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Abstract: In current compression practice for the treatment of chronic venous disorders, there has
always been a challenge of controlled compression by a bandage to achieve a particular pressure
range in the affected region of the limb. The challenges in compression in the products could be solved
if there were the possibility of stress control in fabric. Herein, we are exploiting the newly discovered
phenomena, i.e., stress memory, in a memory polymer (MP) for the design and investigation of a
smart bandage for functional compression benefits. A memory bandage is developed using a blend
yarn consisting of MP filaments (segmented polyurethane) and nylon filaments. Results showed the
possibility to control or manage the internal stress developed in the bandage in wrapped position
by simple heating, and thus allowing pressure readjustment externally. Extra pressure generated by
the bandage increases with increasing the level of temperature and strain (p < 0.05). The pressure
variations also depend on the number of layers and limb circumference (p < 0.05). The memory
bandage could have a great potential over existing conventional compression products, as they could
give more freedom to govern pressure level whenever needed during the course of compression
therapy as a novel wound care management system.
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1. Introduction

Compression therapy provides a means to treat venous leg ulceration, edema, venous
hypertension, and other chronic venous disorders [1]. The objectives of compression therapy are
to reduce the venous hypertension in the affected area, reduce the swollen limb to minimize the size
and maintain a uniform pressure gradient in the leg from toe to knee to improve the venous return to
the heart [2]. External compression is given to the affected leg portion during compression therapy
using compression materials like bandage, stockings, pressure garments, etc. [3]. The pressure is
generated in the interface between bandage and skin because of compression by the bandage during
its application over the limb by the application of external force. This pressure is called interface
pressure [4,5]. The success of this treatment depends to a great degree on the level of pressure applied
by the bandage at the affected portion on the limb, and sustenance of this pressure during the course
of the treatment. This interface pressure has to be quite accurate within certain limits and should not
be below or above the prescribed level, otherwise it can lead to certain complications during treatment.

Fibers 2016, 4, 10; doi:10.3390/fib4010010 www.mdpi.com/journal/fibers

http://www.mdpi.com/journal/fibers
http://www.mdpi.com
http://www.mdpi.com/journal/fibers


Fibers 2016, 4, 10 2 of 10

Several researchers have used Laplace's law to find the relationship among several factors affecting
the interface pressure [6]. In the context of compression therapy by a bandage, the relevant equation
derived from the above law is expressed as:

P “
2πˆ N ˆ F

C
(1)

where P is the pressure, F is fabric tension per unit width, N is number of bandage layers and C
is the limb circumference. The interface pressure produced by a bandage depends on the complex
interaction of many factors—the tension in the fabric, the physical structure and elastomeric properties
of the fibers from which it is manufactured, the size and shape of the limb to which it is applied, the
application technique (number of layers wrapped) and the nature of any physical activity undertaken
by the patient [7]. Achieving desired compression range is difficult as the pressure applied by the
bandage is governed by leg attributes (shape or size) and the elasticity or stiffness of the fabric [8].
Moreover, pressure drop over time is a cause of concern. Experimental studies showed that the
pressure decreases over time due to reduction in swelling of leg, and also decrease in the internal
stress in the fibrous structure of the bandage [9,10]. Replacement of the bandage is needed once the
pressure fall below a target level. Clearly, pressure management and its sustenance is a huge challenge
to provide effective treatment.

Currently, no external means exists to govern pressure exerted by the bandage at wrapped position
on the leg. Controlling or readjusting pressure on the leg would provide many advantages to health
practitioners, and would make treatment more effective. The challenges in compression products
could be solved if there were the possibility of stress control in fabric materials. In this regard, smart
polymer fibers could offer choices with internal stress responsive to an external stimulus. Among
stimulus-responsive polymers, shape memory polymers (SMPs) have high relevance to the present
needs and have been solving many real life problems in the areas of aerospace, biomedicine, transport,
construction, electronic, textile and consumer products [11,12]. SMPs can sense the environment
and/or their own state, make a judgment and then change their functions according to predetermined
purpose. They can memorize the original shape and allow the materials to recover the original shape
from a temporarily deformed shape under appropriate stimuli, such as heat, light, magnetic field,
water, etc. The shape memory effect (SME) of a SMP involves two aspects: fixability and recoverability.
Fixability refers to the capability of the SMP to change from the original un-deformed shape to a
temporary deformed shape through a suitable programming process, i.e., shape fixing, while the
recoverability indicates its ability to recover the original shape. In the programming process, SMPs
are mechanically deformed above a particular temperature (also known as transition temperature,
Tg) and the deformed shape is temporarily fixed by cooling the SMP below Tg. The most important
characteristic of SME is the stability of this temporarily deformed shape in which the internal stress
is frozen and does not change in the absence of suitable stimuli. The deformed shape is actively
triggered to recover the original permanent shape by exposure to an appropriate stimulus. Owing to
this unique property, SMPs have found increasing applications in engineering and medical fields where
the potential of shape fixity or recovery is primarily exploited for desired functions [13–16]. Recently,
however, several other memory behaviors, including stress memory [17], temperature memory [18],
chrome memory [19] and electric memory [20], have also been reported in such polymers, and it seems
more appropriate therefore to call them memory polymers (MPs) in general.

