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Abstract 

This paper proposes a new model to estimate the mean and covariance of stochastic multi-class (multiple vehicle classes) origin-
destination (OD) demands from hourly classified traffic counts throughout the whole year. It is usually assumed in the 
conventional OD demand estimation models that the OD demand by vehicle class is deterministic. Little attention is given on the 
estimation of the statistical properties of stochastic OD demands as well as their covariance between different vehicle classes. 
Also, the interactions between different vehicle classes in OD demand are ignored such as the change of modes between private 
car and taxi during a particular hourly period over the year. To fill these two gaps, the mean and covariance matrix of stochastic 
multi-class OD demands for the same hourly period over the year are simultaneously estimated by a modified lasso (least 
absolute shrinkage and selection operator) method. The estimated covariance matrix of stochastic multi-class OD demands can be 
used to capture the statistical dependency of traffic demands between different vehicle classes. In this paper, the proposed model 
is formulated as a non-linear constrained optimization problem. An exterior penalty algorithm is adapted to solve the proposed 
model. Numerical examples are presented to illustrate the applications of the proposed model together with some insightful 
findings on the importance of covariance of OD demand between difference vehicle classes. 
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1. Introduction 

Origin-destination (OD) traffic demand is one of the fundamental input data for transportation planning and 
traffic management. In the past decades, OD demand estimation from traffic counts has been an important topic in 
the field of transportation research so as to minimize the cost for data collection. However, most of the existing OD 
demand estimation models ignore two important features of the OD demands as follows. 

 The interactions between different vehicle classes (or types) in OD demand, such as taxis, private cars and goods 
vehicles. 

 The statistical characteristics of multi-class OD demands, such as the covariance of traffic demands between 
different vehicle classes. 

This paper proposes a new model for estimation of the mean and covariance of stochastic multi-class (i.e. 
multiple vehicle classes) OD demands from hourly classified traffic counts throughout the whole year.  

1.1. Covariance of OD demands 

Due to daily and seasonal variations in activity patterns, the OD traffic demands of different vehicle classes 
during the same hourly period (e.g. morning peak, 8:00 am - 9:00 am) are stochastically varied from day to day over 
the whole year. This type of varying traffic demands is referred to as stochastic multi-class OD demands in this 
paper. Statistically, the random characteristics of the stochastic multi-class OD demands can be reflected by their 
mean and covariance. In the conventional OD demand estimation models, focus is usually put on the mean of the 
OD demands while the covariances of OD demands by vehicle class have not been considered. The covariance of 
stochastic multi-class OD demands would however reflect the correlations between OD demands by vehicle class. 
For instance, for the traffic demand of the same OD pair, the higher the private car usage, the less the taxis usage.  

It should be pointed out that there are generally three categories of OD demand covariances, i.e. the spatial, 
temporal and vehicle class covariances. Firstly, spatial OD demand covariance refers to the correlation (or 
dependency to some extent) of the OD demands during the same hourly periods between different OD pairs in a 
spatial manner (Shao et al., 2014). Secondly, temporal OD demand covariance represents the correlation of the OD 
demands for the same OD pair between different time periods (e.g. 8:00 am - 9:00 am and 9:00 am - 10:00 am). 
Thirdly, the vehicle class OD demand covariance relates to the statistical dependency of traffic demand between 
different vehicle classes of the same OD pair. These three categories of OD demand covariances simultaneously 
exist and contribute to the stochasticity of OD demand in reality. However, in order to facilitate the essential ideas 
on correlations between OD demands by vehicle class, this paper ignores first and second categories of the 
covariances. Specifically, this paper aims to estimate the third category of OD demand covariance using classified 
traffic counts for the same hourly period over the year. 

In road transportation networks, the covariance of OD demands should not be ignored particularly for OD 
demand estimation from traffic counts. The ignorance of the correlation between random variables may lead to very 
different output of the models (Haas, 1999). For example, Waller et al. (2001) found that the correlation level of OD 
demands plays a major role in determining the degree of error in relation to the expected total network travel time. 
Zhao and Kockelman (2002) discussed the propagation of errors through the four-step traffic demand forecasting 
model. They stated that neglecting the correlation of data (e.g., OD demands) would ultimately reduce the reliability 
of the traffic forecasts, and in turn affect the policy-making and infrastructure decisions. Duthie et al. (2011) found 
that the assumption of independent demands when correlations do in fact exist could lead to errors in the estimation 
of system performance and result in poor policy decisions; for instance, building highways may not be able to meet 
a higher-than-expected demand. Shao et al. (2014) found that the spatial covariance has significant impact of 
network performance evaluation. In view of the above studies, it is shown that the correlation between OD demands 
should not be overlooked. This has a great effect on OD demand estimation problem particularly with the use of 
traffic counts.  

The mean and covariance of the stochastic multi-class OD demands to be estimated in this paper can be used in 
the reliability-based traffic assignment models which have recently been developed for multi-modal transportation 
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networks with uncertainty (Chen et al., 2002; Nakayama and Takayama, 2003; Clark and Watling, 2005; Shao et al., 
2006; Lam et al., 2008; Chen and Zhou, 2010; Chen et al., 2011; Sumalee et al., 2011). These relevant studies 
demonstrated that increasing attention has been given on development of reliability-based network equilibrium 
models but it was assumed that the probability distributions of stochastic multi-class OD demands are known and 
given. However, to the best of our knowledge, less attention has been paid to estimation of the probability 
distribution of the stochastic multi-class OD demands, which is a necessary input for the application of the above 
models in networks with uncertainty. It is known that the mean and covariance matrix are the two key parameters to 
characterize the OD demand probability distribution. Therefore, the estimation of mean and covariance of the 
stochastic multi-class OD demands is an important extension of the current research work on reliability-based 
network equilibrium models. 

1.2. Interactions between multiple vehicle classes in OD demand 

Conventionally, the OD demands of different vehicle classes can be estimated by the combined model, which 
combines two steps of the conventional four-step trip-based model, i.e. mode and path (or route) choices. The 
combined model can be regarded as a “top-down” approach to reflect the interactions between multiple vehicle 
classes as shown in Figure 1. In the combined model, travel modes are classified by different vehicle classes, such as 
cars, taxis, buses, heavy trucks, light trucks, etc. The sum of OD demands for all modes is available, and the choice 
of each mode is a function of travel times between an OD pair using alternative travel modes. At equilibrium, no 
user can change his route to lessen his travel cost, but may do so by changing his mode (Lam and Huang, 1992a). 
The corresponding combined model is a process of integration of the modal split and traffic assignment, which can 
be used to estimate the OD demand of each travel mode (vehicle class). However, the accuracy of the combined 
model results depends on the value of model parameters which need to be calibrated by expensive household 
interview surveys (Frank, 1978; Lam and Huang, 1992b). 

