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This paper proposed amethod to improve the walking behavior of bipedal robot with adjustable step length. Objectives of this paper
are threefold. (1) Genetic Algorithm Optimized Fourier Series Formulation (GAOFSF) is modified to improve its performance.
(2) Self-adaptive Differential Evolutionary Algorithm (SaDE) is applied to search feasible walking gait. (3) An efficient method is
proposed for adjusting step length based on themodified central pattern generator (CPG)model.TheGAOFSF ismodified to ensure
that trajectories generated are continuous in angular position, velocity, and acceleration. After formulation of the modified CPG
model, SaDE is chosen to optimize walking gait (CPGmodel) due to its superior performance.Through simulation results, dynamic
balance of the robot with modified CPG model is better than the original one. In this paper, four adjustable factors (𝑅hs,support,
𝑅hs,swing,𝑅ks,support, and𝑅ks,swing) are added to the joint trajectories.Through adjusting these four factors, joint trajectories are changed
and hence the step length achieved by the robot. Finally, the relationship between (1) the desired step length and (2) an appropriate
set of 𝑅hs,support, 𝑅hs,swing, 𝑅ks,support, and 𝑅ks,swing searched by SaDE is learnt by Fuzzy Inference System (FIS). Desired joint angles can
be found without the aid of inverse kinematic model.

1. Introduction

Recently, many approaches have been adopted for generation
of bipedal walking gait. Some researches [1–3] adopted a
simplified dynamicmodel to generate walking gait calculated
through inverse kinematic model which is complex and
hence the computation load is high.

Inspired by neural science, some researchers investigated
central pattern generator (CPG). The prime reason for
arousing their interest is that CPG models provide several
parameters for modulation of locomotion, such as step stride
and rhythm, and are suitable to integrate feedback sensors.
Hence, a good interaction between the robot and the envi-
ronment can be achieved [4]. According to Ijspeert [4], CPG
becomesmore andmore popular in robot community. Taga et
al. [5] integrated feedbacks with neural oscillators for unpre-
dicted environment. Yang et al. [6], Shafii et al. [7], and Yazdi
et al. [8] utilized TFS to formulate ZMP-based CPG model
as the basic walking pattern of bipedal robot. Or [9] pre-
sented a hybrid CPG-ZMP control system for flexible spine

humanoid robot. Aoi and Tsuchiya [10] proposed a loco-
motion control system based on CPG model for straight
and curved walking. Farzenah et al. [11] noted that many
researches on CPG model are designed for specific motion
only and thus cannot generate arbitrary walking gait, such as
changing step length and proposed 31 TS-Fuzzy systems for
adjusting speed and step length.

Ijspeert [4] and Gong et al. [12] stated that stochastic
population-based optimization algorithms have been chosen
to optimize parameters of CPG model in many studies.
Genetic Algorithm (GA) [6, 13], Genetic Programming (GP)
[14], Particle Swarm Optimization (PSO) [7], and Bee Algo-
rithm [8] are adopted in searching the parameters of CPG
model. Besides the above-mentioned techniques, there are
still other gradient-free optimization techniques. Storn and
Price [15] proposed Differential Evolution (DE) and con-
ducted comparisons with some prominent algorithms, such
as Adaptive Simulated Annealing (ASA) and the Breeder
Genetic Algorithm (BGA). DE outperforms the above-men-
tioned prominent algorithms in terms of least number of
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generations for finding global minimum [15]. Similar results
are reported in the following studies [16–18]. Hegery et al. [16]
carried out comparisons between DE and GA on N-Queen
and travelling salesman problem and concluded that the
performance of DE is better. Tušar and Filipič [17] carried out
comparisons between DE-based variants DEMO and basic
GA on multiobjective optimization problem and their result
showed that DEMO outperforms basic GA. Vesterstrøm and
Thomsen [18] noted that DE outperforms PSO and Evolu-
tionary Algorithms (EAs) on majority of numerical bench-
mark problems. DE consists of population size (NP), scaling
factor (𝐹), and crossover rate (CR) which significantly affect
the performance of DE [19–22]. Different problems require
different parameters and strategies for effective optimization.
Even in the same problem, different regions of search space
may require different strategies and parameters for better
performance [20]. It is time consuming to search the most
appropriate strategy and parameters by trial and error. Hence,
Omran et al. [21] and Brest et al. [22] have proposed different
methods to adjust CR and F. However, appropriate mecha-
nism for choosing suitable strategies is not considered in [21,
22]. Qin et al. [20] proposed Self-adaptive Differential Evo-
lution Algorithm (SaDE) which can adjust CR, 𝐹 and choose
strategy automatically during optimization. SaDE outper-
forms conventional DE variants and the other adaptive DE,
such as SDE [21] and jDE [22], in terms of higher successful
rate.

Based on the above-mentioned findings, this paper
focuses on (1) CPG model for trajectory generation and (2)
providing an efficient method to adjust step length. In this
paper, original CPG model proposed by Yang et al. [6] is
adopted since it provides a good foundation for the goal stated
in this paper.The angular velocity of trajectories generated by
GAOFSF [6] is usually discontinuous which has an adverse
effect on ZMP. As a result, GAOFSF ismodified to ensure that
the trajectory generated is continuous in angular position and
its first and second derivatives. After formulation of modified
CPGmodel, parameters of CPGmodel are searched based on
kinematic and dynamic constraints. It shows that the problem
can be formulated as a multiobjectives and multiconstraints
optimization.Gradient-free optimization technique is chosen
since a set of parameters is searched in a highly irregular and
multidimensional space which cannot be handled by stan-
dard gradient-based search method [12]. SaDE is chosen as
the method for optimizing the walking gait of robot in this
paper because (1) its performance is superior and (2) appro-
priate strategies and parameters are not chosen manually.
Based on [6, 23], step length can be varied by simply changing
several adjustable factors of GAOFSF. Look-up table pro-
posed by Yang et al. [6] is not adopted in this paper because
(1) a lot of memory is occupied if tremendous data is stored
and (2) arbitrary step length within specific range cannot be
commanded to the robot. To deal with this problem, four
parameters (𝑅hs,support, 𝑅hs,swing, 𝑅ks,support, and 𝑅ks,swing) are
added to themodified CPGmodel and searched by SaD. Four
FIS systems are used to learn the relationship between (1)
desired step lengths and 𝑅hs,support, 𝑅hs,swing, 𝑅ks,support, and
𝑅ks,swing. Then, desired joint angles can be found without the
aid of inverse kinematics.

