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Low-dimensional Confounder Adjustment and High-dimensional

Penalized Estimation for Survival Analysis

Abstract: High-throughput profiling is now common in biomedical research. In this paper we

consider the layout of an etiology study composed of a failure time response, and gene expression

measurements. In current practice, a widely adopted approach is to select genes according to a pre-

liminary marginal screening and a follow-up penalized regression for model building. Confounders,

including for example clinical risk factors and environmental exposures, usually exist and need to

be properly accounted for. We propose covariate-adjusted screening and variable selection proce-

dures under the accelerated failure time model. While penalizing the high-dimensional coefficients

to achieve parsimonious model forms, our procedure also properly adjust the low-dimensional con-

founder effects to achieve more accurate estimation of regression coefficients. We establish the

asymptotic properties of our proposed methods and carry out simulation studies to assess the

finite sample performance. Our methods are illustrated with a real gene expression data analysis

where proper adjustment of confounders produces more meaningful results.

Key words and phrases: Accelerated failure time model; Confounder adjustment; Gene expression;

Independent screening; Variable selection.

1 Introduction

High-throughput profiling is now routinely conducted in biomedical studies. Available mea-

surements include mRNA gene expression, SNP, rare variant, exome sequencing, and many

others. In what follows, we focus on studies using mRNA gene expression to predict failure

time outcome; the proposed methods, however, are directly applicable to measurements of

other types. In the study of an ultra-high dimensional gene expression, the data analysis

usually consists of two stages: (i) rank the importance of genes based on their marginal as-

sociations with the outcome variable and screen out unimportant genes from the ordered list;

(ii) build a parsimonious regression model with sufficient complexity using variable selection

methods, mostly based on penalties. Such a two-step procedure has been widely adopted and

enjoyed theoretical and practical supports (eg. Cheng et al. [2014], Fan and Lv [2008], Fan

et al. [2009], Li et al. [2012], among others).

In genetic epidemiology studies, we usually collect data for high-dimensional as well as
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low-dimensional covariates. The low-dimensional covariates may include demographical vari-

ables, risk factors, environmental exposures or other variables (Cheng et al. [2009]) that may

be regarded as confounders (VanderWeele and Shpitser [2013]). The common practice in an

observation subject is to include as many relevant confounding variables as possible so that we

can obtain more accurate estimate for the coefficients of the main variables of interest (Gordis

[2008]). Even if some confounders are not significant in the final model, including them may

produce better results for the estimation of the regression coefficients of variables of interest.

Furthermore, we may compare the results across different studies easily since most studies

on the same response would adjust a similar set of confounders. However, in the two-step

procedure described previously, very often low-dimensional covariates are ignored and how

to fully incorporate low-dimensional covariates has not been systematically addressed in the

literature.

Though variable selection methods for continuous and binary outcomes are abundant, the

related development in survival analysis has been relatively sparse and most existing programs

focus on Cox proportional hazards model only (Bradic et al. [2011], Fan and Li [2002], Lian

et al. [2014]). There are other useful models widely accepted in medical research when pro-

portional hazards assumption does not hold for the failure process. Specifically, we consider

the accelerated failure time (AFT) model which is introduced in most standard textbooks.

In an earlier development when the two-step procedure has not become the prevailing prac-

tice, Huang et al. [2006] considered using AFT model with the Lasso penalty which is now

known to be selection inconsistent. Cai et al. [2009] considered a similar setting with Lasso

penalty but proposed a more general rank-based estimator for AFT model. Johnson et al.

[2008] studied the AFT model with the smoothly clipped absolute deviation (SCAD) penalty

function which we will consider in this paper. Most recently Huang and Ma [2010] extended

the regularized estimation of the AFT model under the bridge penalty. Hu and Chai [2013]

considered a high dimensional penalization with MCP penalty in the AFT model. Apart from

the recent work of Hu and Chai [2013], in their methodology, however, none of these previous

authors considered the ultra-high dimension setting where screening deserves pursuing before

the penalized estimation. Only ad hoc treatments were provided in a few case studies. In our

opinion the screening step (i) is almost inevitable for gene expression studies and a formal

methodology construction is necessary for the AFT model.

The main contribution of this paper can be summarized as follows. A formal method-

ology to properly adjust the low-dimensional covariates in the familiar two-step procedure
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for survival analysis is proposed. Having studied the real data analysis, we discover that the

set of markers selected with and without covariate adjustment could be remarkably different,

indicating that the contribution of some important markers selected without covariate adjust-

ment could be confounded with the covariate effects and these markers should be dropped in

the presence of available low-dimensional covariates. As far as we have reviewed, confounder-

adjusted variable screening and variable selection have never been thoroughly discussed for

continuous and binary outcomes yet. Our proposal thus may be equally applicable for those

settings as well. In particular, the effects of confounders are modelled as additive nonpara-

metric terms in the AFT model. Treating nuisance parameters as nonparametric functions

is quite desirable in many applications, yielding more reliable estimation for covariate effects.

For the high-dimensional covariates, we still consider a linear parametric form which may

provide a lucid interpretation of the gene effects in practice. The selection of important genes

is realized using the SCAD penalty (Fan and Li [2001, 2002]).

The remainder of this paper is arranged as follows. A detailed procedure for our method-

ology is proposed in Section 2. The relevant theoretical justification is provided in Section 3.

Simulation studies are carried out in Section 4. In Section 5, an analysis of a Lung cancer

dataset using our method is presented. All the proofs are relegated to the Appendix.

2 Two-step analysis procedure

Denote by X = (X1, · · · , Xp)T the expression of p genes where log(p) = O(nc) for c > 0. We

adopt the common sparsity assumption and believe that only a small subset of these p genes

are indeed related to a particular disease outcome. In practice, we may collect data on low di-

mensional covariates such as demographic information as well. Denote by U = (U1, . . . , Ud)T

the d confounders where d << n. Directly applying penalized estimation with p genes is

infeasible in most statistical programs. It is necessary to first implement a screening proce-

dure and cut the number p from the non-polynomial order to a much smaller (polynomial)

order. Furthermore, we intend to conduct screening and variable selection in the presence of

confounders. Detailed methodology follows.
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2.1 Variable screening

Consider the partially linear additive accelerated failure time model

Ti = XT
i β +

d∑

j=1

gj(Uij) + εi, i = 1, · · · , n; (1)

where Ti is the logarithm of the failure time and Xi is a p-dimensional covariate vector for

the ith subject in a random sample of size n, gj(·) is an unknown and nonlinear function

depending merely on a univariate Uj for j = 1, . . . , d, β ∈ Rp is the regression parameter

and εi is random error. Assuming that Ti is subject to right censoring, we can only observe

{(Yi, δi,Xi,Ui) : i = 1, · · · , n} with Yi = min(Ti, Ci), where Ci is the logarithm of random

censoring time and δi = I(Ti ≤ Ci) is the censoring indicator.

