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Recent developments in hyperspectral images have heightened the need for advanced classificationmethods. To reach this goal, this
paper proposed an improved spectral-spatial method for hyperspectral image classification.The proposed method mainly consists
of three steps. First, four band selection strategies are proposed to utilize the statistical region merging (SRM) method to segment
the hyperspectral image. The segmentation map is subsequently integrated with the pixel-wise classification method to classify the
hyperspectral image. Finally, the final classification result is obtained using the decision fusion rule. Validation tests are performed
to evaluate the performance of the proposed approach, and the results indicate that the new proposed approach outperforms the
state-of-the-art methods.

1. Introduction

Hyperspectral images are generally composed of hundreds to
thousands of spectral bands. This rich spectral information
can effectively distinguish different objects and physical
materials and thus cause broad applications in the mineral
detection, environment monitoring, and precision agricul-
ture. The classification technology is currently the predom-
inate method for analyzing hyperspectral images and has
received much attention. Over the past decades, numerous
pixel-wise classification methods, which only use spectral
information, have been proposed to classify remote sensing
images. In reviewing the literature, pixel-wise classification
methods mainly include maximum-likelihood [1], spectral
angle classifier [1, 2], neural networks [1], genetic algorithms
[3, 4], decision tree [1], and kernel-based methods [5–7].
Particularly, support vector machine (SVM) provides higher
classification accuracy in most cases [5, 8, 9]. In this field,
Lu and Weng [10] presented a good review and analysis of
classification methods and techniques for remote sensing
images.

Although pixel-wise classification methods have been
researched for years, the spatial information has still not been

sufficiently investigated. Generally, the spatial information is
important for classification accuracy that can cause decrease
of the classifier performance if neglected, particularly for
very high spatial resolution satellite images. Previous stud-
ies show that pixel-wise methods will sometimes produce
classification maps that look noisy (also known as “salt and
pepper” effects) if the image spatial information is not used
[10, 11]. An alternative to current pixel-wise methods is to
combine spatial information with spectral information in
classifier systems to form so-called spectral-spatial classifi-
cation methods. This approach simultaneously considers the
spectral and spatial information and it can generally achieve
higher classification accuracy than pixel-wise classifiers [11–
16]. Usually, there are two means to implement spectral-
spatial classification. One of the spectral-spatial classification
methods incorporates spatial information from its neighbor-
hood, using a fixed size window. Mathematical morphology
is used to construct morphological profiles (MPs) [11, 12] to
define spatial information. Another approach is the integra-
tion of contextual/textural information in the kernelmethods
proposed by Camps-Valls and Bruzzone [17]. However, such
spectral-spatial methods have the problem of scale selec-
tion, especially when the remote sensing images consist of
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complicated structures [14], such as roads, buildings, and
other man-made objects.

Another spectral-spatial scheme includes the postclassi-
fication spatial information using a segmentation map. An
approach for classifying high spatial resolution urban satellite
imagery is based on the different segmentation results of
various scales [18]. The partitional clustering method [14]
and the watershed transformation [15] have also been used to
measure spatial structures. The advantage of aforementioned
methods is that it is easy to perform with low computational
complexity. It should be pointed out that, however, the par-
titional clustering suffers from the following two limitations:
(1) the cluster numbers have to be set by users in advance; (2)
the clustering result depends on the initialization values and
thus the clustering result is unrobust. These drawbacks raise
the problem that it is unclear if the partitional clustering can
improve the pixel-wise classification accuracy.

Based on the aforementioned analysis, this study presents
a new spectral-spatial classification approach for hyperspec-
tral images. The spatial information is obtained from the
statistical region merging (SRM) [19], not the partitional
clustering technique. The method is easy to implement and
the experimental results are presented in the latter part of
this paper showing not only that the method can improve
classification accuracy but also that the results are robust.

The main contributions of this paper are two-folder:

(1) proposing a strategy for band selection from the
hyperspectral image;

(2) proposing a method for spectral-spatial classification
using SRM based on the designed band selection
strategy.

The remainder of this paper is organized as follows.
The spectral-spatial classification using grouping clustering
is introduced in Section 2, while the proposed method is
validated on two experimental images in Section 3. Section 4
includes the conclusions and future work.

2. Methodology

The proposed spectral-spatial classification combines advan-
ces in SVM classification and SRM segmentation methods.
The proposed method has three main steps, as summarized
in Figure 1. Details of each step are introduced as follows.

