
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2016 Society for Industrial and Applied Mathematics
Vol. 76, No. 4, pp. 1633–1657

CAN PATHOGEN SPREAD KEEP PACE WITH ITS HOST
INVASION?∗
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Abstract. We consider the Fisher-KPP equation in a wavelike shifting environment for which
the wave profile of the environment is given by a monotonically decreasing function changing signs
(shifting from favorable to unfavorable environment). This type of equation arises naturally from
the consideration of pathogen spread in a classical susceptible-infected-susceptible epidemiological
model of a host population where the disease impact on host mobility and mortality is negligible.
We conclude that there are three different ranges of the disease transmission rate where the disease
spread has distinguished spatiotemporal patterns: extinction; spread in pace with the host invasion;
spread not in a wave format and slower than the host invasion. We calculate the disease propagation
speed when disease does spread. Our analysis for a related elliptic operator provides closed form
expressions for two generalized eigenvalues in an unbounded domain. The obtained closed forms yield
unsolvability of the related elliptic equation in the critical case, which relates to the open problem
4.6 in [H. Berestycki and L. Rossi, J. Eur. Math. Soc. (JEMS), 8 (2006), pp. 195–215].
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eigenvalues

AMS subject classifications. 35C07, 35K57, 37N25, 92D25

DOI. 10.1137/15M1029564

1. Introduction. Pathogen spread due to host range expansion or species inva-
sion has substantial impact on environment, economics, and human health. Specific
examples that motivate our modeling and analysis here include the spread of Lyme
disease due to the range expansion of its tick hosts [13, 14, 15, 35], and the spread of
avian influenza due to bird migration [10, 42].

In a series of modeling studies [9, 10, 21], using a satellite tracking data for the
migratory routes of a group of bar-headed geese in Southeast Asia conducted by the
UN-FAO and WHO avian influenza team, we parameterized the migratory routes
using an elongated closed curve and demonstrated that it is possible to characterize
essential features of bird migration dynamics by using a one-dimensional hyperbolic
(parabolic) partial differential equation (PDE) (for the density of the bird population
along the migratory closed curve) involving diffusion and convection, natural birth,
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and death [10]. We then, using the classical technique of integration along characteris-
tics, reduced such a PDE system to a large scale metapopulation (patchy) model using
delay differential equations so that we were able to validate the model using available
bird observation data in major stopovers of the migration including the winter refuge
and summer breeding sites [21]. The model analysis, using the monotone dynamical
systems theory, shows that the migratory bird population converges to a spatiotempo-
ral periodic solution, the discrete analogue of a rotating wave. Incorporating the avian
influenza transmission among migratory birds and between migratory and domestic
birds, we then extended this bird migration ecological system to an avian influenza
spread model and concluded that disease transmission can be persistent (in the sense
that the number of infectious birds, either migratory or domestic, will remain strictly
above a positive level) [9]. However, we also noted that the avian influenza does not
necessarily spread in pace with the bird migration and, more importantly, the avian
influenza spread pattern is no longer a rotating wave (i.e., not periodic in time and
in space) with disease peak time seeming irregular.

Here, we consider complex spatiotemporal patterns of pathogen spread facilitated
by range expansion of the pathogen’s host, through a simple looking susceptible-
infectious-susceptible (SIS) model with spatial diffusion:

(1.1)
St = DSxx +B(N)N − ωSI − μ(N)S + γI,
It = DIxx + ωSI − μ(N)I − γI

with N = S + I, the total population. In the model, the mass action ωSI is used for
disease transmission with ω > 0 being the transmission rate, and the recovery period
of the infectious hosts is 1/γ. B(N) and μ(N) are the population per capita birth
rate and death rate. For the sake of illustration, we focus in this introduction on the
classical logistic growth, so that B(N) = b and μ(N) = d + N

K . This leads to the
Fisher-KPP equation for the total population density N ,

(1.2) Nt = DNxx + (b − d)N
[
1−N/N∗]

with N∗ := (b−d)K. We assume b > d so that the species can successfully invade into
and establish in new habitats. It is well known that (1.2) has the so-called traveling
wavefront with the minimal wave speed c∗N = 2

√
D(b− d) that coincides with the

invasion (propagation) speed, and this waveform and the minimal wave speed play a
key role in determining the long-term spatiotemporal pattern of host invasion.