We rank the p ultra-high dimensional markers for their marginal importance in the pres-

ence of confounders and remove unimportant markers from further consideration. Specifically,

we consider fitting marginal regression in the following manner. Suppose that Y(1) ≤ · · · ≤ Y(n)

are the ordered statistic of Yi’s and δ(1), · · · , δ(n) are the associated censoring indicators of the

ordered Yi’s, and X(1), · · · ,X(n) and U(1)j , · · · , U(n)j for j = 1, . . . , d are defined similarly. Let

F̂n be the Kaplan-Meier (KM) estimator of the distribution function F of the failure time T .

Then F̂n can be written as F̂n(y) =
∑n

i=1wniI(Y(i) ≤ y), where the weights {wni; i = 1, . . . , n}
are given by

wn1 =
δ(1)
n

, and wni =
δ(i)

n− i+ 1

i−1∏

j=1

( n− j

n− j + 1

)δ(j)
, i = 2, . . . , n.

8

Suppose that B(·) = (B1(·), · · · , BMn(·))T is an Mn-dimensional vector of basis functions.

Then, for every smoothing function gj(u), we can approximate it by

gj(u) ≈ B(u)Tγj , for j = 1, . . . , d (2)

where γj is a vector of length Mn. Thus, we can obtain a benchmark initial estimate of the

nonparametric functions by g∗j (·) = B(·)Tγ∗
j , where

γ∗ = arg min
γ=(γT

1 ,··· ,γT
d )T

{ n∑

i=1

wni
[
Y(i) −

d∑

j=1

B(U(i)j)
Tγj

]2}
. (3)

Denote the partial residuals from minimizing (3) by Y ∗
(i) = Y(i) −

∑d
j=1B(U(i)j)

Tγ∗
j for i =

4
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1, . . . , n. At the next step, we may solve

β̂∗j = argmin
βj

{ n∑

i=1

wni
(
Y ∗
(i) −X(i)jβj

)2}
, (4)

and select a set of variables

M̂ =
{
1 ≤ j ≤ p : |β̂∗j | ≥ vn

}
, (5)

where vn is a predefined threshold value. In practice, we often rank the features by |β∗j | and
keep the top ⌊n/log(n)⌋ features, where ⌊a⌋ denotes the integer part of a.

We note that in the above marginal screening we have controlled the variation in the

response due to confounders. The top genes in the ranked list thus reflect the strong correlation

with the response in the presence of various confounding factors. Intuitively, these genes are

more likely to have non-zero coefficients in the true model (1) where the outcome-generating

mechanism clearly acknowledges the contributions from the low-dimensional covariates.

2.2 Variable selection

In the previous section, we have carried out a very important step to reduce the cardinality

of the set of candidate genes, usually below the total sample size n. With a slight abuse

of notation, in the following model, we continue using p to denote the dimension of gene

expressions kept in the reduced set and using model (1) to denote the true model. In fact,

methodology research for variable selection under the AFT model normally kicks off at this

point.

To fit model (1), one common approach is the Stute’s estimator which has a resemblance

to the weighted least squares. Using the same notations defined in the preceding section, we

can obtain the estimators for β and gj(·) by minimizing the following objective function

1

2

n∑

i=1

wni

[
Y(i) −XT

(i)β −
d∑

j=1

gj(U(i)j)
]2
. (6)

Still applying the approximation from the spline functions (2) , we may re-write (6) as

1

2

n∑

i=1

wni

[
Y(i) −XT

(i)β −
d∑

j=1

B(U(i)j)
Tγj

]2
. (7)
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Denote byY = (Y(1), · · · , Y(n))T ,X = (X(1), · · · ,X(n))
T ,Bi = B(U(i)) = (B(U(i)1)

T , · · · ,B(U(i)d)
T )T ,

B = (B1, · · · ,Bn)T and γ = (γT
1 , · · · ,γT

d )
T . Then the objective function (7) becomes

1

2
(Y −Xβ −Bγ)TW(Y −Xβ −Bγ)

where W = diag{wn1, · · · , wnn}.
Next, for the purpose of variable selection, we incorporate a penalty into (7) and define

Q(β,γ) =
1

2n
(Y −Xβ −Bγ)TW(Y −Xβ −Bγ) +

p∑

j=1

pλn(|βj |), (8)

where pλ(·) is a penalty function and λ is the regularization parameter. An appealing choice

for pλ(·) is the SCAD penalty (Fan and Li [2001, 2002]), which is defined by

pλ(|β|) =

⎧
⎪⎪⎨

⎪⎪⎩

λ|β|, |β| ≤ λ

−β2−2aλ|β|+λ2

2(a−1) , λ < |β| ≤ aλ
(a+1)λ2

2 , |β| > aλ,

where a > 2 is a constant. This penalty function is nonconcave and contains coherent theo-

retical properties, including unbiasedness, continuity and sparsity (Fan and Li [2001]).