Table 1: Joint number of support leg and swing leg corresponds to
different joints.

Joints of leg Support leg Swing leg
Ankle joints 1-2 5-6
Knee joint 3 4
Hip joints 4–6 1–3

Table 2: Height of each link in support leg and swing leg.

Link number Support leg Swing leg
0 0.026m N/A
1 0.04m 0.028m
2 0.0645m 0.0385m
3 0.0645m 0.0645m
4 0.0385m 0.064m
5 0.028m 0.04m
6 0.096m 0.026m

2. Kinematic Model and Dynamic
Model of Bipedal Robot

In Figure 1, it shows that the bipedal robot consists of 12
DoF. Each leg has 6 DoF. RL and LL represent right and left
legs respectively, while 1, 2, 3, . . . , 6 represent joint number.
Figure 1 assumes that right leg is the support leg while the left
leg is the swing leg. Joint number 𝑛 of support leg and swing
leg corresponds to different joint shown in Table 1. Also, 𝑧-
axis of local coordinates attached on different joints acts as
rotation axis and the direction of rotation is determined by
right-hand rule.

Information of physical dimension of bipedal robot is
measured and simplified based on a modified Kondo-3HV.
The total mass of the bipedal robot is about 1.4 kg. The mass
of upper trunk and lower body is about 0.4 kg and 1 kg,
respectively. Since the mass of each link in lower body is
almost the same, then their masses are simply obtained by
1 kg/12 = 0.083 kg. The height of each link is shown in
Table 2.

Since Denavit-Hartenberg notation [24, 25] and iterative
Newton-Euler dynamic algorithm [26, 27] are maturely
developed and commonly used in many studies of bipedal
robot, these two methods are adopted to formulate forward
kinematic model and inverse dynamic model, respectively,
in this paper. Since this paper focuses on bipedal walking
on horizontal flat plane in sagittal plane (parallel to the
𝑌
𝐺

− 𝑍
𝐺

plane of global coordinate), only ZMP
𝑦

shown in
(1) is considered and acts as an indicator to evaluate the
dynamic equilibrium of the bipedal robot. In Figure 2, a local
coordinate is attached to the center of support foot to observe
the variation of ZMP

𝑦

with time.
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Figure 1: Schematic diagram of bipedal robot.
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3. Formulation of Modified
ZMP-Based CPG Model

Hip and knee trajectories of GAOFSF [6] consist of two
different sections. For hip joint, two different Truncated
Fourier Series (TFS) are used to formulate the upper portion
(𝜃
ℎ

+) and lower portion (𝜃
ℎ

−) of trajectory. For knee joint,
TFS and lock phase are joined together to formulate thewhole
trajectory. Based on Figure 3, the angular position is observed
to be continuous. However, angular velocity of searched
trajectory generated by GAOFSF is usually discontinuous (1)
at the transition between 𝜃

ℎ

+ and 𝜃
ℎ

− (𝑡
3

and 𝑡
6

or 𝑡
0

) and

ZZMP
XZMP

YZMP

Figure 2: Local coordinate system attached on the foot sole (top
view).

(2) at the beginning (𝑡
1

or 𝑡
4

) and the end of lock phase
(𝑡
2

or 𝑡
5

). Abrupt change in angular velocity has an adverse
effect on ZMP and hence the dynamic equilibrium of bipedal
robot. In this paper, the GAOFSF is modified to ensure that
the trajectories generated are continuous in angular position
and its first derivative and second derivative. [𝑡

5

, 𝑡
2

] and
[𝑡
2

, 𝑡
5

] are regarded as the period of left support phase and
right support phase, respectively. Then, 𝑡

2

and 𝑡
5

are the
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Figure 3: General shape of GAOFSF [6].

landing time of left support phase and right support phase,
respectively [6]. The time duration (𝑡

5

− 𝑡
2

) of one step is
set as 1 s to ensure a reasonable walking speed. 𝑡

2

and 𝑡
5

are
set as 0.7 s and 1.7 s while 𝑡

3

and 𝑡
6

are set as 1 s and 2 s.
Four different parameters (𝑅hs,support, 𝑅hs,swing, 𝑅ks,support, and
𝑅ks,swing) are added for adjustment of step length. Details of
finding the values of these four parameters are discussed in
Section 5. In this section, investigation is mainly focused on
the formulation of modified CPG model.

3.1. Hip Trajectory in Sagittal Plane. Since the peaks of 𝜃
ℎ

+

and 𝜃
ℎ

− are different, two different TFS are required to
formulate the hip trajectory. Yang et al. [6] have proposed
5th order TFS and showed that the amplitudes of 4th and 5th
orders are too small which can be neglected. 3rd order TFS is
adopted. In (2)-(3), angular velocity of ̇𝜃

−

ℎ

and ̇𝜃
+

ℎ

at 𝑡
3

and 𝑡
6

is set as equal to ensure angular velocity is continuous. Thus,
twomore orders are added to 𝜃

ℎ

− to satisfy this constraint and
are calculated by (4)-(5).
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3.2. Knee Trajectory in Sagittal Plane. In the knee trajectory,
Yang et al. [6] proposed a lock phase ([𝑡

1

, 𝑡
2

] and [𝑡
4

, 𝑡
5

])
in knee trajectory which assumes constant joint angle and
zero angular velocity and acceleration.This introduces abrupt
change in angular velocity. The main goals to be achieved
in the modified knee trajectory are (1) continuity in angular
position, velocity, and acceleration and (2) the advantage
proposed in GAOFSF that can be maintained. Then, a new
formulation is proposed in the following equation:
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In (11), lock phase is canceled to ensure continuous angular
velocity. By adjusting 𝑐𝑘 [6], GAOFSF can achieve energy
efficient and stable “bent knee” walking gait. This advantage
is still remained in the proposedmodifiedmodel.The general
shape of the hip and knee trajectories generated by modified
CPG model is shown in Section 6.