In comparison with the combined model, this paper proposes a new model which is a “bottom-up” approach to 
estimate the mean and covariance of stochastic multi-class OD demands so as to account for the interactions 
between multiple vehicle classes in OD demand. In practice, the observed link traffic counts (flows) can be 
classified by vehicle class with the use of advanced technologies. For example, the automatic vehicle identification 
(AVI) reader, which is being used in Hong Kong for electronic toll collection and journey time estimation purposes 
(Tam and Lam, 2008), can recognize the vehicle class. The observed classified link traffic counts during the same 
hourly period (e.g. morning peak, 8:00 am - 9:00 am) are stochastically fluctuated from day to day over the whole 
year. Thus, classified link traffic counts are considered as random variables. The sample mean and covariance of 
traffic counts for all vehicle classes can then be calculated using the observed classified link traffic counts. It should 
be noted that the sample covariance of classified link traffic counts would capture the statistical dependence between 
different vehicle classes. It is a result of the interactions between multiple vehicle classes in traffic demand as well 
as the effect of the route or path choices. Such information and/or relationships are adopted in this paper to estimate 
the covariance of stochastic multi-class OD demands. 

Apart from the covariance between different vehicle classes in OD demands, the mean OD demand for each 
vehicle class is also a kind of important information for transportation planning and traffic management. The mean 
OD demand by vehicle class can be used to assess the link choice proportion by vehicle class (i.e. the proportion of 
each vehicle class on links of the transportation network). Such information is useful for road traffic operation and 
control, traffic accident management and transportation policy evaluation. Although traffic flows of different vehicle 
classes can be uniformly converted into the passenger car units (pcu) for evaluation purpose, vehicle class is 
obviously an important factor that influences the operating capability and traffic accident severity in road 
transportation networks. For example, heavy vehicles have lower operating capabilities than private cars, 
particularly with respect to acceleration, deceleration, and the ability to maintain speed on hilly roads 
(Transportation Research Board, 2000). Involvement of motor cycles in multiple-vehicle accidents has a higher 
proportion of fatal or serious injuries than that of private cars and taxis (Yau, 2006). Therefore, estimation of mean 
value for different vehicle classes in OD demands can help the traffic manager effectively operate and evaluate the 
road transportation system particularly in congested network with uncertainty. 
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Fig. 1. Basic motivation and framework for the proposed model 

1.3.  OD demand estimation models 

Although various methods for OD demand estimation from traffic counts have been widely investigated in the 
past decades, the existing estimation models can not fully capture the statistical characteristics as well as the 
interactions between different vehicle classes of OD demands as shown in Table 1. These OD demand estimation 
models include entropy maximizing model (Van Zuylen and Willumsen, 1980), maximum likelihood model (Spiess, 
1987; Watling, 1994), generalized least squares (GLS) model (Cascetta, 1984; Bell, 1991), stochastic mapping 
method (Ashok and Ben-Akiva, 2000 and 2002), Bayesian inference estimation model (Maher, 1983; Sun et al., 
2006; Castillo et al., 2008a,b) and Markov chain model (Li, 2009). It is assumed in these estimation models that the 
OD demands are either deterministic variables or mutually independent random variables. The first outstanding 
feature of the existing OD demand estimation models is that some in-depth statistical properties were generally 
ignored. For example, few of them addressed the OD demand variations, such as the correlation between random 
traffic demands of different vehicle classes (covariance). In general, only the mean of the OD demand was estimated 
in most of the existing models. An exception was the research work by Shao et al. (2014), which considered the 
estimation of spatial covariance of OD demands. However, this work may suffer from the difficulty of the 
“overfitting” problem as there are too many paramters to be estimated in the covarince matrix of stochastic OD 
demands. Also, the path choice proportion and/or the link choice proportion is assumed to be a deterministic 
variable. Such an assumption can not account for the stochastic path choice behaviours under condition with 
uncertainty. The second outstanding feature of the existing models is that most of them only considers the OD 
demand estimation problem for single vehicle class except the work by Wong et al. (2005). In the latter, only the 
mean of multi-class OD demands were estimated. In view of the above two outstanding features of the exisiting OD 
demand estimation models, this paper proposes a new model to estimate simutaneously both the mean and 
covariance of multi-class OD demands while explicitly considering the stochastic mode and path choice behaviours. 

Table 1. Classfications of OD demand estimation models 
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1.4. Contribution statement 

It is well-known that a common difficulty of the existing OD demand estimation models is the identifiability 
problem, i.e. it is impossible to identify the unique OD demand matrix from the observed traffic counts as the 
number of observed links (from which the traffic counts are available) is usually less than the number of parameters 
(or unknowns) to be estimated in the OD demand matrix (Hazelton, 2003). For the problem of estimating the mean 
and covariance matrix of the stochastic multi-class OD demands, the identifiability problem may be exacerbated as 
more parameters (say for instance, the covariance matrix) are required to be estimated. In view of this, the shrinkage 
estimator, a technique that is useful for estimating large-dimensional parameters with comparatively fewer 
observations, has the potential to overcome this difficulty in practice. 

The widely-used shrinkage estimator, lasso (least absolute shrinkage and selection operator) method (Tibshirani, 
1996), is adopted to address the identifiability problem in this paper. There are a large number of elements (or 
parameters) in the covariance matrix of stochastic multi-class OD demands. For example, in a simple network with 
two OD pairs and three vehicle classes, there are 21 parameters needed to be estimated in the 6 6 covariance 
matrix of multi-class OD demands. It should be noted that the covariance matrix is symmetrical. Thus, for a nn  
covariance matrix, there are actually 2/)1( nn  elements needed to be estimated. However, in reality, some 
elements in the multi-class OD demand covariance matrix may be zero. For instance, the traffic demands between 
private cars and goods vehicles of the same OD pair may be independent with each other. And the corresponding 
elements in the covariance matrix should be zero. Due to the identifiability difficulty, the reasonable solutions of 
these covariances (i.e. zero) may not be identified as multiple solutions may exist. To overcome this difficulty, the 
lasso method does variable selection and shrinkage by solving the L1-penalized least squares (or linear regression) 
(Tibshirani, 1996 and 2011). The lasso method is equivalent to minimization of the sum of squares with a constraint 
of L1-norm of estimated parameters. For the covariance between independent multi-class OD demands (e.g. private 
cars and goods vehicles), the adoption of the lasso method can make it shrunk towards zero. As such, it is expected 
that covariance matrix of the OD demands could be uniquely identified.  