Similar to shape memory, a new phenomenon, i.e. stress memory, has been discovered recently in
MPs [17]. In stress memory, the stress in a polymer can be programmed, stored and retrieved reversibly
with an external stimulus (e.g., heat), similar to the shape memory effect. Herein, the stress is stored
upon inducing certain strain level beyond the Tg and cooling below this point. The stress is further
released under constraint upon triggering by an external stimulus such as heat. This stress memory
might be mistaken as recovery stress, which has been studied quite extensively [21], but investigation
has confirmed that they are quite different phenomena. Although stress freezing can be obtained via
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a normal shape fixing process of the MP, where the internal stress is also frozen or stored at lower
temperature (<Tg) in a deformed MP, but upon triggering the MP under constraint, the recovered stress
does not remain stable but decreases over time. This is primarily because of the viscous stress that
causes stress relaxation. This adds limitations to the use MP for some applications where the stress level
has to be maintained, or a stable cyclic stress variation is required, such as pressure bandage, massage
devices, etc. It has been confirmed that the recovery stress contains multi-components including elastic,
thermal and viscoelastic forces in addition to possible memory stress [17,22]. In order to obtain stress
memory phenomenon, the recovery stress should be pure so that it can be repeated, analyzed, and
a meaningful signal for different applications. If only the memory stress is properly identified and
exploited in a MP using suitable programming methods, then this could serve the special functions in
stress control [17]. This opens several new research domains for MPs where stimuli-responsive forces
are required/involved, including in sensors, sportswear, compression garments, massage devices,
nerve conduits, bone tissue engineering, artificial muscles and dynamic mattress. Herein, this novel
stress memory phenomenon has been used for smart and functional compression benefits by a memory
bandage fabric.

2. Experimental Section

2.1. Preparation of SMP filaments

The MP filament was prepared using segmented polyurethane (PU) via melt spinning process. For
filament spinning, the MP polymer chips were initially prepared using bulk polymerization method.
The MP was synthesized using polytetramethylene ether glycol (PTMEG; Aldrich Chemical Company,
Atlanta, GA, USA; Mn = 650) as soft segment, and 4,41-methylene diphenyl diisocyanate (MDI; Aldrich
Chemical Company, Atlanta, GA, USA) and 1,4-butanediol (BDO; Acros Organics, Geel, Belgium) as
hard segment. First, the PTMEG and MDI was mixed and stirred for 2 h to form a pre-polymer at
80 ˝C. Thereafter, the BDO was added for cross-linking to complete the reaction. The ratio (weight)
of hard to soft segments was 13:12. The MP chips was obtained after curing the mixture for 24 h
at 100 ˝C. These chips were used for melt spinning to spin the filaments. The filaments were spun
in pure nitrogen environment using single screw extruder with a temperature range from 175 to
202 ˝C [23]. The winding speed was set at 500 m/min, and the obtained linear density of the filaments
was 18.6 tex. The glass transition temperature of the MP filaments chosen in the study was around
30 ˝C, as can be observed in Figure 1. The shape fixity and shape recovery of the filaments were 23.7%
and 95%, respectively. More information on thermo-mechanical characterization of the MP can be
found in the [23].
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2.2. Development of Memory Bandage

The memory bandage was prepared from a yarn blend consisting of the MP and Nylon filaments
using V-bed double jersey flat weft knitting machine. The fabric characteristics are given in Table 1.
As an example to demonstrate the pressure control using memory bandage, the measurement was
conducted using a Kikuhime™ pressure sensor (Figure 2). After the application of the bandage on
the cylindrical tube, the entire set-up was placed in a heated chamber for the MP activation, and the
variation in the interface pressure was obtained. Different cylindrical tubes were used to stimulate
different circumferences of a human leg. Extra pressure generated by the bandage was obtained at
different levels each for the factors—temperature (T), number of layers (N), cylinder circumference (C)
and applied strain (ε).

Table 1. Characteristics of the memory bandage.