2.1. Hyperspectral Image Segmentation. To segment the
hyperspectral image, statistical region merging (SRM) [19]
was selected to achieve the purpose. The advantage of this
algorithm is that it can segment an image into regions in
a fast and robust manner. In the SRM, let the observed
image be denoted as 𝐼 which contains |𝐼| pixels. The image
𝐼 contains {R,G,B} color channel values belonging to the
set {0, 1, 2, . . . , 𝑔} (where 𝑔 = 255). Let the perfect scene of
an observed image 𝐼 be denoted as 𝐼∗. The observed color
channel is sampled from a family of 𝑄, taken on values from
[0, 𝑔/𝑄] and distributions at each pixel of 𝐼∗. 𝑄 controls
the number of regions: the higher 𝑄 is, the greater
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Figure 1: Flowchart of the proposed method.

the number of regions generated is. Two components are
essential in defining the SRM algorithm: the merging predi-
cate and the merging order. The merging predicate is defined
as

𝑃 (𝑅, 𝑅


)

=
{

{

{

true, if ∀𝑎 ∈ {R,G,B} ,

𝑅 − 𝑅


≤ 𝑏 (𝑅, 𝑅)

false, otherwise,

(1)

where 𝑏(𝑅, 𝑅) = 𝑔√(1/2𝑄)(1/|𝑅| + 1/|𝑅|) ln(2/𝛿) and 𝑅
and 𝑅 represent a fixed couple of regions of 𝐼 and 𝛿 = 1/|𝐼|2;
merge 𝑅 and 𝑅 if 𝑃(𝑅, 𝑅) = true. The merging order is to
choose a function 𝑓 to sort pixel pairs in 𝐼. One choice of 𝑓 is
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, (2)

where 𝑡
𝑎
and 𝑡
𝑎
are the pixel channel values.

The original SRM algorithm is used for segmenting
color images that contain only three spectral channels and
thus cannot directly segment hyperspectral images. Although
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(1) Perform linear contrast stretch algorithm [20] on the hyperspectral image. This
step can ensure the grey value of each hyperspectral band is in [0–255] and
enhance the image quality simultaneously.

(2) Generate a random number V that satisfies the uniform distribution.
(3) Select the 𝑘th band if 𝐹

𝑊
(𝑘 − 1) < V < 𝐹

𝑊
(𝑘), (1 ≤ 𝑘 ≤ 𝑝), where 𝐹

𝑊
denotes

the cumulate density function of the𝑊 distribution.
(4) Set 𝑓

𝑊
(𝑘) = 0 and renormalize the𝑊 distribution.

(5) Repeat Step 2 to Step 4 until three spectral bands have been selected.
(6) Apply SRM to segment the image composed by the selected three spectral bands.

Algorithm 1: The segmentation of hyperspectral image.

a minimum heterogeneity rule based SRM method [21] is
proposed for multispectral satellite image segmentation, this
study designed a strategy from different viewpoint that fully
utilizes the rich spectral information of hyperspectral images.
To this end, an improved SRM algorithm is presented in
this study. The central idea of the proposed approach is to
select three spectral bands from hyperspectral images, which
is relying on four different band selection strategies. The
advantage of band selection is that it can be repeated and thus
will generate multiple information sources and redundant
information, which complement each other and improve
the robustness. The band selection strategies include a static
method which selects three predetermined bands and three
dynamic methods which select three bands based on the
𝑊 distribution. Details of the band selection process are
described as follows.

(1) The First Three PCs. Firstly, the principle component
analysis (PCA) transformation is performed on the original
hyperspectral image to select the first three principle compo-
nents (PCs) as the input of SRM. Although this study utilizes
PCA to performband selection, there are also numerous band
selection technologies that can be used, such as linear dis-
crimination analysis (LDA) [22] andnonparametricweighted
feature extraction (NWFE) [23]. The interested reader is
referred to [17]. It is obvious that this band selection method
is static. By contrast, the following threemethods are dynamic
methods that select three bands based on the𝑊distributions,
including (1) uniform distribution, (2) 𝑊LDA distribution,
and (3) 𝑊Entropy distribution.

(2) Uniform Distribution. The weights of hyperspectral bands
are supposed to be equivalent and three spectral bands are
randomly selected as the input of SRM.