This paper proposes a new model for estimating the mean and covariance of stochastic OD demands from 
classified traffic counts for the same hourly period over the year. The proposed model extends the existing works 
with the following new features. 

  Not only the mean but also covariance matrix of stochastic multi-class OD demands is estimated. Particularly, the 
estimated covariance of stochastic multi-class OD demands can statistically reflect the traffic demand 
interactions between vehicle classes under network uncertainty over the year. Meanwhile, the interactions of 
stochastic path and mode choices are explicitly considered in the proposed model, which may has great potential 
to help the transportation planner and/or traffic manager understand the complexity and randomness of the mode 
and path choice behaviors in congested network with uncertainty.  

 Lasso method is firstly incorporated into the OD demand estimation problem for variable selection and shrinkage 
so as to address the exacerbated identifiability issue for estimation of stochastic multi-class OD demand 
covariance matrix. 

An equivalent non-linear constrained optimization model is proposed and formulated for the multi-class 
stochastic OD demand estimation problem. A n -fold cross-validation procedure is adapted to determine the lasso 
parameter in the proposed model. A heuristic solution algorithm based on the penalty method is adapted to solve the 
proposed model. Numerical examples are shown below to demonstrate the applications of the proposed model and 
solution algorithm together with some insightful discussion on the problem concerned. 

1.5. Paper orginzation 

The rest of the paper is organized as follows. In Section 2, the model formulation for estimating the mean and 
covariance of multi-class OD demands is presented. Then, a heuristic solution algorithm is proposed in Section 3. 
Numerical examples are discussed in Section 4. Finally, conclusions and further studies are given in Section 5. 
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2. Model formulation 

2.1. Notations and basic assumptions 

The notations used throughout the paper are listed as follows unless otherwise specified. For notational 
consistency, the italic capital letters are used to denote random variables and the italic lower-case letters are used to 
denote deterministic variables throughout the paper. 

 
Nomenclature 
Indices:  

aa,  Link index, Aaa, . 
ii,   Vehicle class index, Dii, . 
kk,   Path index, rskk K, . 

srrs,   OD pair index, Rsrrs, . 
Sets:  
A  Set of links in the network. 

A~  Observed link set, which is a subset of link set A . The traffic flows on link A~a  can be 
observed by the traffic sensor during the observed time period. 

D  The set of vehicle classes, Di . 
ANG ,  A road network, with N  being the set of nodes and A  being the set of links, respectively. 

K   Total path set of the network, 
R
KK

rs
rs . 

rsK   Path set between OD pair rs . 

H  Sample of iaV , , }~,,~,~{ )(
,,

)2(
,,

)1(
,,

h
oiaoiaoia vvvH . 

nH  
A subset of H . H  is randomly divided into 10 subsets with the same sample size h10

1 , 

n
n

HH
10

1
.  

R  Set of OD pairs. R  is a subset of NN . 
Variables:  

k
irsF ,  Random traffic flow of vehicle class Di  on path (or route) rsk K  between OD Rrs . 

F  
DK -vector of random multi-class path flows Tk

irsF ),,( ,  for all rsk K , Rrs  and 
Di . 

k
irsf ,  Mean traffic flow of vehicle class Di  on path rsk K  between OD Rrs , ][ ,,

k
irs

k
irs FEf . 

f  DK -vector of mean multi-class path flows Tk
irsf ),,( ,  for all rsk K , Rrs  and Di . 

k
irsP ,  

Random mode-path choice proportion of the traffic flow on path rsk K  of vehicle class i  
between OD pair rs . 

k
irsp ,  

Mean path choice proportion of the traffic flow on path rsk K  of vehicle class i  between 

OD pair rs , ][ ,,
k

irs
k

irs PEp . 

p  DKDKDKDK
p ],cov[ ,,

,,
,,,

k
isr

k
irs

kkp
isrirs PP is the covariance matrix of mode-path 

choice proportion. 
irsQ ,  Random traffic demand of vehicle class i  between OD pair rs . 

Q  DR -vector of T
irsQ ),,( ,  for all rs R  and Di . 

irsq ,  Mean OD demand between OD pair rs of vehicle type i , irsirs qQE ,, . 
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q  DR -vector of T
irsq ),,( ,  for all rs R  and Di , ][Qq E . 

_q  The lower boundary of the estimated mean OD demand. 

q  The upper boundary of the estimated mean OD demand. 

irsq ,ˆ  Actual mean OD demand of vehicle class i  between OD pair rs . 
t  Lasso parameter. 

iaV ,  Random traffic flow on link a  of vehicle class i . 

iav ,  Mean traffic flow on link a , ][ ,, iaia VEv . 

)(
,,

~ l
oiav  Observed traffic flow of vehicle class i  on link A~a  during the observed time period on day 

l ),,2,1( hl . 
H

oiav ,,
~  Sample mean of multi-class link flows, which is calculated using sample H . 

n
oiav H

,,
~  Sample mean of multi-class link flows, which is calculated using sample nH . 

)(~ l
ov  DA~ -vector of Tl

oiav ),~,( )(
,,  for A~a  and Di  on day l . 

ov~  Sample mean of observed multi-class link flows ,
h

l

l
o

T
oiao h

v
1

)(
,,

~1),~,(~ vv . 

min  Minimal eigenvalue of q . 
  

f  Covariance matrix of multi-class path flows, 
DKDK

f kkf
isrirs

,,
,,, . 

q  
Covariance matrix of traffic demands of all OD pairs for all vehicle classes, 

DRDR
q q

isrirs ,,, . 

v
o

~  Sample covariance matrix of observed multi-class link flows, 
DADA

Hv
~~

,
,,,,

~~ v
oiaiao . 

kkf
isrirs

,,
,,,  Covariance between k

irsF ,  and k
isrF ,  ],cov[ ,,

,,
,,,

k
isr

k
irs

kkf
isrirs FF . 

q
isrirs ,,,  Covariance between OD demand irsQ ,  and isrQ , , isrirs

q
isrirs QQ ,,,,, ,cov . 

v
iaia ,,,  Covariance between link flows iaV ,  and iaV , , iaia

v
iaia VV ,,,,, ,cov . 

H,
,,,,

~v
oiaia  Sample covariance of multi-class link flows, which is calculated using sample H . 

nv
oiaia

H,
,,,,

~  Sample covariance of multi-class link flows, which is calculated using sample nH . 
Parameters:  
m  A large integer used in cross-validation. In this paper, it is assumed that m =100. 
u  Iteration number. 

ak
rs

,  Element of link-path incidence matrix . 
)(

5
)(

1 ,, uu  Four positive penalty coefficients at iteration u . 
 Enlarge parameter in the adapted penalty function solution algorithm, 1 . 
 Stopping tolerance for the proposed solution algorithm. 