3.3. Ankle Trajectory in Sagittal Plane. Right and left ankle
joint trajectories are simply formulated as (12) to ensure that
the trunk is upright and swing foot is parallel to the horizontal
flat plane.

Consider

𝜃as = − 𝜃hs − 𝜃ks. (12)

4. Optimization of Basic
Walking Pattern by SaDE

This section focuses on how to search the basic walking
pattern of bipedal robot by SaDE [19, 20]. To simplify the
whole process in this section, 𝑅hs,support, 𝑅hs,swing, 𝑅ks,support,
and 𝑅ks,swing are set as 1.The following are the main objectives
of basic walking pattern to be achieved through using SaDE.

(1) The desired step length is set as 0.05m.
(2) Upper bound and lower bound of swing height are set

as 0.02m and 0.01m, respectively.
(3) Premature landing should not occur throughout the

walking cycle.
(4) ZMP is within the area of support polygon through-

out the walking cycle.

The procedure of SaDE takes the following steps. Also, a
flow chart of SaDE is shown in Figure 30 of the Appendix
to facilitate the understanding of readers. Details of the
procedure are discussed in Sections 4.1–4.7.

(1) Select fitness functions (𝑓
𝑖

) and constraints (𝑆
𝑖

).
(2) Code the parameters to be searched to form target

vector (𝑋
𝑖,𝐺

).
(3) Initialize the first generation (𝐺

1

) of population (𝑖).
(4) Initialize crossover rate (CR

𝑢𝑖,𝑗
), scaling factor (𝐹

𝑢𝑖,𝑗
),

and probability (𝑃
𝑗

) for each mutation strategies (𝑗)
based on CR

𝑗

and 𝐹
𝑗

.
(5) Select mutation strategies (𝑗) based on probability

(𝑃
𝑗

) through MATLAB function rand() and perform
mutation operation to generate mutant vectors (V

𝑖

).
(6) Perform crossover operation to generate trial vectors

(𝑢
𝑖

).
(7) Perform selection operation to select next generation

of target vectors (𝑋
𝑖,𝐺+1

).
(8) During learning period (LP), record the successful

time (ST
𝑗

) and failure time (FT
𝑗

) of each strategy (𝑗).
(9) During learning period (LP), record values of CR

𝑢𝑖,𝑗

and𝐹
𝑢𝑖,𝑗

for each strategy (𝑗) that successfully help the
trial vectors (𝑢

𝑖

) enter the next generation 𝐺
𝑖+1

.

(10) Upon completion of LP, probability (𝑃
𝑗

) for choosing
suitable strategies (𝑗) is adjusted based on successful
rate of strategy 𝑗 (SR

𝑗

) calculated through ST
𝑗

and
FT
𝑗

.

(11) Upon completion of LP, CR
𝑗

and 𝐹
𝑗

are adjusted
based on the mean values of stored CR

𝑢𝑖,𝑗
and 𝐹

𝑢𝑖,𝑗
,

respectively.

(12) Repeat procedures (4)–(11) until maximum genera-
tion is completed

4.1. Fitness Functions and Constraints (Step 1). Fitness func-
tions (𝑓

𝑛

) and constraints (𝑆
𝑛

) are designed ormodified based
on [6]. Since trunk occupies a large proportion of the whole
bodymass, abrupt change in trunk velocity can lead to abrupt
change in ZMP

𝑦

. 𝑓
1

is formulated as follows:

𝑉trunk =
𝑁

∑

𝑛=1

𝑉trunk,𝑛

𝑁
,

𝑓
1

= √

𝑁

∑

𝑛=1

(𝑉trunk,𝑛 − 𝑉trunk)
2

𝑁
,

(13)

where𝑁 is number of data.
Strike velocity during landing should be as small as

possible since impact between landing foot and the ground
can cause mechanical wear of parts and unstable walking. 𝑓

2

is stated as follows [6]:

𝑓
2

= √𝑉strike,𝑥
2

+ 𝑉strike,𝑦
2

+ 𝑉strike,𝑧
2

. (14)

If ZMP
𝑦

is within the area of support polygon
[0.061, −0.061] throughout the walking cycle, dynamic
equilibrium of the robot is satisfactory. To deal with the
discrepancies between simulation model and physical
test bed, a safety factor (0.01m) is added to ensure good
performance during experiment. 𝑆

1

is formulated as follows:

𝑆
1

=

𝑁

∑

𝑛=1

max (ZMP
𝑦,𝑛


− (𝐿
𝑦

− safty factor) , 0) , (15)

where 𝐿
𝑦

is length (0.121m) of foot sole/2.
The robot is assigned to walk forward along positive 𝑦-

axis. To ensure correct direction, 𝑆
2

and 𝑆
3

are designed as
follows:

𝑆
2

= max (−𝑉trunk,𝑦, 0) ,

𝑆
3

= max (−𝑉swing foot,𝑦, 0) ,
(16)

where 𝑉trunk,𝑦 is mean trunk velocity in 𝑦-direction and
𝑉swing foot,𝑦 is mean swing foot velocity in 𝑦-direction.



6 ISRN Robotics

To achieve natural human-like walking gait, 𝑆
4

and 𝑆
5

are
designed based on the modified CPG model.

If 𝑡 ≥ 𝑡
0

&& 𝑡 ≤ 𝑡
3

,

𝑆
4

= 𝑆
4

+max (𝜃rhs,𝑛 − 𝑐ℎ, 0)

+max (− (𝜃lhs,𝑛 − 𝑐ℎ) , 0) .

Else if 𝑡 ≥ 𝑡
3

&& 𝑡 ≤ 𝑡
6

,

𝑆
4

= 𝑆
4

+max (𝜃lhs,𝑛 − 𝑐ℎ, 0)

+max (− (𝜃rhs,𝑛 − 𝑐ℎ) , 0) .