(3) 𝑊
𝐿𝐷𝐴

Distribution. The 𝑊LDA distribution is based on
the assumption that the hyperspectral bands weights are
unequivalent [24] and can be measured by LDA. The weight
of each band is computed by the following equation:

𝑓
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(𝑗) =
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where 𝐽
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denotes the discrimination power of the 𝑗th band,

and 𝑆
𝑤

and 𝑆
𝑏
represent within-class scatter matrix and

between-class scatter matrix, respectively. Here, 𝑆
𝑤
and 𝑆
𝑏
are

defined as

𝑆
𝑤
=

𝐶

∑
𝑖=1

𝑁

∑
𝑡=1

(𝑥
𝑖

𝑡
− 𝜇
𝑖
) (𝑥
𝑖

𝑡
− 𝜇
𝑖
)
𝑇

,

𝑆
𝑏
=

𝐶

∑
𝑖=1

𝑁(𝜇
𝑖
− 𝜇) (𝜇

𝑖
− 𝜇)
𝑇

,

(4)

where 𝐶 is number of classes, 𝑁 is number of samples, 𝑥
represents spectral value, 𝜇

𝑖
is 𝑖th class mean, and 𝜇 is the

overall mean of spectral values.
(4) 𝑊

𝐸𝑛𝑡𝑟𝑜𝑝𝑦
Distribution. Unlike the 𝑊LDA distribution, the

𝑊Entropy distribution uses entropy to compute the band
weight. Entropy [25] is a statistical measure of randomness
that can be used to characterize the texture of the input image.
The weight of each band is determined by
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(5)

where𝐻
𝑗
is the entropy of 𝑗th spectral band.

Once the𝑊distributions are obtained, band selection can
be performed using the pseudorandom number generation
theory [24, 26]. After the band selection process, the hyper-
spectral image is segmented using Algorithm 1.

2.2. Spectral-Spatial Classification. The spectral-spatial clas-
sification is performed to postprocess pixel-wise SVM classi-
fication result after segmentation results obtained by SRM. In
this study, the scheme [14, 15] (see Figure 2), which combines
advances of segmentation and classification results, is selected
to implement spectral-spatial classification. Particularly, the
majority voting algorithm is selected as the decision fusion
rule, as it is easy to implement. The SRM segmentation
and spectral-spatial classification will be repeated 200 times,
resulting in 200 classification results. Finally, these 200
classification results will be fused using the majority voting
algorithm to produce the final classification result.
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Table 1: Class-specific accuracies in percentage for the ROSIS image by different classifiers.

Class Samples Method
Train Test Pixel-wise SVM (%) Three PCs (%) 𝑊LDA (%) 𝑊Entropy (%) 𝑊Uniform (%)

C1 252 567 90.30 93.83 98.57 99.47 96.17
C2 135 355 98.56 88.02 90.08 89.82 40.70
C3 720 1697 92.29 98.56 98.51 98.59 96.44
C4 1260 2961 92.82 98.41 98.59 98.59 89.54
C5 91 214 99.41 99.63 99.41 99.48 98.74
C6 198 463 70.00 78.70 79.33 80.13 96.23
C7 173 323 68.65 73.42 99.67 100 86.47
C8 644 1619 81.41 92.32 95.19 94.89 87.42
C9 513 1125 96.52 98.31 99.58 99.68 55.12
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Figure 2: The logic flow of the spectral-spatial classification [15].

3. Experiments

In order to evaluate the performance of the proposed
spectral-spatial classification approach, experiments on two
hyperspectral images were carried out. The first experiment
used a ROSIS image whereas an AVIRIS image was used in

the second experiment. In this study, MATLAB with R2010b
version was used as the coding environment on a PC that has
Intel Core2Quad processor with 2.83-GHz clock speed.

3.1. First Experiment. The University of Pavia image is of an
urban area recorded by the ROSIS-03 optical sensor, with
an image size of 610 × 340 pixels. The image has a spatial
resolution of 1.3m per pixel and the number of spectral
bands is 115, which ranges from 0.43 to 0.86𝜇m. It should be
noted that the 12 noisiest channels have been removed in the
preprocessing step.There are 9 classes in the first experiment,
denoted as C1, C2, C3, C4, C5, C6, C7, C8, and C9. The
training and testing data sets used in this experiment were
provided by Professor Paolo Gamba fromUniversity of Pavia.
A false color image (bands 50, 27, and 17) and the ground
truth data are shown in Figures 3(a) and 3(b), respectively.