 
To facilitate the presentation of the essential ideas without loss of generality, the following basic assumptions are 

made in this paper. 
A1. It is assumed that the daily total OD demand of all vehicle classes in the same OD pair are identical across all 

working days. That is to say the weekend days and public holidays are excluded in this paper. The randomness or 
stochasticity of observed day-to-day multi-class traffic counts are only resulted from the random individual path and 
mode choices of the travelers. To explicitly model the interactions between travel modes (in terms of vehicle classes) 
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as well as path choices, other sources of randomness resulting in randomness of multi-class traffics are ignored in 
this paper. These sources include the day-to-day variations of the total OD demand, travelers’ departure times, 
measurement errors and so on.  

A2. Following assumption A1, it is assumed that the multi-class traffic demands between different OD pairs are 
independent. This assumption would be reasonable. For example, the higher usage of private may only result in 
lower usage of taxi of the same OD pair. And it may not influence usage of any traffic mode of other OD pairs. It 
should be noted that the proposed model could still work without this assumption. And this assumption is made for 
simplicity.  

A3. To facilitate the presentation of essential idea, the mode-path choice proportion is defined as k
irsP , , which is a 

random variable to account for the stochastic mode choice and path choice. The mean of mode-path choice 
proportion is assumed to be known and fixed, as such information could be available from some probe-vehicle data 
(e.g. taxi GPS data). The covariance of between different k

irsP ,  is set as the decision variable in this paper. 

2.2. Covariance of stochastic multi-class OD demands 

According to assumption A1, the daily total traffic demands of all vehicle classes during the same hourly period 
(e.g. morning peak, 8:00 am - 9:00 am) between OD pair rs  is denoted as rsq , which is identical every day. rsq  is 
the summation of traffic demands of all vehicle classes as follows. 

i
irsrs Qq ,   rs R  (1) 

where irsQ ,  the stochastic traffic demand of vehicle class i , and irsirs qQE ,, ][ . It should be noted that although 

irsQ ,  is random variable its summation rsq  is deterministic variable. For convenience, denote Q  and q  as the 

DR -vectors of T
irsQ ),,( ,  and T

irsq ),,( ,  for all rs R  and Di , respectively. The covariance between 
OD demand irsQ ,  and isrQ ,  is denoted as: 

isrirs
q

isrirs QQ ,,,,, ,cov  Rsrrs,  , Dii,  (2) 
The corresponding covariance matrix of stochastic multi-class OD demand can be expressed as: 

DRDR
q q

isrirs ,,,  (3) 

Remark 1: It should be pointed out that although the traffic demand of each vehicle class is sotchastic, the 
summation total OD demand of all vehicle classes is deterministic and fixed. Such feature differs the proposed 
model from the that of Shao et al. (2014). In their paper, the total OD demands is defined as random variables. The 
spatial covariance of OD demands between different OD pairs is to be estimated without consideration of stochastic 
traffic demand iteractions between vehicle classes.  

Remark 2: In line with assumption A2, it follows that: 
0,,,

q
isrirs ,  if  srrs  (4) 

This is because the assumption that multi-class traffic demands of different OD pairs are independent with each 
other. Thus, q  is a block diagnal matrix.  

Remark 3: The covariance matrix q describes the interactions of traffic demand between different vehicle 
classes of the same OD pair. It is generally believed that the higher usage of the one class of vehicle may not 
accompany with higher usage of the other classes of vehicle for the same OD pair. Thus, the value of q

irsirs ,,,  can be 
zero or negative but not positive. It should be noted that this assumption is made for illustrative purpose in this paper, 
emperical studies need to be carried out to support this assumption. 

Remark 4: The covariance matrix q has a special structural character. In view of assumption A1 and Equation 
(1), the variance of the total OD demand of all vehicle classes for each OD pair is zero. Then, the following 
condition should hold for q . 
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0,,,
D Di i

q
iirsrs ,  Rrs  (5) 

2.3. Conservation conditions between traffic flows in terms of mean and covariance 

Let k
irsF ,  be the random traffic flow on path rsk K  of vehicle class i  with its mean ][ ,,

k
irs

k
irs FEf . For 

convenience, F  and f  are denoted as the DK -vectors of Tk
irsF ),,( ,  and Tk

irsf ),,( ,  for all rsk K , Rrs  
and Di , respectively. The path flows and OD demands satisfy the following flow conservation condition:  

FQ  (6) 
where  is the multi-class OD-path incidence matrix. Then, it follows that: 

fFFQq ][][][ EEE  (7) 
Equation (7) can be rewritten as: 

rsk

k
irsirs fq

K
,,  Rrs , Di  (8) 

According to assumption A3, the path flow of vehicle class i  is a product of the corresponding mode-path choice 
proportion and the OD demand as follows.  

rs
k

irs
k

irs qPF ,,  RK rsk rs , , Di  (9) 

where k
irsP ,  is the random mode-path choice proportion of the traffic flow on path rsk K  of vehicle class i . Then, 

it follows from Equation (9) and assumption A3 that: 

rs
k

irs
k

irs qpf ,, RK rsk rs , , Di  (10) 

According to assumption A3, the covariance between k
irsF ,  and k

isrF ,  can be deduced as: 

],cov[],cov[],cov[ ,,,,,,
,,

,,,
k

isr
k

irssrrssr
k

isrrs
k

irs
k

isr
k

irs
kkf

isrirs PPqqqPqPFF  
RKK srrskk srrs ,,, , Dii,  (11) 

The corresponding covariance matrix of multi-class path flows can be expressed as: 

DKDK
f kkf

isrirs
,,

,,,  (12) 

According to Equation (6), the covariance conservation condition between multi-class path flows and multi-class 
OD demands is expressed as: 

sr rssr rs k k

k
isr

k
irssrrs

k k

kkf
isrirs

q
iisrrs PPqq
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Denote ak
rs

,  as the element of link-path incidence matrix . If path k  uses link a , 1,ak
rs . Otherwise, 0,ak

rs . 
Then, the conservation condition of the estimated link and path flows for vehicle class i  is expressed as: 
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,  Aa , Di  (14) 

where iaV ,  is the random traffic flow on link a  of vehicle class i . The mean link flow is denoted as ][ ,, iaia VEv . It 
follows from Equation (14) that: 
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where ][ ,,
k

irs
k

irs PEp , which is assumed to be known in this paper. It can be seen from Equation (15) that the mean 
of multi-class link flows is a linear function with respect to the mean of multi-class OD demands, which can be 
expressed as follows. 

qiaia vv ,,  Aa , Di  (16) 
Also, the conservation condition of the estimated multi-class link and path flow covariances can be obtained as:  
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where v
iaia ,,,  is the covariance between link flows iaV ,  and iaV ,  , Aaa,  and Dii, . It can be seen from 

Equation (17) that the covariance of multi-class link flows is a linear function with respect to the covariance matrix 
of multi-class OD demands, which is expressed as follows. 
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where 
DKDKDKDK

p ],cov[ ,,
,,

,,,
k

isr
k

irs
kkp

isrirs PP is the covariance matrix of mode-path choice proportion, 

which is a decision variable in the proposed model. 