Furthermore, we notice that it is hard to solve the problem (8) since the SCAD penalty

function pλn(·) is irregular at the origin and has no continuous second-order derivative. We

develop an iterative algorithm to find the solution of problem (8). Specifically, we utilize the

local quadratic approximation in Fan and Li [2001] for the SCAD penalty function pλ(·) as

the following

pλ(|βj |) ≈ pλ(|β
(0)
j |) +

p′λ(|β
(0)
j |)

2|β(0)j |
(β2j − β(0)2j ) for βj ≈ β(0)j . (9)

We denote X̃ = (X,B), θ = (βT ,γT )T , and Dλ(β(0)) = diag
{

p′λ(|β
(0)
1 |)

|β(0)
1 |

, · · · , p
′
λ(|β

(0)
p |)

|β(0)
p |

}
. Then,

minimizing (8) reduces to minimize the following quadratic objective function

Q(θ|β(0)) = n−1(Y − X̃θ)TW(Y − X̃θ) + βTDλn(β
(0))β. (10)

We now summarize our computing algorithm as follows:

• Step 1. Find an initial solution β(0) using an un-penalized ridge regression estimation,

i.e.,

θ(0) = (β(0)T ,γ(0)T )T = (X̃TWX̃+ rridgeI)
−1X̃TWY,

6
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where rridge is a ridge tuning parameter and I is a (p+dMn)×(p+dMn) identity matrix.

• Step 2. At current iteration k ≥ 1, update β by minimizing (10) and obtain the solution

β(k) for β as

θ(k) = (β(k)T ,γ(k)T )T = argmin
θ

Q(θ|β(k−1)) = [X̃TWX̃+ nΛλn(β
(k−1))]−1X̃TWY,

where Λλ(β) = diag
{

p′λ(|β1|)
|β1| , · · · , p

′
λ(|βp|)
|βp| , 0, · · · , 0

}
.

• Step 3. Repeat step 2 until convergence and denote the final solution by β̂ .

For the choice of the regulating parameter λn, we adopt the Bayesian information criterion

(BIC) selector in Wang et al. [2009] which is defined by

BIC(λ) = log(RSSλ) + dfλn
−1 log(n)Cn, (11)

where Cn = log log p, RSSλ stands for the residual sum of squares, and dfλ is the effective

number of parameters. The optimal λn is the one that minimizes (11). Our numerical studies

suggest BIC produces very stable estimation results and may be slightly more appropriate than

other alternative approaches such as the cross-valdiation or the generalized cross-validation.

3 Asymptotic results

In this section, we establish the asymptotic theory for our estimator. Let

β0 = (β10, · · · ,βp0)T = (βT
10,β

T
20)

T (12)

be the true regression coefficient vector for the high-dimensional markers. Without loss of gen-

erality we partition the p-vector so that the first s elements β10 are non-zero and the remaining

p − s elements β20 = 0. In correspondence we may partition each Xi = ((X(1)
i )T , (X(2)

i )T )T

for the high dimensional covariates.

For the nonparametric components, we focus our asymptotic analysis for Gk which is a

space of spline functions. Extension to general basis expansions can be obtained with slight

modification. Define ρn = max1≤k≤d infg∈Gk ∥gk0 − g∥L2 where gk0 is the kth true function,

1 ≤ k ≤ d. Thus ρn characterizes the approximation error due to spline approximation. Let

rn = (Mn/n)1/2. The proofs of the following theorems are contained in the Appendix.
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Theorem 1. Under assumptions (C1)-(C5) in the Appendix, limn→∞ ρn = 0,

lim
n→∞

n−1Mn log(Mn) = 0,

λn → 0, and λn/max(rn, ρn) → ∞, we have the following:

a. β̂k = 0, s+ 1 ≤ k ≤ p, with probability approaching 1.

b. ∥β̂k − βk0∥ = Op(max(rn, ρn)), 1 ≤ k ≤ s.

c. ∥ĝk − gk0∥L2 = Op(max(rn, ρn)), 1 ≤ k ≤ d.

Part a of Theorem 1 indicates the selection consistency of our procedure since we can

identify the zero coefficients with probability tending to 1. Parts b and c provide the rate of

convergence in estimating the nonzero coefficients and nonparametric functions, respectively.

We then establish the asymptotic distribution results. Denote by H the distribution of

the observable Y ’s, and let τH = inf{y : H(y) = 1} be the least upper bound for the support

of H. Also denote by A the set of atoms of H. Introduce the following sub-distribution

functions:

H̃1(x
(1),u, y) = P (X(1) ≤ x(1),U ≤ u, Y ≤ y, δ = 1)

H̃0(y) = P (Y ≤ y, δ = 1).

Put x̃(1) = ((x(1))T ,B(u1)T , · · · ,B(ud)T )T , θ∗ = (βT
1 ,γ

T )T and

ξ0(y) = exp

{∫ y−

0

H̃0(dz)

1−H(z)

}

ξ∗1j(y;θ
∗) =

1

1−H(y)

∫

w>y
(w − (x̃(1))Tθ∗)x̃jξ0(w)H̃1(dx̃

(1), dw)

ξ∗2j(y;θ
∗) =

∫ ∫
I(v < y, v < w)(w − (x̃(1))Tθ∗)x̃jξ0(w)

(1−H(v))2
H̃0(dv)H̃1(dx̃

(1), dw)

ξ∗l,β(y;θ
∗) = (ξ∗l1(y;θ

∗), · · · , ξ∗l,s(y;θ∗)), l = 1, 2,

ξ∗l,γ(y;θ
∗) = (ξ∗l,s+1(y;θ

∗), · · · , ξ∗l,s+Mnd(y;θ
∗)), l = 1, 2.

Next, define Ỹ = E(Y|X,U), θ̃ = [X̃TWX̃]−1X̃TWỸ = (β̃T , γ̃T )T , and g̃k(u) =

B(u)T γ̃k. DenoteB∗(u) = diag(B(u1)T , · · · ,B(ud)T ), ĝ(u) = (ĝ1(u1), · · · , ĝd(ud))T = B∗(u)γ̂

and g̃(u) = (g̃1(u1), · · · , g̃d(u1))T = B∗(u)γ̃.

8
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Theorem 2. Suppose assumptions (C1)-(C6) in the Appendix hold, limn→∞ ρn = 0,

lim
n→∞

n−1Mn log(Mn) = 0,

λn → 0, and λn/max(rn, ρn) → ∞. Then as n → ∞, we have

a.
√
n(β̂1 − β̃1) → N(0,Ψ) in distribution, where Ψ = (H(1))−1Σ∗

β(H
(1))−1, H(1) =

E(X(1)
i (X(1)

i )T ) and Σ∗
β = Var[δiξ∗0(Yi)(Yi−E(Yi|X(1)

i ,Ui))X
(1)
i +(1−δi)ξ∗1,β(Yi; (β̃T

1 , γ̃
T )T )−

ξ∗2,β(Yi; (β̃
T
1 , γ̃

T )T )].

b.
√
n(ĝ(u)− g̃(u)) → N(0,Γ(u)) in distribution, where Γ(u) = B∗(u)C−1Σ∗

γC
−1B∗(u)T ,

C = E(BiBT
i ) and Σ∗

γ = Var[δiξ∗0(Yi)(Yi−E(Yi|X(1)
i ,Ui))Bi+(1−δi)ξ∗1,γ(Yi; (β̃T

1 , γ̃
T )T )−

ξ∗2,γ(Yi; (β̃
T
1 , γ̃

T )T )].