The supervised classification was firstly created by the
multiclass SVM and without feature selection. Table 1 shows
the training and testing sample numbers for each class.
This study implemented the SVM classification by LIBSVM
library [27]. The Gaussian radial basis function (RBF) kernel
was used in this experiment and the optimal parameters 𝐶
and 𝛾 were determined by fivefold cross validation, resulting
in 𝐶 = 128, 𝛾 = 0.125. The pixel-wise SVM classification
result is shown in Figure 5(a). After pixel-wise SVM clas-
sification, SRM algorithm was then applied to segment the
hyperspectral image. Three bands were selected based on𝑊
distribution as the input of SRM. A Matlab toolbox [28] was
used to perform the SRM algorithm.The𝑄 value of SRMwas
defined as 1024 in this study. Figure 4 shows the SRM results
using different band selection strategies.

The spectral-spatial classification was then performed
after the segmentationmaps were obtained. Figures 5(b)–5(e)
show the spectral-spatial classification results using different
band selection strategies. From the visual analysis, it can
be seen that the pixel-wise SVM result looks like more
“noisy” than that of spectral-spatial classification methods.
By contrast, the latter provide more homogeneous regions
than pixel-wise SVM. In order to quantitatively evaluate
the performance of the proposed approach, two measures,
including (1) overall accuracy (OA, the number of well-
classified samples divided by the number of test samples)
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Figure 3: ROSIS image of University of Pavia. (a) False color image. (b) Corresponding reference map.

(a) (b) (c) (d)

Figure 4: SRM results on the ROSIS image using different band selection strategies: (a) the first three PCs; (b) uniform distribution; (c)𝑊LDA
distribution; (d)𝑊Entropy distribution.

and (2) kappa coefficient (𝜅, the percentage of agreement
corrected by the amount of agreement that would be expected
by chance alone), are used in this study.

Table 1 reports the classification accuracy for each class.
From Table 1, it can be seen that spectral-spatial classifi-
cation methods can improve the classification accuracy of

the pixel-wise SVM except C2 class. The reason for this
phenomenon is that C2 class is the feature with small area,
whose spatial structure is likely damaged in the process of
image segmentation. Despite this drawback, the spectral-
spatial classification methods still show eminently satisfac-
tory results. The comparison of the SVM classification and
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Figure 5: University of Pavia image classification result: (a) SVM classification result; (b) the first three PCs; (c) majority vote result of
uniform; (d) majority vote result of LDA; (e) majority vote result of Entropy.

Table 2: Comparison of the SVMand the developed spectral-spatial
classification method for University of Pavia image.

Method OA (%) 𝜅 (%)

Static Pixel-wise SVM 80.49 75.59
Three PCs 86.81 83.20

Dynamic
Uniform 88.81 85.18
LDA 89.15 86.18

Entropy 89.49 86.59

the spectral-spatial classification is given in Table 2. As is seen
from Table 2, compared to the pixel-wise SVM, OA and 𝜅
improve about 6%∼9% and 7%∼11%, respectively. This table
clearly shows that the proposed approach has higher clas-
sification accuracy with respect to the pixel-wise SVM (i.e.,

the approach proposed outperforms the pixel-wise SVM).
The improvement in the volume of classification accuracy
coincideswith the assumption that integratingmultiple infor-
mation sources (i.e., spectral and spatial information) can
reduce classification errors. Meanwhile, Table 2 also shows
that both three dynamic band selection methods achieve
higher classification accuracy than static methods. This is
due to the fact that dynamic band selection methods can
provide more rich spatial information than static methods.
In particular, the band selection based on 𝑊Entropy achieves
the highest classification accuracy in this experiment.

To assess the impact of the presented algorithm on the
results of hyperspectral image classification, a comparison
was carried out among SVM plus majority vote method
(SVMMV) [15], dynamic subspace method with random
band selection method (DSM) [24], dynamic subspace
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Figure 6: (a) AVIRIS image of Indian Pines (50, 27, and 17). (b) Corresponding reference map.

Table 3: Quantitative evaluation of different spectral-spatial classi-
fication methods on the ROSIS dataset.