2.4. Observed classified traffic counts 

Denote A~  as a subset of link set A . The traffic flows on link A~a  can be observed by the traffic sensor during 
the observed time period. The link with (without) traffic sensor is called “observed link” (“unobserved link”) 
throughout this paper. Due to daily demand fluctuations, link flows of vehicle class i  during the observed time 
periods vary from day to day. )(

,,
~ l

oiav  is denoted as the observed traffic flow of vehicle class i  on link A~a  during 

the observed time period on day l ),,2,1( hl . Then, }~,,~,~{ )(
,,

)2(
,,

)1(
,,

h
oiaoiaoia vvvH  is a sample of iaV ,  with sample size 

)1(hh . For convenience, )(~ l
ov  is denoted as the DA~ -vector of Tl

oiav ),~,( )(
,,  for all A~a  and Di  on day l . 

Then, the sample mean of the observed multi-class link flows using sample H  can be calculated as: 
h
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o

T
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v
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The sample covariance matrix of the observed multi-class link flows using sample H can be calculated as: 
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where H,
,,,,

~ v
oiaia  is the sample covariance between observed traffic flows iaV ,  and iaV , , Aaa,  and Dii, . 

2.5. Lasso method for multi-class stochastic OD demand estimation model 

The lasso method for the estimation of mean and covariance of multi-class OD demands is formulated as follows. 
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where t  is the lasso parameter, which can be determined by a n -fold cross-validation procedure. The lower and 
upper boundaries are attached to restrict the mean OD demands within an interval of [ _q , q ]. The non-negative 

lower and upper boundaries of the mean OD demands, _q  and q , can be determined by prior or historical mean 
OD demands. The boundary constraints mean that resultant mean multi-class OD demands should not be 
significantly changed in comparison with the prior one. 0p  represents that the covariance matrix of p  is a 
symmetric and positive semi-definite matrix. It can be seen that the optimization problem (21) is an extended model 
formulation of the conventional least squares (LS) method. The objective function is to minimize the squared 
difference between observed and estimated means and covariance matrices of link flows (Hazelton, 2003). The 
purpose of Equation (21a) is to make the estimated mean and covariance of link flows match (or approximate) the 
observed ones as closely as possible.  It should be pointed out that Equation (21a) is basically suited for normally 
distributed variables that are widely used in the literature. For other distributions (especially the skewed distribution) 
the objective function (21a) may need to be revised. 

As mentioned above, there are too many elements in the covariance matrix to be estimated. However, the mode-
path choice proportion covariance matrix has a special character. Some of the elements (say the covariances) in this 
matrix are actually zero. For example, it is assumed that the choices of private cars and goods vehicles are 
independent with each other, which means the corresponding covariance is zero. It should be noted that the lasso 
method is just applicable to the concerned covariance matrix estimation problem as a number of the covariances (the 
elements of the covariance matrix) are zero or close to zero. 

Due to the identifiability difficulty, the actual value (i.e. zero) of the zero covariance may not be obtained by the 
conventional OD estimation models (e.g. LS model). The outstanding feature of lasso method is exactly capable of 
overcoming this difficulty. The lasso method does variable selection and shrinkage by employing the L1-norm 
constraint in the conventional LS model. It causes shrinkage of estimated coefficients towards zero (Tibshiranti, 
1996). As such, lasso method shrinks some coefficients and set others to zero. Regarding the multi-class OD 
demand covariance estimation herein, lasso method is adopted by the constraint (21b). The constraint on the sum of 
the absolute values of the parameters to be estimated (referred to as the L1-norm, constraint (21b)) has the effect of 
forcing some parameters to zero, making the remaining parameters more identifiable (although identifiability is not 
guaranteed). That is to say in constraint (21b) the covariances (excluding variances in the covariance matrix) are 
shrunk by the L1-norm constraint. It shrinks all the non-diagonal elements in the covariance matrix towards zero. 
The variances (diagonal elements in the covariance matrix) are not taken into account in the L1-norm constraint by 
setting srrs  in Equation (21b). This is because the actual multi-class demand varies form day to day, which 
verifies that the corresponding variances are not zero. As a result, the variances should be not shrunk towards zero. 
An important issue of the lasso method is that the value of parameter t  controls the amount of shrinkage that is 
applied to the estimates (i.e. the covariances). Thus, it is important to determine the appropriate value of t . The 
cross-validation procedure is adopted and discussed in the following section to determine the value of lasso 
parameter  t . 

2.6. Cross-validation for determination of lasso parameter 

To illustrate how to determine the lasso parameter t , a n -fold cross-validation procedure is proposed in this 
paper, where n  (>1) is an integer. For simplicity, it is assumed that 10n  (i.e. tenfold) in the cross-validation. The 
observed multi-class link traffic flow data set H  is randomly divided into 10 subsets with the same sample size h10

1 , 

n
n

HH
10

1
. It is noted that for each subset nH  is also a sample of the multi-class link flows. The corresponding 

sample mean and sample covariance of multi-class link flow can be calculated, which are denoted as n
oiav H

,,
~  and 

nv
oiaia

H,
,,,,

~ , respectively. The lasso parameter t  can be determined by the following procedure. 
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Step 0: Initialization. 
Set 0t . Let m  be a large integer (In is paper, it is assumed that m =100). The conventional LS estimates of q  

and p of can be obtained using the observed data set H , which are denoted as follows. 
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where Hq  is denoted as a vector T
irsq ),,( ,

H  all rs R  and Di , Hp,  is denoted as the matrix 
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Step 1: Estimation errors for possible values of t . 
 For each jt = m

1 s , m
2 s ,, m

m 1 s , s  (i.e. tjt j , where m
st ), repeat Steps 1.1 and 1.2. 

Step 1.1  For each nH , repeat Steps 1.1.1 and 1.1.2. 
Step 1.1.1 Use data ),,,,,( 101121 HHHHHHH nnn , to solve the following optimization problem. 
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Step 1.1.2 Use nH  to calculate the estimation error. 

n
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Step 1.2 Calculate the mean estimation error of the lasso parameter jt . 

