is NP-hard.

Proof. We again show the result by a reduction from the Subset Product problem. Let I be an

instance of the Subset Product problem described in Section 2.1, and we construct the corresponding

instance II of the problem as follows:

– Number of jobs: n = k + 4.

– Jobs’ available time: t0 > 0, arbitrary.

– The start time of the non-available period: b1 = t0D
5.

– The end time of the non-available period: b2 > b1, arbitrary.

– Jobs’ growth rates: αj = xj − 1, for j = 1, 2, · · · , k; αk+1 = DA − 1, αk+2 = DB − 1,

αk+3 = αk+4 = D3 − 1.

– Threshold: G = (k + 2)b2D
2 + (t0 + b2)D5.

We prove that the instance I has a solution if and only if the instance II has a schedule with

the total completion time no greater than G. We do it by verifying the following lemmas.
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Lemma 9 For any subset T ⊆ S, we have B
∏

j∈T xj + A
∏

j∈S\T xj ≥ 2D, and the equality holds

if and only if
∏

j∈T xj = A and
∏

j∈S\T xj = B.

Proof. The result follows immediately from the well-known inequality a + b ≥ 2
√

ab (a, b ≥ 0) and

the equality holds if and only if a = b. 2

Lemma 10 If there exists a solution for the instance I, then there exists a schedule π for the

instance II with the total completion time Z(π) ≤ G.

Proof. If there exists a subset T ⊆ S such that
∏

j∈T xj = A (and hence
∏

j∈S\T xj = B), then we

can construct a schedule π as follows: First process all the jobs of {Jj |j ∈ S \ T}, and jobs Jk+1,

Jk+4 from time t0 to b1. Then from time b2, process all the jobs of {Jj |j ∈ T}, and jobs Jk+2, Jk+3.

We have

Ck+1 = t0(
∏

j∈S\T
(1 + αj))(1 + αk+1) = t0(

∏

j∈S\T
xj)DA = t0BDA = t0D

2,

Ck+2 = b2(
∏

j∈T

(1 + αj))(1 + αk+2) = b2(
∏

j∈T

xj)DB = b2ADB = b2D
2,

Ck+3 = Ck+2(1 + αk+3) = b2D
5, Ck+4 = Ck+1(1 + αk+4) = t0D

5 = b1.

Since Cj < Ck+2 = b2D
2 for every j ∈ S and Ck+1 < Ck+2, we have

Z(π) =
∑

j∈S

Cj +
4∑

j=1

Ck+j < (k + 2)Ck+2 + Ck+3 + Ck+4

= (k + 2)b2D
2 + (t0 + b2)D5 = G.

2

Lemma 11 If there exists a schedule π for our problem with the total completion time Z(π) ≤ G,

then the following results must hold:

(1) one of the jobs Jk+3 and Jk+4 is processed before the non-available period, and the other after

the non-available period;

(2) one of the jobs Jk+1 and Jk+2 is processed before the non-available period, and the other after

the non-available period.

Proof. (1) If both of the jobs Jk+3 and Jk+4 are processed before the non-available period, then

at least one of their completion times will not be less than t0(1 + αk+3)(1 + αk+4) = t0D
6 > b1, a

contradiction. If they are both processed after the non-available period, then at least one of their

completion times will be greater than or equal to b2(1 + αk+3)(1 + αk+4) = b2D
6. Noting that

G = (k + 2)b2D
2 + (t0 + b2)D5 < b2D

4 + 2b2D
5 ≤ b2D

6, we obtain a contradiction to Z(π) ≤ G,

and thus obtain the conclusion.

(2) If both of the jobs Jk+1 and Jk+2 are processed before the non-available period, then by

(1), either job Jk+3 or Jk+4 is also processed before the non-available period. Since αk+3 = αk+4,
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the maximum completion time of these three jobs will be greater than or equal to t0(1 + αk+1)(1 +

αk+2)(1 + αk+3) = t0D
6 > b1, a contradiction. If both of the jobs Jk+1 and Jk+2 are processed after

the non-available period, we can obtain a contradiction similarly. 2

Lemma 12 If there exists a schedule π of the instance II with the total completion time Z(π) ≤ G,

then there is a solution for the instance I.