Note that Ψ is exactly the same asymptotic covariance matrix of the nonpenalized weight-

ed least squares estimate using only markers with nonzero coefficients. Hence Theorem 2

implies the oracle property of our estimator, i.e., the SCAD estimator can perform as well

as the estimator obtained when the correct submodel was known. The result of Theorem 2

may also be used to construct confidence intervals and perform hypothesis tests for regression

coefficients.

4 Simulation

We simulate sample dataset from Model (1) where Xi = (Xi1, · · · , Xip)T , i = 1, . . . , n are

i.i.d. from multivariate normal distributions with mean 0p and the covariance between the

components Xij and Xik is set to be ρjk = ρ|j−k|. The coefficient β is specified to be

(0.5, 1, 1.5, 2, 2.5)T for the first five elements and zero for the remaining components. The

random error ϵ is generated from the following distributions: (I) the standard extreme value

distribution: consequently exp(Ti) follows the Weibull distribution; (II) the standard normal

distribution: consequently exp(Ti) follows the log-normal distribution.

We note that proportional hazards (PH) assumption is satisfied under (I) and fitting

a Cox PH model is also appropriate for the data. In contrast, Case (II) violates the PH

assumption. The censoring time C is uniformly distributed such that the censoring rate is

about 25% for each simulation. In the following simulations, we set ρ = 0.6, p = 1000 and

we consider n = 200 and 400. We investigate two scenarios for nonparametric components:

(i) d = 1 with g(u) = (1 − u)−1; (ii) d = 3 with g1(u) = cos(2πu), g2(u) = (1 − u)−1 and
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g3(u) = − exp(−4u). The index variables Uij , 1 ≤ j ≤ d are generated independently from

the uniform distribution U(0, 1).

We then compare five different methods for screening and variable selection:

(a). perform the approach proposed in this paper, i.e. covariate-adjusted screening and

covariate-adjusted SCAD variable selection in an AFT model with nonparametric ad-

justment of confounders;

(b). still perform the covariate-adjusted screening and covariate-adjusted SCAD variable se-

lection in an AFT model, adjusting confounders with linear regression components;

(c). perform marginal screening and SCAD variable selection in an AFT model, ignoring the

confounders;

(d). perform the covariate-adjusted screening and covariate-adjusted SCAD variable selection

in a Cox PH model, adjusting confounders with linear regression components;

(e). perform marginal screening and SCAD variable selection in a Cox PH model, ignoring

the confounders.

We notice that (c) and (e) are existing approaches to variable screening and variable

selection, available in packages. The other three methods are all new, where the theoretical

justification for (a) and (b) are provided in this paper and that for (d) may need further work.

Each case is repeated N = 1000 times and the following quantities over 1000 replications

are reported:

• For variable selection performance we report: UF, the proportion of underfitted models;

OF, the proportion of overfitted models; CZ, the percentage of correctly estimated zero

coefficients; IZ, the percentage of incorrectly estimated nonzero coefficients; TP, the true

positive fraction; FP, the false positive fraction.

• For model-fitting performance we report: REE, the relative estimation error defined by

N−1
N∑

k=1

{(β̂(k) − β)T Ê(X(k)X
T
(k))(β̂(k) − β)}/{βT Ê(X(k)X

T
(k))β},

where ÊX(k)X
T
(k) = 1/n

∑n
i=1Xi,(k)X

T
i,(k), where Xi,(k) is the ith observation in the kth

replication, β̂(k) stands for the parametric estimation in the kth replication.; MSE, the

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



mean squared error, defined by

Ê||β̂ − β||2

where ∥ · ∥ is the European norm; MME, the median of model errors defined by

(β̂ − β)T ÊXXT (β̂ − β),

and MAD is its median absolute deviation.

Simulation results for the d = 1 case are given in Table 1 and those for the d = 3 case

are given in Table 2. We make the following observations.

1. Without adjustment of confounders or with only a linear adjustment, the selection ac-

curacy can be affected. The FP values of (b), (c) and (e) are all unacceptably high and

the performance of these methods is even worse in Table 2 where the confounder effects

are stronger.

2. With proper adjustment of confounders, (a) and (d) both enjoy selection consistency for

the extreme value distribution. When proportional hazards assumption fails, (d) may

perform less satisfactorily.

3. Sample size is critical. All methods improve with increasing sample sizes.

4. In view of the REE, MSE, MME and MAE values in both tables, we notice that (a) has

the smallest estimation errors in all cases.

In conclusion, method (a) outperforms the other methods in both variable selection and

model fitting.

5 Lung cancer data analysis

Lung cancer represents the leading cause of cancer death for both men and women in the

United States and many other Western countries. The 5-year survival is only 15% and has

little improvement over the past decades. This is mainly because approximately two-thirds of

lung cancer cases are diagnosed at advanced stages where surgical resection is no longer an

option. Accurate early detection is thus crucial for lung cancer treatment. Prognostic gene

expression signatures for survival in early-stage lung cancer have been proposed for clinical

11
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application. Such technologies have identified potential biomarkers and gene signatures for

classifying patients with significantly different survival outcomes (Chen et al. [2007], Lu et al.

[2006]).

Individual lung cancer profiling studies may have relatively small sample sizes and lead

to unreliable results. To increase sample size, Shedden et al. [2008] conducted a large ret-

rospective, multi-site, blinded study, using a total of 442 lung adenocarcinomas, the specific

type of lung cancer that is increasing in incidence. Gene expression data were generated by

four different laboratories under a common protocol. The same data set has been used as a

validation sample for a separate analysis (Xie et al. [2011]).