Replacing N(t, x) by a wave solution n(x− cN t) with an appropriate wave speed
cN , and then replacing S(t, x) by n(x − cN t) − I in the I-equation of system (1.1)
leads to

It = DIxx + I[ωn(x− cN t)− d− n(x− cN t)/K − γ − ωI].

Rescaling the time and space variable appropriately, we are led to the following scalar
reaction-diffusion equation

(1.3) vt = vxx + v(a(x− ct)− v).

This equation was considered in [5] in a wave environment with a bounded length
of spatial region habitable for a single species, so the function a there is positive in
this region and then negative outside. In comparison, here the intrinsic growth rate
function a motivated by the disease spread in the host has some special property to
render the arguments in the work [5] inapplicable.
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TRAVELING WAVES IN A SHIFTING ENVIRONMENT 1635

This special property of the monotone C1 function a is relevant to the disease
epidemiology. Namely, if the transmission rate ω is less than ω1 (the formula will be
defined later in section 2), the threshold value for the disease outbreak to take place
when the total population follows the intrinsic growth rate, the function a is negative
everywhere in the entire environment. However, when ω > ω1, we have

(1.4) α := a(−∞) > 0 > a(+∞) =: β,

so the environment shifts from favorable to unfavorable for the disease spread. Disease
extinction in the case where ω < ω1 is naturally expected, but whether disease out-
break is possible and how disease spreads (patterns and speed) is less intuitive when
ω > ω1. Indeed, as we shall see in the next section, (1.3) has a traveling wave of the
same speed as the host invasion if and only if the disease transmission rate ω is larger
than ω2 > ω1, with ω2 being the next threshold of the transmission rate which will be
given in an explicit form in section 2. A major contribution of our work here from the
disease control point of view is to describe qualitatively the spatiotemporal patterns
of disease spread when the transmission rate is in the moderate range (ω1, ω2). Our
findings show that how fast the disease spreads is determined not only by the inva-
sion speed of the host (that is determined by the ecological features of the biological
invasion) but also determined by the disease transmission between susceptible and
infectious hosts. When the transmission rate is in the moderate range (ω1, ω2), we
conclude that the total population moves faster than the infected subpopulation. In
this case, we anticipate that the infected subpopulation is approximately governed
by a diffusive SIS model when the demographic dynamics (reproduction and natural
death) is balanced, so we observe a typical epidemic curve of disease outbreak (where
the infectious population grows exponentially initially, and then the infection dies
out quickly) propagation in space. This leads naturally to the consideration of pulse
waves–disease outbreak curves moving in space; see the next section in details.

In model (1.1), we consider the case where disease carried by the pathogen can
be transmitted within the host, but for the host the infection is often subclinical,
and hence asymptomatic and nonlethal. We also restrict ourselves to the case where
the infection does not alter the host’s mobility, hence infected or susceptible hosts
may follow the same or similar movement patterns. Therefore, disease transmission
normally follows with the biological invasion or range expansion of the host, so the
invasion of the host is the first indicator of the disease risk. Our focus here is on
whether the disease spreads at the same speed of species invasion, and if not then
how much delay is there between the host invasion and the pathogen spread and
how does this delay impact on the complexity of disease spread patterns. In the
final discussion section, we further relate our modeling and analysis to the issue of
biological invasion due to climate change.

2. Main results. We start with the limiting system (1.3) for which the moving
environment a satisfies (1.4). We first consider positive traveling wave solutions with
the same speed as the environment shifting, that is, v(t, x) = u(x−ct). These solutions
satisfy

(2.1) u′′ + cu′ + u(a(x)− u) = 0, x ∈ R,

where the symbol prime stands for the derivative. Applications of the elliptic strong
maximum principle yield that any bounded nonnegative solution u �≡ 0 of (2.1) sat-
isfies 0 < u < α and it is either a KPP wave in the sense that

u(+∞) = 0, u(−∞) = α, and u′ < 0
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1636 JIAN FANG, YIJUN LOU, AND JIANHONG WU

or a pulse wave in the sense that

u(±∞) = 0 and {x : u′ = 0} is a singleton.

Our first general result, stated below, shows how the environment shifting speed and
the convergence rate of the environment to the maximum capacity (at −∞) impact
on the existence and shape of traveling wave solutions (for the infected hosts).