Method OA (%) 𝜅 (%)
SVMMV [15] 85.42 81.30
DSM [24] 87.51 85.20
DSMw2 [24] 88.76 86.22
The proposed approach 89.49 86.59

method with LDA distribution method (DSMw2) [24], and
the proposed approach. As shown in Table 3, it depicts the
behavior of OA and 𝜅 among these four methods. The
OA yielded by SVMMV, DSM, DSMw2, and the proposed
approach was equal to 85.42%, 87.51%, 88.76%, and 89.49%,
respectively, while 𝜅 values were equal to 81.30%, 85.03%,
86.22%, and 86.59%, respectively. The proposed approach
outperforms SVMMV, DSM, and DSMw2 obviously, which
indicates that the proposed method is more suitable for
hyperspectral image classification than the other three meth-
ods.

3.2. Second Experiment. The Indiana Indian Pines hyper-
spectral image captured by the AVIRIS sensor on June 12,
1992, was used in the second experiment. The data and
corresponding true ground data, as shown in Figure 6, are
provided by Professor David A. Landgrebe from Purdue
University. The AVIRIS data is composed of 220 spectral
bands with a spatial resolution of 20m per pixel [29]. In this
experiment, a subsection of the original Indian Pines with a
size of 145 × 145 pixels was used. Twenty bands with water
absorption were discarded, resulting in 200 bands. There are

16 different classes in the original Indiana image. Four of these
16 classes were discarded due to their sample size, resulting in
12 classes for this experiment labelled as C1, C2, C3, C4, C5,
C6, C7, C8, C9, C10, C11, and C12. Detailed information about
the 12 classes is given in Table 4, with a number of samples for
each class in the available reference data.

First, SRM based on four band selection strategies were
applied to segment the hyperspectral image, as shown in
Figure 7. Here, the parameter 𝑄 of SRM was given by 8192.
Next, 30% samples for each class were randomly chosen
from the ground truth data as training samples. Based on
these training datasets, the optimal parameters 𝐶 and 𝛾
were determined as 512 and 0.0078, respectively. Figure 8(a)
shows the classification result of the pixel-wise SVM. After
that, the SRM segmentation results, based on four band
selection schemes, were used to refine the pixel-wise SVM
classification result, producing results in Figures 8(b)–8(e).
As can be seen fromFigure 8, SVMclassifier suffers from “salt
and pepper” effects that lead to the decrease of classification
performance. By contrast, spectral-spatial classifiers produce
more homogeneous areas and hence tackle this limitation to
a certain extent, which in turn improves the classification
accuracy.

For the purpose of quantitative comprise, Table 4 sum-
marizes the classification accuracy for each class of different
methods. As hinted by Table 4, spectral-spatial classification
methods can improve the classification accuracies of most
classes produced by pixel-wise SVM. Table 5 comprises the
pixel-wise SVM and spectral-spatial classification method
based on different band selection strategies. As can be seen
from Table 4, compared to pixel-wise SVM, the proposed
approach based on four band selection strategies improves
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(a) (b)

(c) (d)

Figure 7: Examples of SRM segmentation results using different band selection strategies: (a) the first three PCs; (b) uniform distribution;
(c)𝑊LDA distribution; (d)𝑊Entropy distribution.

Table 4: Comparison of class-specific accuracies in percentage for the Indiana image by different methods.

Class Samples Method
Train Test Pixel-wise SVM (%) Three PCs (%) 𝑊LDA (%) 𝑊Entropy (%) 𝑊Uniform (%)

C1 422 1012 84.67 88.91 92.12 93.10 93.51
C2 252 582 73.91 72.54 93.65 94.96 95.20
C3 392 902 95.79 97.76 99.92 98.38 98.92
C4 150 347 92.70 93.36 95.98 96.38 96.38
C5 198 416 83.91 97.88 98.86 98.53 99.19
C6 232 515 96.39 89.96 98.53 99.33 99.06
C7 150 339 99.40 99.18 99.18 99.39 99.39
C8 277 691 71.53 75.83 78.41 78.10 78.31
C9 52 160 99.30 99.06 99.53 100 100
C10 64 170 64.44 87.61 75.64 79.06 78.21
C11 112 268 73.99 78.16 99.47 96.05 96.05
C12 760 1708 85.00 96.56 98.91 98.78 98.99
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(e)

Figure 8: Indiana image classification result: (a) SVM classification result; (b) the first three PCA bands; (c) majority vote result of uniform;
(d) majority vote result of LDA; (e) majority vote result of Entropy.
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Figure 9:This figure shows the visual comparison of spectral-spatial classification of University of Pavia image using different band selection
strategies: (a) the first three PCs; (b) uniform distribution; (c)𝑊LDA distribution; (d)𝑊Entropy distribution.