In addition to genetic mutations and defects factors, multiple clinical and environmental

risk factors may contribute to lung cancer progression. In this analysis, the low-dimensional

covariates include age, gender, cancer stage, adjuvant chemotherapy treatment and smoking

history. Subjects with missing measurements in overall survival or confounders are removed

from analysis. A total of 437 subjects are included in downstream analysis. The median follow-

up time is 46 months. The overall censoring rate is 46.22%. The Kaplan-Meier estimate of

the survival distribution is plotted in Figure 1. For each subject, the expressions of 22283

genes are available.

We first use a marginal screening and SCAD variable selection in an AFT model, ignor-

ing the confounders. The estimation results are summarized in Table 3. We then use our

proposed covariate-adjusted screening and covariate-adjusted SCAD variable selection in an

AFT model. The estimation results are summarized in Table 4. Under the two approaches,

the selected genes are completely different. After adjusting for covaraites, none of the genes

in Table 3 are selected in Table 4. The main message is that the variation captured by the

genes in Table 3 may be completely due to the sample heterogeneity, resulted from the vari-

ation of low-dimensional factors. After controlling the effects of various confounders, a new

list of genes are identified. Considering the sample is obtained from multiple observational

studies with non-homogeneous populations, we believe the results in Table 4 should be em-

phasized more in practice in order to achieve meaningful biomarker discovery in the presence

of heterogeneously distributed covariates.
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6 Concluding Remarks

Stute estimator can be shown to be equivalent to the inverse-probability weighted (IPW)

estimator and the proposal in this paper can be easily extended for IPW estimation for AFT

model. Besides Stute estimator, there exist other approaches such as rank-based estimator

and Buckley-James estimators, among others. The technical conditions and theoretical justi-

fication may need to be established in a different fashion from this article. More efforts are

needed to completely investigate all these related cases.

We assume constant coefficients for high-dimensional covariates for their lucid interpreta-

tion. But for some applications, it has been noticed that using functional coefficients may be

more flexible. Variable screening and variable selection for functional coefficients may follow a

similar construction as our proposed methods. The statistical properties need to be formally

studied in future research.
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Appendix: Conditions and Proofs

We write θ = (βT ,γT )T . Define Ỹ = E(Y|X,U), θ̃ = [X̃TWX̃]−1X̃TWỸ = (β̃T , γ̃T )T , and

g̃k(u) = B(u)T γ̃k.

We need the following assumptions.

(C1) E(ϵi|Xi,Ui) = 0 and E(T 2
i ) is finite.

(C2) Ti and Ci are independent and P (Yi ≤ Ci|Xi,Ui, Yi) = P (Yi ≤ Ci|Yi).

(C3) The eigenvalues of the matrix E(XiXT
i ) is bounded away from zero and finite.

(C4) τT < τC or τT = τC = ∞.

(C5) The true parameter β0 lives in a compact space Θ. Each true function gk0 is from a

second order Sobolev space.

(C6) E
{
ϵ2δX(1)(X(1))T

}
< ∞ and E

{
|ϵX(1)|

√
R(Y )

}
< ∞ whereR(y) =

∫ y−
0 {(1−H(w))(1−

G(w))}−1G(dw) and G is the distribution function of the censoring time C.

The estimator θ̂ is of a form of weighted least squares estimator. However, the Kaplan-

Meier weights {wni : i = 1, · · · , n} do not satisfy the assumption which are usually required

in weighted least squares estimation. We need Lemma 1 to ensure the validity of convergence

argument used in the proof of Theorems 1 and 2. The proof of the lemma may follow Stute

[1993].
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Lemma 3. For an integrable function φ, define a functional Snφ =
∑n

i=1wniφ(Yi,Xi,Ui).

Under (C1) and (C2), with probability one and in the mean we have

lim
n→∞

Snφ =

∫

Y <τH

φ(Y,X,U)dP + I(τH ∈ A)

∫

Y=τH

φ(τH ,X,U)dP. (A.1)

We need the following lemma which summarizes necessary properties of the polynomial

spline functions. The proof of the lemma may follow lemmas A.3 in Huang et al. [2004].

Lemma 4. Assume limn→∞ n−1Mn log(Mn) = 0. Except on an event whose probability tends

to zero, all the eigenvalues of Mn/n
∑n

i=1BiBT
i are bounded away from zero and infinity.

The next lemma establish the consistency of the estimator.

Lemma 5. Assume the same conditions as Theorem 1. Then ∥θ̂− θ̃∥ = Op(rn + (λnρn)1/2).

Proof of Lemma 3. We note

Q(θ̂)−Q(θ̃) =
1

n

[
(Y − X̃θ̂)TW(Y − X̃θ̂)− (Y − X̃θ̃)TW(Y − X̃θ̃)

]

+
p∑

k=1

{pλn(|β̂k|)− pλn(|β̃k|)}

=
1

n

[
−2(Y − X̃θ̃)TWX̃(θ̂ − θ̃) + (θ̂ − θ̃)T X̃TWX̃(θ̂ − θ̃)

]

+
p∑

k=1

{pλn(|β̂k|)− pλn(|β̃k|)}

= −2ϵTWX̃vM1/2
n δn/n+ δ2n/nMnv

T X̃TWX̃v

+
p∑

k=1

{pλn(|β̂k|)− pλn(|β̃k|)} ≤ 0, (A.2)

where in the third equality we write θ̂ − θ̃ = δnM
1/2
n v, with δn a scalar and v a vector

satisfying ∥v∥ = 1, and use the fact that X̃TW(Y−ϵ− X̃θ̃) = 0. The inequality follows from

the definition of θ̂. We first show that δn = Op(rn + λn). To this end, we can show easily

M1/2
n

n
ϵTWX̃v =

M1/2
n

n

n∑

i=1

ϵiwniX̃(i)v = Op(rn). (A.3)

By assumption (C3) and Lemma 2, there exists a positive c1 such that

Mn

n
vT X̃TWX̃v =

Mn

n

n∑

i=1

winv
T
(
XT

(i)X(i) +BT
(i)B(i)

)
v ≥ c1, (A.4)
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with probability approaching 1. Using inequality |pλ(a)− pλ(b)| ≤ λ|a− b|, we obtain

p∑

k=1

{pλn(|β̂k|)− pλn(|β̃k|) ≥
p∑

k=1

−λn|β̂k − β̃k| ≍ −λnδn. (A.5)

Therefore, −Op(rn)δn + c1δ2n − λnδn ≤ 0 with probability approaching 1, which implies that

δn = Op(rn + λn).