Theorem 2.1. Define c∗ := 2
√
α. The following statements on traveling wave

solutions of (1.3) are valid:
(i) A KPP wave exists if and only if c < c∗.
(ii) If c > −c∗, then no pulse wave exists.
(iii) If c < −c∗ and α − a ∈ L1(−∞, 0), then there are infinitely many different

pulse waves.

To obtain the above results on the existence of pulse waves, we need to have an a
priori estimate on the behaviors of wave profiles at −∞, in particular, the exponential
decay rate given in Lemma 5.2 (in section 5.1). This estimate allows us to construct
appropriate lower solutions. As for KPP waves, since u ≡ α is an upper solution,
to prove the existence when c < c∗ we need to construct a lower solution u− < α
with lim supx→−∞ u−(x) > 0. This lower solution is constructed by considering a
piecewise constant lower environment a− (in the sense that a− is piecewise constant
and a− ≤ a) and by constructing solutions of the system with the piecewise constant
environment a−. Using a similar argument based on a piecewise constant environment
a+, for the nonexistence when c ≥ c∗, we construct an upper environment a+ for which
no bounded wave exists: since the wave in environment a serves as a lower solution
to the equation in environment a+, we then can argue by contradiction to rule out
the existence. In short, since the shifting environment is favorable at one side and
unfavorable at the other side, we need to sandwich this environment in-between two
piecewise constant ones to construct various upper and lower solutions to establish
the critical value of shifting speed for the existence of waves. The proof of Theorem
2.1 can be found in sections 5.2 and 5.3.

To state a nontrivial byproduct result on two generalized eigenvalues of elliptic
operators that were introduced in [6] and [7], respectively, we define the elliptic op-
erator Lc,au = u′′ + cu′ + a(x)u, x ∈ R. Using the notations from [8], we define the
eigenvalues for the operator −Lc,a in the unbounded domain R as follows:

λ1,c,a := sup{λ|∃φ ∈ C2(R), φ > 0, (Lc,a + λ)φ ≤ 0}
and

λ′1,c,a := inf{λ|∃φ ∈ C2(R) ∩W 2,∞(R), (Lc,a + λ)φ ≥ 0}.(2.2)

Recall that a(−∞) = α > 0 and a(+∞) = β < 0 as assumed.

Theorem 2.2. Eigenvalues λ1,c,a and λ′1,c,a can be explicitly expressed, respec-
tively, as

λ1,c,a = −α+
c2

4
and λ′1,c,a =

⎧⎪⎨
⎪⎩
−α, c ≤ 0,

λ1,c,a, c ∈ (0, 2
√
α− β),

−β, c ≥ 2
√
α− β.

The proof of this theorem can be found in section 5.4. Based on this result, we
observe that λ1,c,a is independent of the negative value a(+∞) but λ′1,c,a is dependent
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TRAVELING WAVES IN A SHIFTING ENVIRONMENT 1637

on this value. The sign of λ1,c,a cannot completely determine the solvability solutions
of (2.1) but λ′1,c,a can. In the critical case where λ′1,c,a = 0 (that is, c = c∗), (2.1) has
no positive bounded solutions. This then gives a negative answer to the open problem
4.6 in [8] on the existence of solutions for a general elliptic equation with λ′1,c,a = 0.
Besides, we note that as a function of c, λ′1,c,a is continuously nondecreasing in c but

not differentiable at c = 2
√
α− β.

We also remark that applications of the comparison arguments enable us to show
that Theorem 2.2 holds if the monotonicity of a is replaced by a weaker condition:
there are two monotone functions a± having the same limit at ±∞ and such that
a− ≤ a ≤ a+.

To demonstrate the general results, we consider the diffusive SIS model (1.1) with
logistic growth (we will discuss the case for the Allee effect in the appendix). Recall
that the limiting equation for the total population has traveling waves with wave
speeds c ≥ c∗N = 2

√
D(b − d). Define

(2.3) ω1 =
1

N∗ [μ(N
∗) + γ], ω2 = ω1 +

1

K
,

and

(2.4) cω = 2
√
DN∗(ω − ω1) ∀ω > ω1

with N∗ being the carrying capacity in (1.2). Clearly, cω < c∗N when ω ∈ (ω1, ω2) and
cω > c∗N when ω > ω2. Therefore, we have the following corollary.

Corollary 2.3. Whether the model (1.1) has a positive wave is completely de-
termined by the threshold value ω2.