End

(17)

𝑆
5

=

𝑁

∑

𝑛=1

max (−𝜃lks,𝑛, 0) . (18)

𝑆
6

is designed to ensure that the robot can achieve desired
step length:

𝑆
6

=
desired step length − step length . (19)

To ensure reasonable swing height, S
7

is designed to
ensure that the swing height is within the [0.01, 0.02]m.

If max (𝐻swing foot) (20)

≥ 𝐻lower && max (𝐻swing foot) ≤ 𝐻upper,

S
7

= 0.

Else

𝑆
7

=

𝑁

∑

𝑛=1


𝐻desired − 𝐻swing Foot,𝑛


.

End.

(21)

𝑆
8

is designed to prevent the swing foot from penetrating
through the ground and hence reduce the chance of prema-
ture landing while 𝑆

9

is designed to ensure swing foot lands
on the ground (𝐻ground = 0m) at landing time which is 𝑡

2

and
𝑡
5

:

𝑆
8

=

𝑁

∑

𝑛=1

max (𝐻support foot,𝑛 − 𝐻
𝑠wing foot,𝑛, 0) ,

𝑆
9

=

𝐻swing foot,𝑡2


+

𝐻swing foot,𝑡5


.

(22)

The total scores used for evaluating each target vector
(𝑋
𝑖,𝐺

) are formulated as follows:

scores = −1200 +

𝑁

∑

𝑖=1

𝜔
𝑜,𝑛

𝑓
𝑛

+

𝑁

∑

𝑖=1

𝜔
𝑝,𝑛

𝑆
𝑛

. (23)

These weightings are set by trial and error to ensure
their importance is almost the same and walking gait with
satisfactory performance can be obtained:

𝜔
𝑜

= [1000, 500] ,

𝜔
𝑝

= [2500, 285, 265, 100, 2200, 12000, 300, 960, 25000] ,

(24)

where 𝜔
𝑜,𝑛

is weighting of fitness functions and 𝜔
𝑝,𝑛

is
weighting of constraints.

4.2. Initialization of Parameters of Target Vectors (𝑋
𝑖,𝐺

)
(Steps 2 and 3). The target vector (𝑋

𝑖,𝐺

) is formulated as
follows:

𝑋
𝑖,𝐺

= [𝐴
1

, 𝐴
2

, 𝐴
3

, 𝐵
1

, 𝐵
2

, 𝐵
3

, 𝐶
1

, 𝐶
2

, 𝐶
3

, 𝑐ℎ, 𝑐𝑘] . (25)

Then, the parameters of population (𝑖) are initialized by
MATLAB function rand() which generates [0, 1] randomly.

4.3. Initialization of Parameters of SaDE (Step 4). Since the
range [−1, 1] of parameters to be searched is small, then
population (𝑖) of one generation (𝐺) is set as 30 to balance
between good diversity of population and low computation
load. Four mutation strategies (𝑗 = 1, 2, 3, 4) are adopted.
For strategy 𝑗, MATLAB function 𝑛𝑜𝑟𝑚𝑟𝑛𝑑 (mean value,
𝜎) is used to generate CR

𝑢𝑖,𝑗
and 𝐹

𝑢𝑖,𝑗
for each trial vector

(𝑢
𝑖

). In the initial phase, the crossover rate (CR
𝑢𝑖,𝑗
) should

not be too high to prevent premature convergence while the
scaling factor (𝐹

𝑢𝑖,𝑗
) should not be too small to affect the

exploration ability. Hence, a moderate value (0.5) is assigned
to CR

𝑗

and 𝐹
𝑗

(mean value) and 𝜎 is set as 0.1. This function
can generate random numbers from the normal distribution
through mean value (CR

𝑗

, 𝐹
𝑗

) and standard deviation (𝜎). 𝑃
𝑗

is set as 0.25 for strategy 𝑗 so that each strategy has the equal
chance to be chosen during the first learning period:

CR
𝑢𝑖,𝑗

= 𝑛𝑜𝑟𝑚𝑟𝑛𝑑 (CR
𝑗

, 𝜎) ,

𝐹
𝑢𝑖,𝑗

= 𝑛𝑜𝑟𝑚𝑟𝑛𝑑 (𝐹
𝑗

, 𝜎, ) .

(26)

4.4. Mutation Operation of SaDE (Step 5). DE/rand/1,
DE/rand/2 and DE/current-to-rand/2 provide good
exploration ability while DE/current-to-best/2 demonstrates
good convergence speed. To balance between exploration
ability and convergence speed, these four strategies are
adopted. These four mutation strategies are stated in
(27)–(30) as follows:

(1) DE/rand/1,

V
𝑖,𝐺

= 𝑋
𝑟1,𝐺

+ 𝐹
𝑖,𝑗

(𝑋
𝑟2,𝐺

− 𝑋
𝑟3,𝐺

) , (27)

(2) DE/rand/2,

V
𝑖,𝐺

= 𝑋
𝑟1,𝐺

+ 𝐹
𝑖,𝑗

(𝑋
𝑟2,𝐺

− 𝑋
𝑟3,𝐺

) + 𝐹
𝑖,𝑗

(𝑋
𝑟4,𝐺

− 𝑋
𝑟5,𝐺

) ,

(28)
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(3) DE/rand-to-best/2,

V
𝑖,𝐺

= 𝑋
𝑖,𝐺

+ 𝐹
𝑖,𝑗

(𝑋best,𝐺 − 𝑋
𝑖,𝐺

) + 𝐹
𝑖,𝑗

(𝑋
𝑟1,𝐺

− 𝑥
𝑟2,𝐺

)

+ 𝐹
𝑖,𝑗

(𝑋
𝑟3,𝐺

− 𝑋
𝑟4,𝐺

) ,

(29)

(4) DE/current-to-rand/2,

V
𝑖,𝐺

= 𝑋
𝑖,𝐺

+ 𝐹
𝑖,𝑗

(𝑋
𝑟1,𝐺

− 𝑋
𝑖,𝐺

) + 𝐹
𝑖,𝑗

(𝑋
𝑟2,𝐺

− 𝑋
𝑟3,𝐺

) . (30)

4.5. Crossover Operation of SaDE (Step 6). Because of its
popularity, binomial crossover operator [20] is utilized in all
mutation strategies.