Now we notice for 1 ≤ k ≤ p, |β̂k − β̃k| = op(1). Next we can see

|∥γ̃k∥ − ∥gk∥L2 | ≤ |∥g̃k∥L2 − ∥gk∥L2 | (A.6)

≤ ∥g̃k − gk∥L2 = Op(ρn) = op(1). (A.7)

It then follows that β̂k → βk0, β̃k → βk0, ∥ĝk∥L2 → ∥gk0∥L2 and ∥g̃k∥L2 → ∥gk0∥L2 in

probability. Because |βk0| > 0 for 1 ≤ k ≤ s and λ → 0, we have that, with probability

approaching 1, |β̂k| > aλn and |β̃k| > aλn for 1 ≤ k ≤ s. On the other hand, βk0 = 0 for

s+1 ≤ k ≤ p, so the previous results imply β̃k = Op(ρn). Since λn/ρn → ∞, we have |β̃k| < λn,

s+ 1 ≤ k ≤ p. Consequently by the definition of pλ(·), we have P (pλn(|β̃k|) = pλn(|β̂k|)) → 1

when 1 ≤ k ≤ s; and P (pλn(|β̃k|) = λn|β̃k|) → 1 when s+ 1 ≤ k ≤ p. Therefore

p∑

k=1

{pλn(|β̂k|)− pλn(|β̃k|)} = λn

p∑

k=s+1

|β̃k| ≥ −Op(λnρn). (A.8)

Combining with previous results, we have

Q(θ̂)−Q(θ̃) ≥ −Op(rn)δn + c1δ
2
n −O(λnρn), (A.9)

which implies that δn = Op(rn + (λnρn)1/2).

Proof of Theorem 1. We prove part a by contradiction. Suppose that for a sufficiently large

n there exists a constant η > 0 such that with probability at least η there exists a k∗ > s such

that β̂k∗ ̸= 0. Let θ̂∗ be a vector constructed by replacing β̂k∗ with 0 in θ̂. Then

Q(θ̂)−Q(θ̂∗) =
1

n

[
(Y − X̃θ̂)TW(Y − X̃θ̂)− (Y − X̃θ̂∗)TW(Y − X̃θ̂∗)

]
+ pλn(|β̂k∗ |).(A.10)

By Lemma 1 and the fact that βk∗0 = 0, β̂k∗ = Op(rn+(λnρn)1/2). Because λn/max(rn, ρn) →
∞, we have |β̂k∗ | < λn and thus pλn(|β̂k∗ |) = λn|β̂k∗ | with probability approaching 1. For the

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



first term in (A.10), simple algebra leads to

(Y − X̃θ̂)TW(Y − X̃θ̂)− (Y − X̃θ̂∗)TW(Y − X̃θ̂∗)

≥ −(Y − X̃θ̂)TWX̃(θ̂ − θ̂∗)

= −2(Y − X̃θ̃)TWX̃(θ̂ − θ̂∗)

−2(θ̃ − θ̂∗)X̃TWX̃(θ̂ − θ̂∗). (A.11)

By the Cauchy-Schwartz inequality,

(θ̃ − θ̂∗)X̃TWX̃(θ̂ − θ̂∗)

≤ {(θ̃ − θ̂∗)X̃TWX̃(θ̃ − θ̂∗)}1/2

×{(θ̂ − θ̂∗)X̃TWX̃(θ̂ − θ̂∗)}1/2

≤ c2
n

Mn
∥θ̃ − θ̂∗∥∥θ̂ − θ̂∗∥.

From the triangle inequality and Lemma 1, it follows that

∥θ̃ − θ̂∗∥ ≤ ∥θ̃ − θ̂∥+ |β̃k∗ |

= Op(M
1/2
n {rn + (λnρn)

1/2 + ρn}),

thus

1

n
(θ̃ − θ̂∗)X̃TWX̃(θ̂ − θ̂∗) = Op(M

−1/2
n (rn + (λnρn)

1/2 + ρn))|β̂k∗ |. (A.12)

We can also show that

|(Y − X̃θ̃)TWX̃(θ̂ − θ̂∗)| = |ϵTWX̃(θ̂ − θ̂∗)| = Op(
nrn

M1/2
n

)|β̂k∗ |. (A.13)

Combining (A.10) to (A.13), we arrive at

Q(θ̂)−Q(θ̂∗) ≥ λn

M1/2
n

|β̂k∗ |−Op(
rn

M1/2
n

)|β̂k∗ |

−Op(
rn + (λnρn)1/2 + ρn

M1/2
n

)|β̂k∗ |. (A.14)

We note that the first term on the right hand side of (A.14) dominates the other two terms

since λn/max(ρn, rn) → ∞. This contradicts the fact that Q(θ̂) − Q(θ̂∗) ≤ 0. Hence the

proof of part a is completed.
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To prove parts b and c, we define the oracle version of θ̃,

θ̃Ω = arg min
θ=(βT

1 ,0T ,γT )

1

n
(Y − X̃θ)TW(Y − X̃θ) (A.15)

which is obtained as if the information of the nonzero components were given. By the construc-

tion and Lemma 2, we have ∥θ̃Ω−θ0∥ = Op(ρn) and ∥θ̂−θ0∥ = op(1). Thus, with probability

approaching 1, β̃k,Ω → βk0, β̂k → βk0 (1 ≤ k ≤ s), ∥g̃k,Ω∥ → ∥gk0∥, and ∥ĝk∥ → ∥gk0∥
(1 ≤ k ≤ d). On the other hand, for s+ 1 ≤ k ≤ p, by the definition β̃k,Ω = 0, and by part a,

with probability approaching 1, β̂k = 0. Consequently, we have

p∑

k=1

pλn(|β̃k,Ω|) =
p∑

k=1

pλn(|β̂k|) (A.16)

with probability approaching 1. Now write θ̂ − θ̃Ω = δnM
1/2
n v, with ∥v∥ = 1. By (A.2) and

(A.16),

0 ≥ Q(θ̂)−Q(θ̃Ω)

= −2ϵWX̃vM1/2
n δn/n+ δ2/nMnv

T X̃TWX̃v

≥ −Op(rn)δn + c1δ
2
n.