Weave Structure Weft knitted

Filament density, tex 18.9 (Nylon); 13 (SMPU filament)
Composition, % 59.2 (Nylon); 40.7 (SMPU filament)

Mass Density, g/m2 341.2
Fabric Thickness, mm 0.85

Filaments per unit length 8 (wales/cm); 12 (courses/cm)
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3. Results and Discussion

As the recovery in a MP is largely governed by entropy elasticity, the change in material stress σ
could be expressed by temperature T as [24,25]:

p
Bσ

BT
q

l,V
“
σ

T

ñ σ “ f pTq “ a` bT

ñ ∆σ “ bˆ ∆T

(2)

where the sample length l and volume V are kept constant. The equation indicates the possibility of
controlling the stress in the MP by external temperature control. The stress in the bandage fabric could
be changed if MP filaments in its structure exist. To confirm this, thermo-mechanical tensile testing was
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employed to examine the stress variation in a deformed memory bandage specimen upon activating
under constraint. The measurement was done using a tensile tester (Instron 5566) for loading and
unloading, anchored with temperature chamber for heating and cooling. Figure 3 shows the result
of stress increase (∆σ) in the specimen under a fixed tensile strain. It can be inferred that the stress
increase (∆σ) in the fabric is due to presence of MP filaments. The ∆σ increased rapidly for the initial
time and finally saturated to a fixed value for the given temperature. Figure 3b shows the results of
stress variation with temperature. The increase in stress varies linearly with the temperature, as shown
in Equation (4).
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Figure 3. (a) Stress increase ∆σ in the bandage upon activation under constraint deformation (ε = 30%;
T = 50 ˝C). (b) Results of stress increase ∆σwith increase in temperature ∆T (Equation (4)).

If such MP bandage is applied over a limb surface (here it is applied to a cylindrical tube), there
is an external constraint imposed to the bandage by the interface surface. As the interface pressure
depends on the stress in the bandage as expressed by Laplace's law (Equation (1)), the bandage could
allow pressure change directly over the limb by simple temperature modulation. Figure 4 shows the
pressure variation by the bandage once the temperature is increased. Increasing the temperature (>Tg)
allows the activation of memory stress in MP filaments (similar to Figure 3), and the overall stress is
increased, which allows the pressure to change. At lower temperatures (T < Tg = 30 ˝C), the memory
stress in the MP filaments is not activated, and a constant pressure is maintained, which is present only
due to elastic stress present in the structure of bandage while wrapping on the cylindrical surface.
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For a given T (>Tg), the P increases rapidly for the initially period (600 s) and then finally reaches
saturation. The rate and amount of extra pressure generated during activation is greater at higher
temperatures (p < 0.01). The extra pressure increases (∆P) are 8 mmHg and 4 mmHg, respectively,
at 50 ˝C and 35 ˝C. The MP filaments used in the fabric has a transition range (~20–50 ˝C; Figure 1),
because of which, it is highly unlikely that all switching segments would activate together with
increasing temperature to a fixed level. It is expected that more switching segments are activated at
higher T (~50 ˝C) as compared to lower T (~35 ˝C). Therefore, more memory stress is generated in
the MP filaments at higher temperatures, which therefore results in greater pressure increases. No
significant pressure changes were observed beyond 50 ˝C. This is due to activation of all switching
segments in the MP network around 50 ˝C.

For practical application, the temperature should not be increased too much above body
temperature, as this could cause patient discomfort. This is why the transition range of MP actuation
needs to carefully optimized to obtain the desired pressure variation in the achievable and allowable
temperature conditions. The Tg could be optimized to a particular range by the proper choice of
different components (type and molecular weight of switching segment and hard segment content)
involved in the formation of the MP [23,26,27]. Herein, we developed MP filament using segmented
polyurethane with low Tg (~30 ˝C) and the activation domain was 20–50 ˝C.

Before recommending the SMP and suggesting it as a credible compression product, there are
many aspects that need to be thoroughly examined, such as how much extra pressure could be achieved,
the temperature range, other external factors that could decide pressure variation, the repeatability,
etc. Apart from temperature change, several other variables that could affect the pressure results exist.
Figure 5 summarizes the effect of important variables on the amount of ∆P generated by the bandage
upon activation. Similar to temperature, strain has the same effect on the MP bandage (Figure 5b).
More ∆P is observed at high strain level. This is due to differences in the extent of recovery of memory
polymer at different levels of strain. Inducing more strain in the MP results in significant entropy
reduction because of orientation of polymer chains, and upon heating the stretched MP, the shrinkage
is more favorable to increase the entropy by coiling of polymer chains, as explained by rubber elasticity.
Therefore, high strain in the MP is expected to have more stress upon heating. The effect of number of
layers and circumference can be derived from the equation of Laplace’s law. The pressure is inversely
related to the limb circumference due to which ∆P observed at higher circumference (31.2 cm) is lower
than pressure observed at 23.6 cm circumference (Figure 5d). Increasing the number of wrapping
layers will also have an additive effect (Figure 5c), although the ∆P is not doubled if the number
of layers (N) is increased from one to two. Primarily, the compression provided by the top layer
is absorbed by the inner layers; thus, the total pressure exerted by multiple layers is less than the
sum of pressure exerted by individual layers. The relation of P and N, as described by Laplace’s law
(Equation (1)), overestimates the pressure values. This relation is valid for thin-wall cylinder vessel
and for continuum materials. Assuming fabric as a continuum and neglecting its thickness may also
cause this discrepancy. Table 2 shows all the ∆P results of different levels of influencing factors.