Proof. From Lemma 11 and the fact that there is no difference between jobs Jk+3 and Jk+4,

without loss of generality, we only need to consider the following two cases: (i) jobs Jk+1 and Jk+3

are processed before the non-available period, and jobs Jk+2 and Jk+4 are processed after the non-

available period, (ii) jobs Jk+2 and Jk+3 are processed before the non-available period, and jobs Jk+1

and Jk+4 are processed after the non-available period.

We first consider case (i). Let {Jj |j ∈ T, T ⊆ S} denote the jobs processed after the non-

available period. So the maximum completion time of the jobs processed before the non-available

period is

CLB = t0(
∏

j∈S\T
(1 + αj))(1 + αk+1)(1 + αk+3) = t0(

∏

j∈S\T
xj)DAD3 = t0D

4(A
∏

j∈S\T
xj),

and the maximum completion time of the jobs processed after the non-available period is

CLA = b2(
∏

j∈T

(1 + αj))(1 + αk+2)(1 + αk+4) = b2(
∏

j∈T

xj)DBD3 = b2D
4(B

∏

j∈T

xj).

Then we have

Z(π) > CLB + CLA = t0D
4(A

∏

j∈S\T
xj) + b2D

4(B
∏

j∈T

xj)

= b2D
4(A

∏

j∈S\T
xj + B

∏

j∈T

xj)− (b2 − t0)D4(A
∏

j∈S\T
xj). (6)

It is clear that CLB ≤ b1, i.e., t0D
4(A

∏
j∈S\T xj) ≤ t0D

5, which implies that

A
∏

j∈S\T
xj ≤ D. (7)

From (7), it follows that
∏

j∈T xj ≥ A. If there is no solution for the instance I, then we have
∏

j∈T xj > A. From Lemma 9, we have A
∏

j∈S\T xj + B
∏

j∈T xj > 2D, and hence

A
∏

j∈S\T
xj + B

∏

j∈T

xj ≥ 2D + 1 (8)

since A, B, and xj are all positive integers. Combining (6) and (8), we have

Z(π) > b2D
4(2D + 1)− (b2 − t0)D4(A

∏

j∈S\T
xj). (9)



11

Substituting (7) into (9), we get

Z(π) > b2D
4(2D + 1)− (b2 − t0)D5 = b2D

4 + (t0 + b2)D5 > G,

a contradiction. Hence, we conclude that there exists a solution for the instance I.

Using the same method for case (ii), we can obtain the same conclusion. So we have completed

the proof. 2

Lemmas 10 and 12 complete the proof of Theorem 8. 2

To show that the problem is not strongly NP-hard, we provide a pseudo-polynomial time algo-

rithm based on dynamical programming for our problem. Using the interchanging argument, the

following property for the optimal schedule can be obtained easily.

Property 1 In the optimal schedule, the jobs processed before the non-available period are processed

by the SGR (smallest-growth-rate first) rule, and so are the jobs processed after the non-available

period.

So in the remainder of this subsection, we assume that the jobs are re-indexed in the SGR order.

Let Y = b2
∏n

j=1(1 + αj). We define fj(u, v) as the minimum total completion time of the jobs that

have been processed, if (i) we have assigned jobs J1, J2, · · · , Jj , (ii) the total processing time of the

jobs assigned before b1 is u, and the total processing time of the jobs assigned at or after b2 is v.

Given fj−1(u, v) for 0 ≤ u ≤ b1 − t0 and 0 ≤ v ≤ Y , we can process Jj at time either sj < b1

or sj ≥ b2. In the former case, v does not change, but u is increased by αj(u + t0) and the total

completion time is increased by (1 + αj)(u + t0). In the latter case, v is increased by αj(v + b2) and

the total completion time is increased by (1 + αj)(v + b2), while u remains unchanged. We have the

following initial condition:

fj(u, v) =

{
0, if j = 0, u = 0, v = 0
∞, otherwise.