Thus ∥θ̂ − θ̃Ω∥ ≍ δn = Op(rn), which, together with ∥θ̃Ω − β0∥ = Op(ρn), implies that

∥θ̂ − θ̃∥ = Op(ρn + rn). Hence the claims in parts b and c follow.

To prove Theorem 2, we need the following lemma which gives the asymptotic behavior

of the AFT estimator under Kaplan-Meier weights. Denote the right hand side of (A.1) to be

Sφ. Introduce the following sub-distribution functions:

H̃1(x,u, y) = P (X ≤ x,U ≤ u, Y ≤ y, δ = 1)

H̃0(y) = P (Y ≤ y, δ = 1).

Put

ξ0(y) = exp

{∫ y−

0

H̃0(dz)

1−H(z)

}

ξφ1 (y) =
1

1−H(y)

∫

w>y
φ(x,u, w)ξ0(w)H̃1(dx, du, dw)

ξφ2 (y) =

∫ ∫
I(v < y, v < w)φ(x,u, w)ξ0(w)

(1−H(v))2
H̃0(dv)H̃1(dx, du, dw).
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Let {φ1, · · · ,φJ} be a set of measurable functions. Write

Sn = (Snφ1, · · · ,SnφJ)
T

and

S = (Sφ1, · · · ,SφJ)T .

Lemma 6. Assume that (C1) and (C2) hold. In addition, assume the following two integra-

bility conditions hold for all φj, 1 ≤ j ≤ J ,
∫
φj(X,U,W )ξ0(W )δ2dPX,U,Y < ∞ (A.17)

∫
φj(X,U,W )

√
R(W )dPX,U,Y < ∞. (A.18)

Then in distribution

√
n(Sn − S) → N(0,Σ), (A.19)

where Σ = (σjj′), σjj′ = cov(ψj ,ψj′) and ψj = φj(X,U, Y )ξ0(Y )δ + ξ
φj

1 (Y )(1− δ)− ξ
φj

2 (Y ).

The proof of this lemma may follow Stute [1996]. We may now proceed to the proof of

Theorem 2.

Proof of Theorem 2. According to the proof of Lemma 3, with probability approaching 1,

|β̃k| > aλn, |β̂k| > aλn and thus pλn(|β̃k|) = pλn(|β̂k|) for 1 ≤ k ≤ s. By Theorem

1, with probability approaching 1, θ̂ = (β̂T
1 ,0

T , γ̂T )T is a local minimizer of Q(θ). We

may note that Q(θ) is quadratic in (βT
1 ,γ

T )T when |βk| > aλn for 1 ≤ k ≤ s. Therefore

∂Q(θ)/∂θ|β1=β̂1,β2=0,γ=γ̂ = 0, which implies that

(β̂T
1 , γ̂

T )T =

(
n∑

i=1

wni

[
(X(1)

i )(X(1)
i )T (X(1)

i )BT
i

Bi(X
(1)
i )T BiBT

i ]

])−1( n∑

i=1

wni

[
(X(1)

i )

Bi

]
Yi

)
.

Next we put

(β̃T
1 , γ̃

T )T =

(
n∑

i=1

wni

[
(X(1)

i )(X(1)
i )T (X(1)

i )BT
i

Bi(X
(1)
i )T BiBT

i

])−1( n∑

i=1

wni

[
(X(1)

i )

Bi

]
E{Yi|Xi,Ui}

)
.

Invoking Lemmas 1 and 4 while applying a version of Lindeberge central limit theorem (cf.

Petrov [1975]), we obtain that for any vector cn with dimension s+dMn and components not
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all 0,

{cTnΥcn}−1/2cTn

([
β̂1

γ̂

]
−
[

β̃1

γ̃

])
→d N(0, 1), (A.20)

where Υ = H−1Σ∗H−1, H = E

[
(X(1)

i )(X(1)
i )T (X(1)

i )BT
i

Bi(X
(1)
i )T BiBT

i

]
and Σ∗ = Var[δiξ∗0(Yi)(Yi −

E(Yi|X(1)
i ,Ui))((X

(1)
i )T ,BT

i )
T + (1 − δi)ξ∗1(Yi) − ξ∗2(Yi)]. Part a of Theorem 2 follows from

(A.20) immediately. Further, if we choose cn = (0T ,B(u)Tan) such that not all elements of

an are 0, we obtain

{aTnΓ(u)an}−1/2aTn

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
ĝ1(u1)

· · ·
ĝd(ud)

⎤

⎥⎦−

⎡

⎢⎣
g̃1(u1)

· · ·
g̃d(ud)

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
→d N(0, 1)

which leads to part b.
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Figure 1: Kaplan Meier estimate of the survival probability.
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Method UF OF CZ IZ TP FP REE MSE MME MAD