Table 5: Comparison of the SVMand the developed spectral-spatial
classification method for Indiana image.

Method OA (%) 𝜅 (%)

Static Pixel-wise SVM 85.32 83.14
Three PCs 90.41 88.97

Dynamic
Uniform 95.27 94.56
LDA 95.03 94.29

Entropy 95.05 94.32

OA values by 5.09%, 9.95%, 9.71%, and 9.73%, respectively,
while 𝜅 values are improved by 5.83%, 11.42%, 11.15%, and
11.18%, respectively. Similar to the first experimental results,
both three dynamic band selection methods achieve higher
accuracy than static band selection method, which again
verifies the superiority of the proposed approach.Meanwhile,
as opposed to the first case, band selection method based
on uniform distribution produces the best performance in
the second case. This indicates that uniform distribution is
more suitable for urban areas where the spatial structural is
complicated, while entropy distribution is a more proper way
for plain areas without many image details.

In the second experiment, to assess the suitability of
the proposed approach for the classification of hyperspectral
images, a comparison analysis was carried out on three other
methods (i.e., SVMMV, DSM, and DSMw2). As reported in
Table 6, the proposed method resulted in the highest OA
and 𝜅. The quantitative analysis confirms the suitability of
the proposed approach on the classification of hyperspectral
images.

3.3. Discussion. In the first experiment, band selection using
𝑊Entropy gives the highest accuracy (see Table 2). From
Table 1, it can be seen that the accuracy of classes C2, C4,

Table 6: Quantitative evaluation of different spectral-spatial classi-
fication methods on the AVIRIS dataset.

Method OA (%) 𝜅 (%)
SVMMV [15] 93.78 92.88
DSM [24] 90.20 88.30
DSMw2 [24] 89.50 87.50
The proposed approach 95.27 94.56

and C9 of the spectral-spatial classification based on𝑊Uniform
distribution decreases compared to the pixel-wise SVM
classification. From Figure 9, it can be seen that the𝑊Uniform
distribution method shows a good classification only in area
(I) compared to the𝑊LDA and𝑊Entropy distributions. In (II)–
(VI) areas, the 𝑊Uniform distribution method misclassified
pixels more than the𝑊LDA and𝑊Entropy distributionmethods
did.

In the second experiment, the classificationmethod based
on 𝑊Uniform achieves the highest accuracy (see Table 4).
Figure 10 shows the visual comparison of the spectral-spatial
classification results based on different band selection strate-
gies. As can be seen from Figure 10, both dynamic methods
performed well on area (I) compared to the band selection
method based on the first three PCs. Figure 10 also indicates
that dynamic methods achieve similar classification results
which has also been confirmed by Table 4. Hence, for images
with large spatial structures, the band selection strategy has
a low influence on the spectral-spatial classification method
when the image has a large spatial structure.

4. Conclusion

An advanced spectral-spatial classificationmethod for classi-
fication of hyperspectral images, which combines advances
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(a)

b(I)

(b)
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(c)
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(d)

Figure 10: This figure gives a visual comparison of spectral-spatial classification for the Indiana image, using different band selection
strategies: (a) the first three PCs; (b) uniform distribution; (c)𝑊LDA distribution; (d)𝑊Entropy distribution.

of region-based segmentation and image fusion, has been
proposed in this study. The proposed approach has been
achieved by (a) integrating pixel-wise support vectormachine
(SVM) classification and statistical region merging (SRM)
segmentation results; (b) multiclassification results fusion
usingmajority voting. Four different band selection strategies
have been studied to implement the SRM algorithm to
segment the hyperspectral image.The proposed approach has
two advantages: (1) it does not need to set cluster numbers
in advance; (2) the segmentation does not depend on initial
values. These advantages result in higher robustness than the
partitional clustering technique and thus make the proposed
approach ideal for advanced spectral-spatial classification of
hyperspectral images. Furthermore, the proposed approach
is easy and efficient to implement. Although the developed
method was used to classify hyperspectral images in this
study, this method can also be used to classify multispectral
images.

In this study, the spatial information is derived from the
region-based segmentation results, which suffers from two

main drawbacks: (1) it is difficult to control the scale and
(2) it destroys class boundaries. To tackle these limitations,
further research will therefore be conducted to improve the
segmentation results. Particularly, edge information will be
studied to produce precise segmentation result of remote
sensing images.
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