If (rand () ≤ CR
𝑖,𝑗

) || (𝑞 == 𝑞rand) ,

𝑢
𝑞,𝑖,𝐺

= V
𝑞,𝑖,𝐺

.

Else if (rand () > CR
𝑖,𝑗

) ,

𝑢
𝑞,𝑖,𝐺

= 𝑥
𝑞,𝑖,𝐺

.

End,

(31)

where 𝑞 is the parameter number (1, 2, 3, 4, . . . , 11) in the
target (𝑋

𝑖,𝐺

) and mutant (V
𝑖,𝐺

) vector. Arbitrary parameter
number is assigned to 𝑞rand to ensure that trial vector (𝑢

𝑖,𝐺

)
is different from target vector (𝑋

𝑖,𝐺

). If values of 𝑢
𝑞,𝑖,𝐺

exceed
the desired range [−1, 1] of parameters to be searched, 𝑢

𝑞,𝑖,𝐺

is reset by MATLAB function rand ().

4.6. Selection Operation of SaDE (Step 7). If score of trial
vector (𝑢

𝑖,𝐺

) is lower than that of target vector (𝑥
𝑖,𝐺

), then trial
vector enters the next generation. Otherwise, target vector
enters the next generation.

If scores
𝑢𝑖,𝐺

≤ scores
𝑥𝑖,𝐺

,

𝑥
𝑖,𝐺+1

= 𝑢
𝑖,𝐺

.

Else

𝑥
𝑖,𝐺+1

= 𝑥
𝑖,𝐺

.

End.

(32)

4.7. Adjustment of 𝑃
𝑗

, 𝐶𝑅
𝑗

and 𝐹
𝑗

(Steps 8–11). Initially, a
learning period (LP = 5 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) is assigned to balance
between good sample size of data and update frequency.
During learning period, successful times (ST

𝑗

) and failure
times (FT

𝑗

) of each mutation strategy (𝑗 = 1, 2, 3, 4) in each
generation are recorded. For example, if strategy 𝑗 is chosen
and helps one trial vector (𝑢

𝑖,𝐺

) to enter next generation,
then ST

𝑗

is added by 1. Otherwise, FT
𝑗

is added by 1. Once
learning period is completed, 𝑃

𝑗

is adjusted by the successful

Table 3: Lower bound of desired swing height corresponding to
different step lengths.

Step length (m) Lower bound of maximum desired swing
height (m)

0.05m 0.01m
0.04m 0.009m
0.03m 0.008m
0.02m 0.007m
0.01m 0.006m

rate (SR
𝑗

). Then, ST
𝑗

and FT
𝑗

are reset to zero for the next
learning period to eliminate effect of the past data:

SR
𝑗

=

ST
𝑗

FT
𝑗,𝐺

+ ST
𝑗,𝐺

𝑃
𝑗

=

SR
𝑗

∑
𝑁=4

𝑗=1

SR
𝑗

.

(33)

Similar approach is applied to adjust CR
𝑗

and 𝐹
𝑗

. During
learning period (LP = 5 generations), for strategy 𝑗, CR

𝑢𝑖,𝑗
and

𝐹
𝑢𝑖,𝑗

corresponding to the trial vectors (𝑢
𝑖,𝐺

) that successfully
enters next generation are stored in database. Once learning
period is completed, mean value (CR

𝑗

and 𝐹
𝑗

) of the stored
value corresponding to strategy 𝑗 is calculated and is used to
generate a new set of CR

𝑢𝑖 ,𝑗
and 𝐹

𝑢𝑖,𝑗
. Then, storage data of

CR
𝑢𝑖,𝑗

and 𝐹
𝑢𝑖,𝑗

are removed for the next learning period to
eliminate the effects of past data.

5. Optimization of Factors (𝑅hs,support, 𝑅hs,swing,
𝑅ks,support, and 𝑅ks,swing) for Step Length
Adjustment

5.1. Objective Functions and Constraints of SaDE. The objec-
tive functions and constraints mentioned in Section 4 are
adopted to search appropriate value of 𝑅hs,support, 𝑅hs,swing,
𝑅ks,support, and𝑅ks,swingfinal corresponding to different desired
step length (0.04m, 0.03m, 0.02m, and 0.01m).

5.2. Lower Bound of Maximum Desired Swing Height. It is
natural that the maximum swing height becomes lower to
consume less energy if step length is smaller. Lower bound of
swing height is reset as lower value for different step lengths
(Table 3) while the upper bound (0.02m) remains the same.

5.3. Smooth Transition of 𝑅joint,support/swing. Values of
𝑅joint,support/swing (joint = rhs, lhs, rks, and lks) of support leg
and swing leg are different. At the moment of landing time,
𝑅joint,support is changed to 𝑅joint,swing since the support leg is
changed to swing leg in the next step. In order to have a
smooth transition, fifth order polynomial shown in equation
(34) is utilized. The period of transition time (𝑡

𝑓

− 𝑡
0

) is set
as 0.4 s which is 40% of time duration (1 s) of one step to
balance between rapid transition time and good dynamic
equilibrium.
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Figure 4: Architecture of Fuzzy Inference System (FIS).
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Figure 5: Average scores and scores of best target vector ofmodified
CPG model.
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Figure 6: Walking gait of modified CPG model searched by SaDE.
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Figure 7: The Landing instant of right swing leg (modified CPG
Model).

Table 4:𝑅hs,support,𝑅ks,support,𝑅hs,swing, and𝑅ks,swing searched by SaDE.

Desired step length
(cm) 𝑅hs,support 𝑅ks,support 𝑅hs,swing 𝑅ks,swing

5 1 1 1 1
4 0.8391 0.9419 0.7923 0.9714
3 0.7915 0.8469 0.5576 0.9672
2 0.6090 0.7861 0.3165 0.8709
1 0.4885 0.7157 0.0494 0.7779
0 0 0 0 0

Consider

𝑅joint,support/swing = 𝑐
0

+ 𝑐
1

𝑡 + 𝑐
2

𝑡
2

+ 𝑐
3

𝑡
3

+ 𝑐
4

𝑡
4

+ 𝑐
5

𝑡
5

.