n = 200 Extreme value distribution

(a) 0.08 0.72 0.998 0.016 4.92 1.92 0.007 0.289 0.190 0.096

(b) 0.31 0.59 0.997 0.062 4.69 2.75 0.022 0.794 0.610 0.207

(c) 0.99 0.01 0.991 0.424 2.88 8.65 0.386 11.085 12.428 2.163

(d) 0.84 0.16 0.995 0.262 3.69 5.21 0.398 6.106 11.101 3.729

(e) 0.99 0.01 0.990 0.32 3.4 10.22 0.501 8.033 14.964 2.045

n = 400 Extreme value distribution

(a) 0.01 0.68 0.998 0.002 4.99 1.59 0.004 0.134 0.103 0.056

(b) 0.11 0.72 0.998 0.022 4.89 2.29 0.014 0.405 0.387 0.156

(c) 0.98 0.02 0.992 0.306 3.47 7.84 0.265 6.770 8.361 1.649

(d) 0.86 0.14 0.997 0.242 3.79 3.42 0.435 6.23 12.992 2.352

(e) 0.97 0.03 0.995 0.404 2.98 5.36 0.629 8.921 20.080 2.106

n = 200 Normal distribution

(a) 0.02 0.75 0.998 0.004 4.98 1.82 0.005 0.202 0.146 0.067

(b) 0.24 0.61 0.997 0.048 4.76 2.53 0.019 0.710 0.464 0.233

(c) 0.94 0.06 0.994 0.254 3.73 6.12 0.176 5.414 5.171 1.547

(d) 0.83 0.17 0.995 0.260 3.70 4.76 0.416 6.292 12.338 3.710

(e) 0.90 0.1 0.989 0.318 3.41 10.93 0.515 8.303 16.539 2.354

n = 400 Normal distribution

(a) 0.00 0.56 0.999 0.000 5.00 1.10 0.002 0.077 0.051 0.024

(b) 0.04 0.71 0.998 0.008 4.96 1.97 0.010 0.325 0.194 0.093

(c) 0.79 0.20 0.994 0.174 4.13 5.75 0.116 3.120 3.312 0.932

(d) 0.82 0.18 0.996 0.220 3.90 3.67 0.429 6.130 12.957 2.317

(e) 0.97 0.03 0.994 0.420 2.90 5.83 0.640 9.098 20.919 2.095
Note: UF is the proportion of underfitted models; OF is the proportion of overfitted models; CZ is the

percentage of correctly estimated zero coefficients; IZ is the percentage of incorrectly estimated nonzero

coefficients; TP is the true positive fraction; FP is the false positive fraction; REE is the relative estimation

error; MSE is the mean squared error; MME is the median of model errors and MAD is its median absolute

deviation.

Table 1: Variable selection and model-fitting performance when d = 1.
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Method UF OF CZ IZ TP FP REE MSE MME MAD

n = 200 Extreme value distribution

(a) 0.17 0.65 0.998 0.034 4.83 1.98 0.006 0.304 0.181 0.077

(b) 1.00 0.00 0.988 0.534 2.33 11.41 0.872 31.440 27.118 4.847

(c) 0.99 0.01 0.974 0.586 2.07 25.82 6.365 174.991 199.466 20.744

(d) 0.99 0.00 0.991 0.420 2.90 9.05 0.697 10.457 21.402 3.880

(e) 1.00 0.00 0.996 0.622 1.89 3.67 0.882 12.449 28.695 2.577

n = 400 Extreme value distribution

(a) 0.02 0.52 0.999 0.004 4.98 1.06 0.002 0.094 0.049 0.028

(b) 1.00 0.00 0.983 0.404 2.98 16.45 0.646 24.272 20.904 3.064

(c) 0.95 0.05 0.955 0.412 2.94 44.99 5.383 162.695 172.606 15.438

(d) 1.00 0.00 0.995 0.446 2.77 4.72 0.809 11.271 26.570 3.085

(e) 1.00 0.00 0.999 0.546 2.27 0.34 0.870 11.981 28.388 1.629

n = 200 Normal distribution

(a) 0.11 0.60 0.999 0.022 4.89 1.41 0.004 0.210 0.106 0.057

(b) 0.99 0.01 0.989 0.522 2.39 10.82 0.774 29.227 25.184 4.490

(c) 0.99 0.01 0.974 0.608 1.96 26.28 6.561 176.632 208.530 26.358

(d) 0.97 0.03 0.989 0.388 3.06 10.49 0.677 10.150 20.642 3.224

(2) 1.00 0.00 0.997 0.602 1.99 2.68 0.892 12.511 28.637 1.633

n = 400 Normal distribution

(a) 0.00 0.50 0.999 0.00 5.00 0.96 0.002 0.080 0.040 0.019

(b) 1.00 0.00 0.987 0.344 3.28 14.32 0.520 19.344 16.303 2.837

(c) 0.88 0.12 0.954 0.388 3.06 46.05 5.535 164.404 177.647 12.326

(d) 0.98 0.02 0.993 0.384 3.08 7.38 0.771 10.787 24.937 3.429

(e) 1.00 0.00 0.999 0.526 2.37 0.40 0.872 12.017 27.985 1.632
Note: UF is the proportion of underfitted models; OF is the proportion of overfitted models; CZ is the percent-

age of correctly estimated zero coefficients; IZ is the percentage of incorrectly estimated nonzero coefficients;

TP is the true positive fraction; FP is the false positive fraction; REE is the relative estimation error; MSE is

the mean squared error; MME is the median of model errors and MAD is its median absolute deviation.

Table 2: Variable selection and model-fitting performance when d = 3.
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Gene Coefficients Standard Error Lower Upper

6141 -2.396 1.258 -4.861 0.070

7265 -3.549 1.542 -6.572 -0.526

7271 -3.390 1.656 -6.635 -0.145

10127 -1.420 1.640 -4.634 1.794

10366 3.459 1.335 0.842 6.076

14683 2.095 1.622 -1.083 5.274

16107 0.666 1.749 -2.761 4.093

16817 -0.870 1.613 -4.032 2.292

16870 -0.932 1.134 -3.156 1.291

17318 2.078 0.518 1.062 3.093

19866 3.536 1.714 0.176 6.896

19867 -4.653 1.397 -7.392 -1.915

20401 4.381 0.872 2.673 6.090

21658 2.085 1.351 -0.563 4.734

Table 3: Estimation results without adjustment of confounders. Standard errors and lower and upper

bounds of the 95% confidence intervals are obtained from the bootstrap.

Gene Coefficients Standard Error Lower Upper

4447 -0.314 0.174 -0.655 0.028

5303 0.176 0.101 -0.021 0.373

6150 0.425 0.195 0.043 0.806

6177 0.189 0.199 -0.201 0.578

6226 -0.271 0.181 -0.626 0.085

9602 0.430 0.087 0.260 0.599

10189 0.181 0.125 -0.065 0.427

14295 0.211 0.169 -0.121 0.544

14716 0.155 0.071 0.016 0.294

15102 -0.187 0.151 -0.482 0.108

16454 -0.255 0.115 -0.481 -0.030

16929 0.201 0.150 -0.092 0.494

17465 0.158 0.074 0.013 0.303

19128 -0.263 0.054 -0.369 -0.157

Table 4: Estimation results adjusted for age, gender, cancer stage, adjuvant chemotherapy treatment

and smoking history. Standard errors and lower and upper bounds of the 95% confidence intervals are

obtained from the bootstrap.
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