10

110
1

i
j n

ete H  (25) 

Step 2: Determine t . 
jmj

tet
,,2,1

minarg   (26) 

At each iteration of the cross-validation procedure, 90% observed data is used for calibration while 10% observed 
data is used for validation. It can be seen from the above cross-validation procedure that the lasso parameter is 
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determined to obtain a “best” shrinkage of the estimates with minimum estimation errors on the basis of the whole 
observed data. It should be noted that the determined value of lasso parameter t  is strictly less than value of s  (the 
L1-norm of covariance matrix by conventional LS method).  t < s  will cause shrinkage of the estimated parameters 
of the conventional LS method towards zero, and some parameters may be exactly equal to zero (Tibshirani, 1996).  
In such a way, the covariance, which is actually zero, is shrunk towards zero or even driven to be zero. 

Remark 5: The lasso parameter t  is determined on the basis of the observed data, the values of t  may be 
different for different set of the observed data even if for the same network.  

Remark 6: On the one hand, the larger the value of m , the more accurate the lasso parameter t . On the other 
hand, the larger the value of m , the more the computational time. Thus, how to select the value of m  remains 
interesting investigations in further study.  

3. Solution algorithm 

If the lasso parameter t  is known, the mean and covariance of multi-class OD demands can be obtained by 
solving the constrained optimization problem (21). It should be noted that the problem (21) is a non-linear 
constrained optimization problem. The main difficulty for solving it comes from the non-linear constraint (21e). In 
the literature of optimization, the non-linear constrained optimization problem is usually transformed into an 
unconstrained one. 

Penalty method is one of the most widely used approaches for transforming the constrained optimization problem 
into the unconstrained one. In this paper, the exterior penalty method is employed due to its simplicity and 
efficiency. In connection to the constraints (21b)-(21f), the following penalty terms are proposed to be added in the 
objective function: 

t
rs srrssr k k i i

kkp
isrirs

rs srR R K K D D,

,,
,,,

2

,

,,
,,,

)(
1 t

rs srrssr k k i i

kkp
isrirs

u

rs srR R K K D D
 (27) 

_qq  
2_)(

2 0,min qqu  (28) 

qq  
2)(

3 0,min qqu  (29) 

0p  2
min

)(
4 0,minu  (30) 

0,,
,,,

2

,,,,
D D K K DD D i i k k

kkp
isrirs

j
jrs

i i

q
iirsrs

sr rs

q  
2

,,
,,,

2

,
)(

5
D D K K Di i k k

kkp
isrirs

j
jrs

u

sr rs

q  (31) 

where )(
1

u , )(
2
u  , )(

3
u , )(

4
u  and )(

5
u are the five positive penalty coefficients at iteration u ; min  is the minimal 

eigenvalue of p . Equation (30) means that the minimal eigenvalue of p should be non-negative. It implies that all 

the eigenvalues of p  are non-negative. Otherwise, a penalty is given in the objective function. Then, the penalized 
objective function for optimization problem (21) can be expressed as following. 
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Based on the exterior penalty method, the flowchart of the proposed solution algorithm is presented in Figure 2. 
It should be noted that the gradient of the objective function (32) is difficult to obtain due to the penalty term 
corresponding to the non-linear inequality constraint (Equation (30)). Therefore, some derivative-free optimization 
methods should be employed for solving the minimization problem in the upper level, such as the simplex search 
method (Lagarias et al., 1998) and generalized pattern search methods (Torczon, 1997; Audet and Dennis, 2003). 
Details on the derivative-free optimization methods can be referred to Conn et al. (2009). In this paper, the simplex 
search method (Lagarias et al., 1998) is used to solve the unconstrained optimization problem in Step 2, which is 
available in the Matlab optimization toolbox by the subroutine “fminsearch”. 

The convergence of the employed exterior penalty solution algorithm can be guaranteed by the following 
proposition. 
Proposition 1: Suppose that each },{ )1(,)1( uu pq  is the exact global minimizer of unconstrained minimization 

problem (32), then, every limit point },{ ,** pq  of the sequence },{ )1(,)1( uu pq  is a global solution of the 
constrained optimization problem (21) (Nocedal and Wright, 2006).  

 

 

Fig. 2. The flowchart of the proposed solution algorithm 
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4. Numerical examples 

4.1. Preliminary 

To demonstrate the properties of the proposed model, a small tractable network is chosen. A simple network with 
six nodes, seven links, two OD pairs (1 3 and 2 4) and four paths, as shown in Figure 3, is used to illustrate the 
applications of the proposed stochastic multi-class OD demand estimation model. It is assumed that there are three 
classes of vehicles, i.e. private car (pc), taxi (tx) and goods vehicle (gv). That is to say, },,{ gvtxpcD . The 
corresponding pcu for these three vehicles are set as: 1 pc = 1 pcu, 1 tx = 1 pcu and 1 gv = 2.0 pcu. The mean path 
choice proportions are all set to be 6/1 , i.e. 6/1,

k
irsp , RK rsk rs , , Di . Suppose that the classified traffic 

counts during the same hourly period of weekdays have been collected over the whole year (about 300 days). Thus, 
the sample size is set to be h =300. The actual mean and covariance of the multi-class OD demands are given in 
Tables 2 and 3 respectively, while the observed link flows by vehicle class and their covariances are shown in 
Tables 4 and 5, respectively. 

Table 2. The actual mean multi-class OD demands (pcu/hour) 

OD pair Private car ( pcrsq ,ˆ ) Taxi ( txrsq ,ˆ ) Goods vehicle ( gvrsq ,ˆ ) 

13 1200 1200 1200 
24 1200 1200 1200 

Table 3. The actual multi-class OD demand covariance matrix (pcu/hour)2 

],cov[ ,, isrirs QQ  OD Pair 1 3 OD Pair 2 4 

Private car Taxi Goods 
vehicle Private car Taxi Goods 

vehicle 
OD Pair 1 3 Private car 216000 -216000 0 0 0 0

Taxi -216000 216000 0 0 0 0
Goods vehicle 0 0 0 0 0 0

OD Pair 2 4 Private car 0 0 0 216000 -216000 0
Taxi 0 0 0 -216000 216000 0
Goods vehicle 0 0 0 0 0 0

Table 4. The observed classifed link flows (pcu/hour) 

Link no Private car ( pcav ,
~ ) Taxi ( txav ,

~ ) Goods vehicle ( gvav ,
~ ) 

1 600 600 600
2 600 600 600
4 1200 1200 1200

 

Path defined by sequence of links 
 
Path 1: 1 
Path 2: 3-2-6 
Path 3: 5-2-7 
Path 4: 4 

 