(34)
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Table 5: Parameters of FLS tuned by LSE.

𝑓
1

(𝐷) 𝑓
2

(𝐷) 𝑓
3

(𝐷) 𝑓
4

(𝐷) 𝑓
5

(𝐷)

FLShs,support
𝑘
11

= 6.6435

𝑘
12

= 25.6113

𝑘
21

= −15.4254

𝑘
22

= −17.4962

𝑘
31

= 7.3103

𝑘
32

= 22.3738

𝑘
41

= 7.3103

𝑘
42

= 7.3103

𝑘
51

= −8.2392

𝑘
52

= 13.8564

FLSks,support
𝑘
11

= 4.3824

𝑘
12

= 24.6557

𝑘
21

= −9.6047

𝑘
22

= −14.8921

𝑘
31

= 2.6114

𝑘
32

= 15.1129

𝑘
41

= 3.7569

𝑘
42

= −9.1219

𝑘
51

= −5.5025

𝑘
52

= 7.3744

FLShs,swing
𝑘
11

= −2.7274

𝑘
12

= −9.6848

𝑘
21

= 5.7349

𝑘
22

= 7.1272

𝑘
31

= −1.2563

𝑘
32

= −7.2583

𝑘
41

= −0.6222

𝑘
42

= 5.9490

𝑘
51

= 3.6331

𝑘
52

= −3.4074

FLSks,swing
𝑘
11

= 7.1051

𝑘
12

= 32.6818

𝑘
21

= −16.0968

𝑘
22

= −21.0042

𝑘
31

= 6.2666

𝑘
32

= 24.1201

𝑘
41

= 4.0344

𝑘
42

= −17.0796

𝑘
51

= −9.0802

𝑘
52

= 13.2950
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Figure 8: Variation of height of swing foot with time (modifiedCPG
model).
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Figure 9: Joint trajectories of modified CPG model searched by
SaDE.
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Figure 10: ̇𝜃hs versus 𝜃hs of modified CPG model.
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Figure 11: ̇𝜃ks versus 𝜃ks of modified CPG model.
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Figure 14: Probability of mutation strategy 𝑗 to be chosen (modified
CPG model).

The coefficients of 𝑅joint,support/swing are solved by the
following constraints:

𝑅joint,support/swing (𝑡0) = 𝑅joint,support/swing,initial,

𝑅joint,support/swing (𝑡𝑓) = 𝑅joint,support/swing,final,

�̇�joint,support/swing (𝑡0) = 0,

�̇�joint,support/swing (𝑡𝑓) = 0,

�̈�joint,support/swing (𝑡0) = 0,

�̈�joint,support/swing (𝑡𝑓) = 0.

(35)

5.4. Fuzzy Inference System (FIS). Four FISs are adopted
to learn the relationship between (1) 𝑅hs,support, 𝑅hs,swing,
𝑅ks,support, and𝑅ks,swing and (2) desired step length (5 cm, 4 cm,

3 cm, 2 cm, 1 cm, and 0 cm).The architecture of FIS proposed
by [28] is shown in Figure 4. The desired step length (𝐷(𝑛))
is the input of FIS while 𝑅joint,support/swing is the output of FIS
which is obtained through the summation of𝑓

𝑚

(𝐷(𝑛)). Based
on [24], 𝑓

𝑚

(𝐷(𝑛)) is a function of desired step and can be
represented as a first order polynomial stated in (40).

In this section, the membership function (𝑀
𝑚

) is set as
Gaussian function as follows:

𝜇
𝐴𝑚

= 𝑒
−0.5((𝑥−𝑐𝑚)/𝜎𝑚)

2

, (36)

𝜔
𝑚

= 𝜇
𝐴𝑚

, (37)

𝜔
𝑚

=
𝜔
𝑚

∑
5

𝑚=1

𝜔
𝑚

, (38)

𝑓
𝑚

(𝐷 (𝑛)) = 𝑘
𝑚,1

+ 𝑘
𝑚,2

𝐷 (𝑛) , (39)

𝑅joint,support/swing =
5

∑

𝑚=1

𝜔
𝑚

𝑓
𝑚

(𝐷 (𝑛)) , (40)

where 𝜇
𝐴𝑚

is degree of membership function of 𝑀
𝑚

, 𝜎
𝑚

is
parameter that affects the width of Gaussian function of𝑀

𝑚

,
𝑐
𝑚

is parameter that affects the center of Gaussian function
of𝑀
𝑚

, 𝜔
𝑚

is firing strength of rule𝑚, and 𝜔
𝑚

is normalized
firing strength.

This section focuses on adjusting the consequent param-
eters (𝑘

𝑚,1

, 𝑘
𝑚,2

) of 𝑓
𝑚

(𝑋) by least square estimation (LSE)
[28] stated in (41). Gradient descent algorithm is not adopted
to adjust premise parameters since the size of training data
(𝑁 = 6) is relatively small. Hence, premise parameters are
fixed during the training process. In this paper, 𝑐

1−5

are set
as 0.2, 0.4, 0.6, 0.8, and 1, respectively, while 𝜎

1−5

are set as
0.3. After 50 training cycles, an appropriate set of consequent
parameters is found. Details of result in this section are stated
in Section 6.

Consider

𝐾
∗

= (𝑈
𝑇

𝑈)
−1

𝑈
𝑇

𝑌, (41)

𝐾
∗

= [𝑘
1,1

; 𝑘
1,2

; 𝑘
2,1

; 𝑘
2,2

; . . . 𝑘
5,1

; 𝑘
5,2
] , (42)

𝑈 =
[
[

[

𝜔
1

(1) 𝜔
1

(1)𝐷 (1) 𝜔
2

(1) 𝜔
2

(1)𝐷 (1) . . . 𝜔
5

(1) 𝜔
5

(1)𝐷 (1)

...
𝜔
1

(𝑁) 𝜔
1

(𝑁)𝐷 (𝑁) 𝜔
2

(𝑁) 𝜔
2

(𝑁)𝐷 (𝑁) . . . 𝜔
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]
]

]

, (43)

where 𝐷 is vector of desired step length and 𝑌 is vector of
desired output.