And the recursion for j = 1, · · · , n, u = 0, · · · , b1 − t0, and v = 0, · · · , Y , is

fj(u, v) =





min
{
fj−1

(
u−αjt0
1+αj

, v
)

+ (u + t0), fj−1

(
u,

v−αjb2
1+αj

)
+ (v + b2)

}
,

if u−αjt0
1+αj

and v−αjb2
1+αj

are integers,

fj−1

(
u−αjt0
1+αj

, v
)

+ (u + t0),

if u−αjt0
1+αj

is an integer, and v−αjb2
1+αj

is not an integer,

fj−1

(
u,

v−αjb2
1+αj

)
+ (v + b2),

if u−αjt0
1+αj

is not an integer, and v−αjb2
1+αj

is an integer,
∞, otherwise.

The optimal objective value is then determined as

ZOPT = min
0≤u≤b1−t0,0≤v≤Y

fn(u, v).

It is clear that this algorithm requires at most O(n(b1 − t0)Y ) time. Hence, the problem can be

solved in pseudo-polynomial time. Now we can conclude that
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Corollary 13 The problem 1/nr − a, pj = αjsj/
∑

Cj is NP-hard in the ordinary sense.

3.2 A heuristic algorithm

Next, we construct and experimentally test a heuristic for the problem 1/nr − a, pj = αjsj/
∑

Cj .

First we introduce a procedure LSGR.

Procedure LSGR(S):

Step 1. For a given order S of the job set J , construct a partition of J in the following way:

Let E be the jobs processed before the non-available period, and T be the jobs processed after the

non-available period, if we schedule all the jobs by algorithm LS according to S.

Step 2. Process the jobs in E before the non-available period by the SGR rule, and process the

jobs in T after the non-available period by the SGR rule as well.

Now we give a formal description of the algorithm, which is made up of three parallel procedures.

Algorithm RSGR:

Step 1. Re-order the jobs such that α1 ≥ α2 ≥ · · · ≥ αn.

Step 2. For each order Sj of the job set J given below, run the procedure LSGR(Sj), j = 1, 2, 3.

Then choose the best solution as output.

(1) S1 : J1, J2, · · · , Jn.

(2) S2 : J2, J3, · · · , Jn, J1.

(3) S3 : J1, J3, · · · , Jn−3, Jn−1, J2, J4, · · · , Jn−2, Jn if n is even, and J1, J3, · · · , Jn−2, Jn, J2, J4,

· · · , Jn−3, Jn−1 if n is odd.

It can easily be seen that algorithm RSGR can be implemented in O(n log n). We can conclude

by intuition that it is crucial to decrease the number of jobs processed after the non-available period,

since the actual processing time of a job is proportional to its starting time. At the same time, we

expect that the growth rates of the jobs processed after the non-available period are not so large.

The procedure LSGR(S1) implements the above idea in a greedy way. The procedure LSGR(S2)

tries to avoid the following bad case: the maximum growth rate is so large that the number of the

jobs processed before the non-available period is very small. And the procedure LSGR(S3) is a kind

of trade-off between the former two procedures. The three parallel procedures seek to balance the

possible bad cases for different instances.

We evaluated algorithm RSGR by experimental tests. The optimal objective value was found

by complete enumeration. Because of the exorbitant time needed to find the optimal solutions for

large-sized problems, complete enumeration can be applied only for n ≤ 15. For n = 10, 9 different

tests with 100 randomly generated instances for each test were performed. Problem parameters

were randomly generated according to the uniform distribution except t0. In all the tests, we set
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Table 1: Experimental results for n = 10.