Fig. 3. A small test network 
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Table 5. The observed classified link flow covariance matrix (pcu/hour)2 

4.2. Stochastic interactions of mode and path choices 

One of the outstanding features of the proposed model is capability of figuring out the interactions between 
vehicle classes by a statistical method. Specifically, the mode-path choice proportion k

irsP ,  is used to capture the 

stochastic interactions of mode and path choices. The expected value of k
irsP ,  is assumed to be known in this 

example. However, the covariance matrix of all ],cov[ ,,
k

isr
k

irs PP  in the whole network is treated as decision variable. 
The resultant mode-path choice proportion covariance matrix for this example is shown in Table 6. The covariance 
information in Table 6 can reflect the stochastic interactions between vehicle classes as well as the path choice 
proportions. For example, the covariance between traffic flows of paths 1 and 2 using private car is negative, i.e. -
0.0054, which means the more private cars use path 1 accompanies with less private cars use path 2. Such path 
choice behavior is reasonable. The reason is that paths 1 and 2 are two parallel paths of the same OD pair. The more 
amount of traffic flow of the same vehicle class on one path will result in the less amount on the other one. The 
stochastic interactions between vehicle classes can also be demonstrated by covariance information in Table 6. For 
path 1, the covariance between private car and taxi traffic flows is also negative, i.e. -0.0107. Such negative 
covariance means that for the same path the higher usage of private car leads to the lower usage of taxi. Meanwhile, 
for path 1, the covariance of private car and goods vehicle traffic flows is zero. This demonstrates that the traffic 
flows of private car and goods vehicle is not linearly dependent. They may be independent and not have interactions. 
In reality, the mode-path choice proportion covariance information provides an alternative simple way to capture the 
interactions between path choices and mode choices from a statistical viewpoint. 

Table 6. The resultant mode-path choice proportion covariance matrix  

],cov[ ,,
k

isr
k

irs PP  OD Pair 1 3 OD Pair 2 4 
Private car  Taxi Goods vehicle Private car Taxi Goods vehicle 
Path 1 Path 2 Path 1 Path 2 Path 1 Path 2 Path 3 Path 4 Path 3 Path 4 Path 3 Path 4 

OD 
Pair 
1 3 

Private 
car 

Path 1 0.0143 -0.0054  -0.0107  0.0029 0 0 0 0 0 0 0 0 

Path 2 -0.0054 0.0143 0.0029 -0.0107 0 0 0 0 0 0 0 0 

Taxi Path 1 -0.0107 0.0029 0.0156 -0.0089 0 0 0 0 0 0 0 0 

Path 2 0.0029 -0.0107  -0.0089  0.0156 0 0 0 0 0 0 0 0 

Goods 
vehicle 

Path 1 0 0 0 0 0.0056 -0.0056 0 0 0 0 0 0 

Path 2 0 0 0 0 -0.0056 0.0056 0 0 0 0 0 0 

OD 
Pair 
2 4 

Private 
car 

Path 3 0 0 0 0 0 0 0.0143 -0.0054 -0.0107  0.0029  0 0 

Path 4 0 0 0 0 0 0 -0.0054 0.0143 0.0029  -0.0107  0 0 

Taxi Path 3 0 0 0 0 0 0 -0.0107 0.0029 0.0156  -0.0089  0 0 

Path 4 0 0 0 0 0 0 0.0029 -0.0107 -0.0089  0.0156  0 0 

Goods 
vehicle 

Path 3 0 0 0 0 0 0 0 0 0 0 0.0056  -0.0056 

Path 4 0 0 0 0 0 0 0 0 0 0 -0.0056  0.0056 

]~,~cov[ ,, iaia VV  Link 1 Link 2 Link 4 
Private car Taxi Goods vehicle Private car Taxi Goods vehicle Private car Taxi Goods vehicle

Link 1 Private car 180000 -144000 0 -72000 36000 0 0 0 0 

Taxi -144000 216000 0 36000 -108000 0 0 0 0 

Goods vehicle 0 0 72000 0 0 -72000 0 0 0 
Link 2 Private car -72000 36000 0 360000 -288000 0 -72000 36000 0 

Taxi 36000 -108000 0 -288000 432000 0 36000 -108000 0 

Goods vehicle 0 0 -72000 0 0 144000 0 0 -72000 
Link 4 Private car 0 0 0 -72000 36000 0 180000 -144000 0 

Taxi 0 0 0 36000 -108000 0 -144000 216000 0 

Goods vehicle 0 0 0 0 0 -72000 0 0 72000 
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According to Equation (11), the corresponding multi-class path flows can be calculated easily, which is shown in 
Table 7. It should be noted that the multi-class OD demand covariance matrix can be calculated using the results in 
Table 7 according to Equation (13). For example, the summation of the four italic covariance numbers (-
138341+37415+37415-138341) in Table 7 can obtain the OD demand covariance between private car and taxi (-
201852) for OD pair 1 3. Such covariance information of stochastic multi-class OD demands can be used to 
evaluate the network performance with respect to different vehicle classes for network with uncertainty. Due to the 
length limitation of this paper, similar illustration can be found in section 4.1.3 in Shao et al. (2014). 

Table 7. The resultant multi-class path flow covariance matrix (pcu/hour)2 

],cov[ ,,
k

isr
k

irs FF  OD Pair 1 3 OD Pair 2 4 
Private car  Taxi Goods vehicle Private car Taxi Goods vehicle 
Path 1 Path 2 Path 1 Path 2 Path 1 Path 2 Path 3 Path 4 Path 3 Path 4 Path 3 Path 4 

OD 
Pair 
1 3 

Private 
car 

Path 1 185178 -69929 -138341  37415  0  0  0  0  0  0  0  0  

Path 2 -69929  185178 37415  -138341 0  0  0  0  0  0  0  0  

Taxi Path 1 -138341 37415  201722 -115345 0  0  0  0  0  0  0  0  

Path 2 37415  -138341  -115345  201722 0  0  0  0  0  0  0  0  

Goods 
vehicle 

Path 1 0  0  0  0  72000  -72000 0  0  0  0  0  0  

Path 2 0  0  0  0  -72000 72000  0  0  0  0  0  0  

OD 
Pair 
2 4 

Private 
car 

Path 3 0  0  0  0  0  0  185178 -69929 -138341  37415  0  0  

Path 4 0  0  0  0  0  0  -69929 185178 37415  -138341  0  0  

Taxi Path 3 0  0  0  0  0  0  -138341 37415  201722  -115345  0  0  

Path 4 0  0  0  0  0  0  37415  -138341 -115345  201722  0  0  

Goods 
vehicle 

Path 3 0  0  0  0  0  0  0  0  0  0  72000  -72000 

Path 4 0  0  0  0  0  0  0  0  0  0  -72000  72000  

Table 8. The resultant multi-class OD demand covariance matrix (pcu/hour)2 

],cov[ ,, isrirs QQ  OD Pair 1 3 OD Pair 2 4 
Private car Taxi Goods vehicle Private car Taxi Goods vehicle