6. Results and Discussions

6.1. Scores and Searched Parameters of Modified CPG Model.
According to Figure 5, the maximum generation is set as
200. The scores of the best target vector is −1163.5. The
values of fitness functions and constraints are [0.018ms−1,

0.0369ms−1] and [0m, 0ms−1,0ms−1, 0 rad, 0 rad, 0m, 0m,
0m, and 0m], respectively. The searched parameters are
[0.2290 0.0257 0.0016 −0.3161 −0.0199 −0.0001 0.2892 0.0861
0.0004 −0.1786 0.0619]. The results show that the modified
CPG model can achieve a satisfactory performance.

6.2. Kinematic Aspects of Modified CPG Model. The walking
gait searched by SaDE is visualized in Figure 6. Figure 7
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Figure 15: Average scores and scores of best target vector of original
CPG model.
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Figure 16: Walking gait of original CPG model searched by SaDE.

shows that step achieved by bipedal robot is the same as the
desired step length (0.05m). In Figure 8, maximum height
of swing foot is satisfactory based on Table 3. Swing foot
lands on the ground at desired landing time (𝑡

2

= 0.7 s and
𝑡
5

= 1.7 s). The joint trajectories of modified CPG model
are shown in Figure 9. Based on Figures 10 and 11, angular
position and velocity of each joint trajectory is observed
to be continuous and smooth. Because of the heavy trunk
mass, abrupt change in 𝑉trunk,𝑦 should be prevented. From
Figure 12, it shows that 𝑉trunk,𝑦 is continuous and smooth
except the landing time.

6.3. Dynamic Aspects of Modified CPG Model. Figure 13
shows that dynamic equilibrium of the robot is satisfac-
tory since ZMP

𝑦

is within the area of support polygon
[−0.061, 0.061]m. The length of foot sole is 0.122m while
ZMP
𝑦

margin is defined to be (length of foot sole/2) −

max(|ZMP
𝑦

|). Based on Figure 13, ZMP
𝑦

margin is observed
to be at least 0.03mwhich is large enough to allow larger step.
ZMP
𝑦

is smooth and the only abrupt change happens at the
landing time (𝑡

2

= 0.7 s and 𝑡
5

= 1.7 s) since ZMP
𝑦

shifts to
the support foot of the next step at these two moments.

6.4. Observations on Mutation Strategies of SaDE. During
searching parameters of modified CPG model, it shows
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Figure 17: The landing instant of right swing leg (original CPG
model).

that mutation strategy 2 and strategy 3 do not favor for
searching feasible walking gait since they are suppressed
completely after 60 generations (Figure 14). Figure 5 shows
that scores of target vectors tend to converge in the range of
generation 100 to 200. Strategy 1 can help trial vector converge
faster since it involves the best trial vector in the mutation
operation. Hence, from generation 100 to 200, the probability
for choosing strategy 1 is always higher than that of strategy 4.

6.5. Results of Original CPG Model. Except constraint 1, the
original CPG model [6] is searched by SaDE under the same
setting. Safety factor is set as 0m since it becomes difficult to
search a feasible walking gait for original CPGmodel if safety
factor is set as 0.01m. Based on Figure 15, the scores of the
best trial vector is −1105.9. Also, the searched parameters are
[0.0519 0.0012 0.0070 −0.5237 −0.0053 −0.0068 0.3579 0.1459
0.0025 0.0891 0.1736]. The values of fitness functions and
constraints are [0.0694ms−1, 0.0484ms−1] and [0.0002m,
0ms−1, 0ms−1, 0 rad, 0 rad, 0m, 0m, 0m, 0m], respectively.
Compared with the performance of modified CPG model,
the original CPG model is less satisfactory. The walking gait
of original CPG model searched by SaDE is visualized in
Figure 16. Also, in Figure 17, desired step length (0.05m) is
successfully achieved. In Figure 18,maximumheight of swing
foot is satisfactory based on Table 3. Also, swing foot lands on
the ground at desired landing time (𝑡

2

= 0.7 s and 𝑡
5

= 1.7 s).
The joint trajectories of modified CPG model are shown

in Figure 19. Based on Figures 20 and 21, angular velocity
of each joint trajectory is observed to be discontinuous.
The standard deviation (𝜎original = 0.0694ms−1) of 𝑉Trunk,𝑦
is larger than that (𝜎modified = 0.018ms−1) of modified
CPG model. The prime reason is that, in Figure 22, 𝑉Trunk,𝑦
is observed to be discontinuous because of discontinuity
in angular velocity. In Figure 23, obvious abrupt change
in ZMP

𝑦

is observed. Also, ZMP
𝑦

exceeds the area of
support polygon (𝑆

1

= 0.0002m). This shows that dynamic
equilibrium of bipedal robot is affected by discontinuous
angular velocity. Although the area of foot sole can be made
larger to tolerate the abrupt change of ZMP

𝑦

, the agility of the
robot is sacrificed. For the original CPG model, a larger step
is not allowed since ZMP

𝑦

has exceeded the support polygon
when the robot walks with 5 cm step length.
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Figure 18: Variation of height of swing foot with time (original CPG
model).
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Figure 19: Joint trajectories of original CPG model searched by
SaDE.
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Figure 20: ̇𝜃hs versus 𝜃hs of original CPG model.

6.6. Results of 𝑅hs,support, 𝑅ks,support, 𝑅hs,swing, and 𝑅ks,swing
Searched by SaDE. 𝑅hs,support, 𝑅ks,support, 𝑅hs,swing, and 𝑅ks,swing
searched by SaDE are shown in Table 4. In Figure 24, it shows
that the bipedal robot can achieve desired step length (4 cm,
3 cm, 2 cm, and 1 cm). Also, in Figure 25, themaximum swing
height corresponding to different desired step length reaches
reasonable swing height based on Table 3 and no premature
landing occurs during walking.