Interval for

b1 b2 − b1
RSGR
OPT max100

i=1
RSGRi
OPTi

RSGR1

OPT
RSGR2

OPT
RSGR3

OPT

[A/4, A/2) (0, 10] 1.146215 1.395317 1.411498 1.193111 1.204305
[A/4, A/2) (10, 100] 1.193226 1.532669 1.540146 1.251648 1.276607
[A/4, A/2) (100, 1000] 1.223028 1.586359 1.626683 1.290432 1.327243
[A/2, 3A/4) (0, 10] 1.020548 1.100006 1.478944 1.028092 1.266856
[A/2, 3A/4) (10, 100] 1.048857 1.316561 1.704705 1.068175 1.400590
[A/2, 3A/4) [100, 1000] 1.090441 1.474237 1.975430 1.131206 1.576460
[3A/4, A) (0, 10] 1.027801 1.167420 1.146719 1.063409 1.055392
[3A/4, A) (10, 100] 1.032412 1.441846 1.195518 1.179593 1.065919
[3A/4, A) (100, 1000] 1.056544 1.631607 1.283370 1.434572 1.107645

t0 = 1 without loss of generality. The growth rates were generated from the interval [0, 1]. We set

A = t0
∏n

i=1(1+αi). The values of b1 were generated from the intervals [A/4, A/2), [A/2, 3A/4) and

[3A/4, A). The values of b2 − b1 were generated from the intervals (0, 10], (10, 100] and (100, 1000].

Therefore, the combination of all the intervals yields 9 different cases. For a given case, 100 instances

were generated. For each instance i, it was solved by the RSGR heuristic and the optimal value was

calculated. We denote the corresponding values as RSGRi and OPTi. Furthermore, to verify the

performance of the three parallel procedures, we denote RSGRj
i as the value yielded by the procedure

LSGR(Sj), j = 1, 2, 3. The average ratio
∑100

i=1
RSGRi
OPTi

/100, the worst ratio max100
i=1

RSGRi
OPTi

, and the

average ratios
∑100

i=1
RSGRj

i
RSGRi

/100 are reported in Table 1, where j = 1, 2, 3. For simplicity, we denote
RSGR
OPT , and RSGRj

RSGR for j = 1, 2, 3, as the average ratios mentioned in the above.

Table 1 indicates that algorithm RSGR yields a solution much better than that yielded individ-

ually by each procedure. And a solution produced by algorithm RSGR is on average no more than

9.1% worse than an optimal solution except for b1 ∈ [A/4, A/2). Even for b1 ∈ [A/4, A/2), this value

increases to 22.4%.

In addition, we evaluated the worst-case behavior of the algorithm. The solution delivered by the

algorithm is no more than 63.2% worse than an optimal solution. It indicates that the performance

of algorithm RSGR is bounded well, and the proposed algorithm is acceptable for the considered

NP-hard problem.

Table 1 also indicates that the second procedure performs better than the other two procedures

except for b1 ∈ [3A/4, A), while the third procedure performs the best for b1 ∈ [3A/4, A).

Furthermore, the relative performance of the procedures was evaluated. Nine different tests

with 100 randomly generated instances were performed. For each instance i of each test, we denote

RSGRjk
i as the minimum value of the values yielded by the procedures LSGR(Sj) and LSGR(Sk),
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Table 2: Experimental results for n = 10 and n = 20.

Interval for n = 10 n = 20

b1 b2 − b1
RSGR12

RSGR
RSGR23

RSGR
RSGR31

RSGR
RSGR12

RSGR
RSGR23

RSGR
RSGR31

RSGR

[A/4, A/2) (0, 10] 1.033579 1.001001 1.049005 1.016530 1.000000 1.185884
[A/4, A/2) (10, 100] 1.039559 1.001407 1.067329 1.016701 1.000000 1.190629
[A/4, A/2) (100, 1000] 1.043281 1.002068 1.081569 1.017546 1.000000 1.216755
[A/2, 3A/4) (0, 10] 1.006282 1.000009 1.236990 1.000000 1.000000 1.503232
[A/2, 3A/4) (10, 100] 1.015927 1.000173 1.324239 1.000059 1.000000 1.513900
[A/2, 3A/4) (100, 1000] 1.030397 1.001068 1.422773 1.001103 1.000000 1.579965
[3A/4, A) (0, 10] 1.012609 1.000000 1.025693 1.003110 1.000000 1.126958
[3A/4, A) (10, 100] 1.037631 1.003526 1.024513 1.004436 1.000000 1.125144
[3A/4, A) (100, 1000] 1.078416 1.018389 1.023082 1.014696 1.000060 1.118945