OD Pair 1 3 Private car 230499 -201852 0 0 0 0
Taxi -201852 230499 0 0 0 0
Goods vehicle 0 0 0 0 0 0

OD Pair 2 4 Private car 0 0 0 230499 -201852 0
Taxi 0 0 0 -201852 230499 0
Goods vehicle 0 0 0 0 0 0

4.3. Lasso vs LS methods 

To test the performance of lasso method in comparison to the conventional LS methods, three scenarios are used 
and shown in Table 9. In Scenario A, the observed traffic data contains the “full information” of the multi-class OD 
demands. It is easy to verify that the traffic flow information of links 1, 2 and 4 covers all the needed information for 
estimation of multi-class OD demand. That is to say, the observed traffic data from links 1, 2 and 4 is sufficient to 
estimate the multi-class OD demands. Thus, Scenario A is called the “full information” scenario in this example.  In 
Scenarios B and C, the observed traffic data only contains the “partial information” of the multi-class OD demands. 
In Scenario B, the observed traffic data only includes the data of private car and taxi but not the goods vehicles. In 
Scenario C, the observed traffic data only includes the traffic flow information for OD pair 13. In this example, root 
mean squared error (RMSE) is used to show the estimation errors for the three scenarios. The corresponding 
formulae of RMSEs for mean and covariance matrix of multi-class OD demands are given as below. 

D R
q DR i

irsirs
rs

qq 2
,, ˆ1RMSE  (35) 
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D D R R
q

DR i i rs sr
isrirsisrirs

2
,,,,,,2

ˆ1RMSE  (36) 

It can be seen from Table 9 that under full information condition (Scenario A) both lasso and LS methods have 
the same estimation results. As the RMSEs are small ( qRMSE =0 (pcu/hour) and qRMSE =6752 (pcu/hour)2), the 
estimated mean and covariance matrix are closed to the actual ones. Thus, if the observed traffic data is sufficient, 
there is no difference between lasso and conventional LS method. However, if the traffic count data is insufficient 
(i.e. overfitting occurs), the lasso method could outperform the LS method, which can be evidenced by the results in 
Scenarios B and C. For instance, if the traffic data of good vehicles is unavailable, the lasso method could obtain a 
better estimation of multi-class OD demand covariance matrix than the conventional LS method. For lasso method 
in Scenario C, the estimated results are better than that of LS method. For example,  in lasso method 

qRMSE =28461 
(pcu/hour)2 which is smaller than in LS method (

qRMSE =45588 (pcu/hour)2). In Scenario B, the performance of 
lasso method is still better than that of LS method. It is shown in this example, that the lasso method is an extension 
of the LS method. The estimation error of lasso method is smaller than that of LS method if the observed data is 
insufficient. That is to say the proposed lasso method is more suitable for handling the overfitting issue than the LS 
method. And the lasso method could outperform the conventional LS method on overcoming the identifiability 
difficulty for estimating the mean and covariance of multi-class OD demands. 

Table 9. RMSEs of estimated mean and covariance matrix for multi-class OD demands 

Scenario Observed links Descriptions LS method  Lasso Method 
(pcu/hour) (pcu/hour)2 (pcu/hour) (pcu/hour)2 

A 1, 2, 4 Full information 0 ( qRMSE ) 6752(
qRMSE ) 0( qRMSE ) 6752(

qRMSE )

B 1, 2, 4 (only two vehicle 
classes) Partial information 326( qRMSE ) 9033(

qRMSE ) 251( qRMSE ) 7389(
qRMSE ) 

C 1,3 (only cover OD pair 1-3) Partial information 936( qRMSE ) 45588 (
qRMSE ) 758( qRMSE ) 28461 (

qRMSE )

5. Conclusions and further studies 

This paper proposed a new model for estimating the mean and covariance of stochastic multi-class OD demands 
based on the classified traffic counts for the same hourly period throughout the year. Different from the conventional 
OD demand estimation models, the proposed model utilized the statistical properties of the observed hourly traffic 
count data by vehicle class (or type) over the whole year. Also, the stochastic mode and path choices were explicitly 
considered in the proposed model using a random mode-path choice proportions. To overcome the identifiability 
difficulty in this paper, the lasso (least absolute shrinkage and selection operator) method was incorporated into the 
proposed model. A cross-validation procedure was proposed to determine the lasso parameter. An equivalent non-
linear constrained optimization model was proposed and formulated as the corresponding OD demand estimation 
problem shown in this paper. A heuristic solution algorithm based on exterior penalty function method was adapted 
to solve the proposed model. 

It was found in the numerical examples that (i) the estimated covariance of mode-path choice proportions can 
reflect the interactions of path and mode choices between different vehicle classes; (ii) the proposed model based on 
the lasso method could outperform the conventional least squares (LS) model on overcoming the identifiability 
difficulty for model application.  

On the basis of the model proposed in this paper, some further extensions can be envisaged as follows. 

 This paper only estimates the vehicle class covariance of stochastic multi-class traffic demands during the same 
hourly period over the year. Further investigation should be carried out on how to extend the proposed model to 
simultaneously estimate the spatial and temporal covariance of the multi-class traffic demands between different 
hourly periods in dynamic or time-dependent network models. 

 Although the lasso method could overcome the identifiability difficulty to some extent in the proposed OD 
demand estimation model, multiple solutions may still exist. Also, the estimation errors still existed according the 



210   Hu Shao et al.  /  Transportation Research Procedia   7  ( 2015 )  192 – 211 

results of the numerical example shown in this paper. How to address this issue in practice still reveals further 
investigations. 

 As the mean of mode-path choice proportion is assumed to be known in this paper. How to relax this assumption 
by taking into account the traveler’s path choice behavior in network with uncertainty would be worthwhile for 
further study. To this end, the bi-level modeling approach would be employed in the proposed model (Shao et al., 
2013; Shao et al., 2014). 

 The proposed modeling approach could also be modified to be applied in a multi-modal transportation network 
so as to consider the covariance between the other transport modes, such as metro and bus. 

 The proposed modeling approach is tested on a hypothesis transportation network. The results may be very 
different for other test networks. Thus, it also leaves open the question of the scalability of the proposed method 
to realistic large scale networks. For such purpose, some real case studies need to be carried out using the 
proposed model in further studies. 
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