Finally, we also tested the repeatability of pressure change by the bandage under continuous
heating and cooling cycles. The result is summarized in Figure 6. After an initial adjustment for the
first four cycles, the pressure variation show similar results. This indicates that the bandage has the
potential to reproduce the same pressure results, even after multiple uses, and thus allow readjusting
pressure levels whenever needed.
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Table 2. Results of extra pressure (∆P, in mmHg) by the MP bandage at different levels of factors.

Temperature
(˝C)

Circumference

23.6 cm 31.2 cm

Applied strain Applied strain

30% 60% 30% 60%

No. of layers No. of layers No. of layers No. of layers

1 2 1 2 1 2 1 2

35 4.9 7.5 7.8 11.9 3.1 4.9 4.2 7.4
50 7.8 15.1 11.5 21.6 5.8 10.5 7.3 13.4

Notes: T: Temperature; C: Cylinder circumference; N: Number of layers; ε: Strain.
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Figure 6. Cyclic pressure variation by the bandage upon continuous heating and cooling cycles. Each
cycle (C1 to C10) includes heating of the bandage for 10 min in heated chamber (T = 50 ˝C), and then
cooling down for another 10 min at room temperature (T = 23 ˝C).

The memory bandage could offer several advantages in compression management. First, this
could give more freedom to nurses to control or readjust pressure at wrapped position, and to achieve
an appropriate level of pressure. Second, it would be possible to counter the effect of pressure
drop during the course of compression treatment. Earlier studies suggested that the pressure drop
is inevitable for most of the compression bandages due to fiber’s stress relaxation or due to limb
reduction [9,28]. However, the advantage of memory bandage over the existing conventional product
would be that, when the pressure drops below a targeted level, it would be possible to readjust pressure
level even without replacing the bandage, and therefore could provide sustained compression. Third,
it would be possible to extract multi-functionalities of static and dynamic compression benefits from
the memory bandage. Most of the current means for compression are passive, meaning that they only
provide a fixed level of initial pressure, incapable of having massage effect. For dynamic treatment
(massaging of leg), the equipment like intermittent pneumatic compression (IPC) is recommended,
which is too costly, noisy, bulky, and, once attached, requires immobile patients [29]. This novel
bandage could be used for multiple compression benefits (static and dynamic) via a programmed
heating stimulus (Figure 7).
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4. Conclusions

The present work introduces a novel application of MP filaments in medical bandage for the
functional compression management for the treatment of chronic venous disorders. A memory
bandage was developed using MP filaments in the structure. The bandage was able to change the
internal stress in its structure by external means, i.e., using heating stimulus. It was possible to control
or manage the pressure exerted by the bandage in wrapped position, and extra pressure (∆P) was
generated by simple heating. Increasing the temperature and strain stimulated more ∆P. Other factors,
i.e., circumference and number of layers, also affect the magnitude of ∆P. The bandage could offer the
advantage of controlled compression to meet the desired needs for a given patient.

It is envisioned that the memory bandage could revolutionize compression treatment, and this
goal could be achieved with more scientific effort, sharp vision, tremendous creativity and huge
investment. There are many studies that are still needed to ensure the memory bandage is a credible
compression product. In real practice, heating of MP on the leg to a particular temperature is a
challenge, and simple and efficient heating arrangements need to be assured to have precise control
on the pressure. The use of flexible heating systems (conductive fabrics) could be a good alternative.
Another method is to develop body-temperature activated memory filament, where the activation
could be performed by body heat. All this could be a part of future study where an integrated system
(heating device and memory bandage) will be designed and examined. The other work is to conduct
the pressure study on a soft surface. Naturally, the pressure on a soft surface (such as a real body) may
vary compared to the hard surface presented in this study. The soft tissue compressibility could lead
to changes in circumference C, and the parameters in Equation (1) will have to be adjusted accordingly
for accurate pressure predictions. Future work should also focus on the effect of several other factors,
e.g., different MPs, hard segment content, proportion of MP, fabric structure, time dependent study, etc.
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