In Figure 26, ZMP
𝑦

is always within the area of support
polygon [0.061, −0.061]. Hence, the dynamic equilibrium of
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Figure 21: ̇𝜃ks versus 𝜃ks of original CPG model.
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Figure 22: Variation of 𝑉Trunk,𝑦 with time (original CPG model).
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Figure 23: Variation of ZMP
𝑦

with time (original CPG model).
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Figure 24: Different step length achieved by bipedal robot.
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Figure 28: Step length achieved by bipedal robot (arbitrary desired
step length command).
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Figure 29: Height of swing foot (arbitrary desired step length
command).

the robot for different desired step length is satisfactory.Then,
an attempt is made to show that when desired step length is
adjusted in the next step, ZMP

𝑦

can still bemaintainedwithin
the area of support polygon [−0.061, 0.061]. The bipedal
robot is at rest initially and is commanded to change its step
length at 𝑡

2

= 0.7 s. In Figure 27, it shows that if change in step
length is larger, then change in ZMP

𝑦

is larger. It also shows
that, in the case of the largest change in step length (0 cm to
5 cm), ZMP

𝑦

is still within area of support polygon. Hence,
robot can keep its dynamic balance well when desired step
length is changed in the next step.

6.7. Relationship between 𝑅hs,support, 𝑅ks,support, 𝑅hs,swing, and
𝑅ks,swing and Desired Step Length Learnt by FIS. The param-
eters of FLS tuned by LSE are shown in Table 5. Arbi-
trary desired step lengths (0.041 cm, 0.033 cm, 0.025 cm,
and 0.017 cm) within a specific range (0 cm–5 cm) are com-
manded to the robot. In Figure 28, it shows that the robot
can achieve arbitrary desired step length successfully. In
Figure 29, premature landing does not occur throughout the
whole walking cycle. Hence, the relationship between (1)
𝑅hs,support,𝑅ks,support,𝑅hs,swing and𝑅ks,swing, and (2) desired step
length is learnt successfully.



14 ISRN Robotics

Yes

No

Is the maximum generation completed?

End

No

Yes

Select fi and Si

(1) Initialize the first generation (G1) of population (i) of trial vectors (Xi,G)

(2) Assign initial mean value of crossover rate (CRj), scaling factor (Fj), and probability (Pj)

(3) Initialize crossover rate (CRu𝑖,𝑗
) and scaling factor (Fu𝑖,𝑗 ) based on CRj and Fj.

Code the parameters to be searched to form target vector (Xi,G)

One of four mutation strategies (j) is chosen for mutation operation through probability to

generate mutant factors (	i)

Perform crossover operation to generate trial vectors (ui,G)

Perform selection operation to select next generation of target vectors (Xi,G+1

 by comparing the scores of trial vectors (ui,G) and target vectors (Xi,G)

ui+1 wins Xi,G wins

)

(1) For strategyj, values of CRu𝑖 ,j
and Fu𝑖,j

of corresponding successful ui+1 are recorded

(2) Successful time (STj) is added by 1

(3) Failure time (FTj) is added by 0

(1) Successful time (STj) is added by 0

(2) Failure time (FTj) is added by 1

Is learning period of CRj, Fj and Pj completed?

(1) CRj and Fj are updated based on the mean values of the stored data of CRu𝑖,𝑗
and Fu𝑖,𝑗

(2) Probability (Pj) of choosing each mutation strategies (j) is adjusted based on SRj

calculated through STj and FTj

(3) Reset STj and FTj to zero

(4) Clear storage data of CRj and Fj

(5) Restart learning period of (1) Pj and (2) CRj and Fj

Figure 30: Flow chart of SaDE.

7. Conclusions

In this paper, GAOFSF [6] is modified to ensure that trajecto-
ries generated are continuous in angular position and its first
and second derivatives. Through simulations, bipedal robot
with modified CPG model yields better dynamic balance.
SaDE is firstly applied to search the parameters of CPGmodel
of bipedal walking. Performance of modified CPG model

searched by SaDE is found to be satisfactory. Four adjustable
parameters (𝑅hs,support, 𝑅ks,support, 𝑅hs,swing, and 𝑅ks,swing) are
added to modified CPG model and searched by SaDE. The
robot is able to adjust its step length by simply changing
these four factors. Instead of using look-up table [6], the
relationship between (1) 𝑅hs,support, 𝑅ks,support, 𝑅hs,swing, and
𝑅ks,swing and (2) desired step length is successfully learnt.
Simulation results show that the robot is able to walk with
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arbitrary desired step length within specific range (0 cm–
5 cm). The desired joint angles can be obtained without the
aid of inverse kinematics.

Appendix

For more details see Figure 30.

Symbols

𝐴, 𝐵, 𝐶: Coefficients of truncated Fourier series
CR: Crossover rate
CR: Mean crossover rate
𝑓: Fitness functions
𝐹: Mutation rate
𝐹: Mean mutation rate
𝑔: Gravity
𝐻swing foot: Height of swing foot
𝐻desired: Desired height of swing foot
𝐻ground: Height of ground
𝑚
𝑖

: Mass of link 𝑖

𝑀: Membership function
𝑞: Gene number= 1, 2, 3, 4, . . . , 11

𝑆: Constraints
𝑢: Trial vector
V: Mutant vector
𝑉trunk: Velocity of trunk
𝑉trunk: Mean velocity of trunk
𝑉strike: Velocity of swing foot at landing time
𝜔
ℎ

, 𝜔
𝑘

: Natural frequency of hip and knee
trajectory

𝜔
𝑜/𝑝

: Weighting factor of fitness
functions/constraints

𝑋: Target vector
𝑦: 𝑦-Coordinate of CoM of link 𝑖

𝑧: 𝑧-Coordinate of CoM of link 𝑖

̈𝑦: Linear acceleration in 𝑦-direction at CoM
of link 𝑖

�̈�: Linear acceleration in 𝑧-direction at CoM
of link 𝑖

𝑅: Scaling factor of truncated Fourier series
𝜃hs/ks: Hip/knee joint angle in sagittal plane
𝜇
𝐴𝑚

: Degree of membership function
𝜎: Standard deviation.
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