j, k = 1, 2, 3, j 6= k. The average ratios
∑100

i=1
RSGRjk

i
RSGRi

/100 were calculated. In the same way as

above, we denote RSGRjk

RSGR as the average ratios for simplicity, where j = 1, 2, 3; k = 1, 2, 3; j 6= k.

For n = 10 and n = 20, the results are reported in Table 2; for n = 50 and n = 100, the results are

listed in Table 3.

From the Tables 2 and 3, we can see that the average ratios RSGR23

RSGR are the best among

{RSGR12

RSGR , RSGR23

RSGR , RSGR31

RSGR }, and are almost equal to 1 if n ≥ 20 except the underlined result. But

this is not the case if n is small. For n = 10, the average ratios RSGR23

RSGR are larger than 1 except the

underlined result. So we can conclude that RSGR can be revised and simplified through deleting

the procedure LSGR(S1) if n is large enough. Table 3 shows that the parameter b2 − b1, i.e., the

time duration of the non-available period, has no influence on the ratio only except the bold result

if n is large enough. The average ratios RSGR31

RSGR are much larger than RSGR12

RSGR and RSGR23

RSGR , which

also indicates that the second procedure performs better than others on average.

4 Conclusions

In this paper we considered the problem of scheduling deteriorating jobs on a single machine with

an availability constraint. We studied the non-resumable case with the objective of minimizing the

makespan and total completion time. We showed that both problems are NP-hard in the ordinary

sense. For the makespan problem, we presented an optimal approximation algorithm for the on-line

case, and a fully polynomial time approximation scheme for the off-line case. For the total completion

time problem, we provided a heuristic and evaluated its effectiveness by computational experiments.

The computational results show that the heuristics is efficient in obtaining near-optimal solutions.

It will be interesting to find out if an approximation algorithm with a constant worst-case ratio
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Table 3: Experimental results for n = 50 and n = 100.

Interval for n = 50 n = 100

b1 b2 − b1
RSGR12

RSGR
RSGR23

RSGR
RSGR31

RSGR
RSGR12

RSGR
RSGR23

RSGR
RSGR31

RSGR

[A/4, A/2) (0, 10] 1.003285 1.000000 1.319414 1.000751 1.000000 1.572155
[A/4, A/2) (10, 100] 1.003285 1.000000 1.319414 1.000751 1.000000 1.572155
[A/4, A/2) (100, 1000] 1.003285 1.000000 1.319414 1.000751 1.000000 1.572155
[A/2, 3A/4) (0, 10] 1.000000 1.000000 2.069904 1.000000 1.000000 2.634543
[A/2, 3A/4) (10, 100] 1.000000 1.000000 2.069904 1.000000 1.000000 2.634543
[A/2, 3A/4) (100, 1000] 1.000000 1.000000 2.069906 1.000000 1.000000 2.634543
[3A/4, A) (0, 10] 1.000786 1.000000 1.353337 1.000474 1.000000 1.584777
[3A/4, A) (10, 100] 1.000786 1.000000 1.353337 1.000474 1.000000 1.584777
[3A/4, A) (100, 1000] 1.000787 1.000000 1.353337 1.000474 1.000000 1.584777

exists for the total completion time problem. Extending our problems to parallel machines or

flowshops is also an interesting issue. In addition, it is worth studying the problem with the objective

of minimizing other scheduling performance criteria.
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