(i) If ω > ω2, then for any c ∈ [c∗N , cω), model (1.1) admits a positive wave
solution (S(x − ct), I(x − ct)), where S is connecting ω1

ω N
∗ to 0 and I is

decreasingly connecting ω−ω1

ω N∗ to 0.
(ii) If ω ≤ ω2, then model (1.1) admits no positive bounded waves.

The first part of the result is what most existing studies focused on, and it confirms
that the epidemic system has a family of traveling waves where the total and infectious
populations move at the same speed, the disease spreads at in the same speed of the
host invasion or range expansion. We illustrate this result in Figure 1. This conclusion
however is true only when the transmission rate is sufficient large so that ω > ω2.
The critical value ω1 is where the basic reproduction number R0 is equal to 1 when
the population reaches its equilibrium state (N). As the disease induced mortality
(for the host) is ignored, the total population will eventually stabilize at the positive
equilibrium state at which the disease will spread in the population as long as

R0 :=
ωN∗

γ + d+ N∗
K

> 1.

The corollary above also concludes that the model for the infected population does not
have any positive bounded solution when ω ∈ [ω1, ω2]. So a natural question arises,
in this case, in what format and speed does the disease spread? The next question
is, what is the epidemiological significance of two thresholds of the transmission rate?
These questions are addressed in the following theorem on disease propagation.

Theorem 2.4. Assume that S0, I0 ∈ C(R,R+) with I0 �≡ 0 having compact
supports. Let (S(t, x), I(t, x)) be the solution of (1.1) with S(0, x) = S0(x) and
I(0, x) = I0(x). Then the following statements are valid:
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(a) Pathogen propagation speed c∗I with
ω1 = 0.0667, ω2 = 0.1.
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(b) Pathogen extinction with small
disease transmission rate
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(c) Pathogen spread with intermediate
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(d) Pathogen spread with high
transmission rate

Fig. 1. Existence (ω > ω1) and nonexistence of traveling waves (ω ≤ ω1). Parameters are
illustratively set as D = 1, b = 1, d = 0.5, K = 30, ω (ω = 0.05, 0.08 and 0.2 for (b), (c), and (d),
respectively), γ = 0. In this setting, ω1 = 0.0667 and ω2 = 0.1. In (b), (c), and (d), the spatial
patterns are plotted at times 20, 40, 60, 80, and 100. The plots in (d) show that the infectious
subpopulation propagates in pace with the whole population with transit delay that converges to a
positive number, the delay between susceptible and infectious populations invasion.

(i) If ω ∈ (0, ω1], then limt→∞ I(t, x) = 0 uniformly in x ∈ R.
(ii) If ω ∈ (ω1, ω2), then for any c ∈ (0, cω) there exist t0 > 0 and U , U ∈

C(R,R+) with U �≡ 0 such that

U(x− ct) ≤ I(t, x) ≤ U(x− cωt) ∀t ≥ t0, x ∈ R.

(iii) If ω ∈ [ω2,∞), then for any c ∈ (0, c∗N ) there exist t0 > 0 and U , U ∈
C(R,R+) with U �≡ 0 such that

U(x− ct) ≤ I(t, x) ≤ U(x− c∗N t) ∀t ≥ t0, x ∈ R.

The constructions of U and U will be given in the proof in section 3.1. So,
in summary, we obtain that the rightward invasion speed c∗I of the disease has the
following expression,

c∗I =

⎧⎪⎨
⎪⎩
0, ω ∈ (0, ω1],

cω, ω ∈ (ω1, ω2),

c∗N , ω ∈ [ω2,∞),
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from which we conclude that (i) when the transmission rate ω < ω1, the basic repro-
duction number R0 < 1 and the infection will die out; (ii) when ω > ω1, the disease
can invade into new habitats but cannot follow the pace of the susceptible population
unless ω ≥ ω2; (iii) when ω ∈ (ω1, ω2), susceptible and infectious population have
different invasion speeds and the disease propagates slower than the host invasion.
The second threshold ω2 is the critical value of the transmission rate when the dis-
ease and host propagate at the same speed. As a function of the transmission rate
ω ∈ (0,+∞), the invasion speed c∗I of disease is nondecreasing but not differentiable
at two critical values (see Figure 1(a)).

3. Application. In this section, we apply the developed result to investigate the
disease spread in a diffusive SIS model with logistic growth or Allee effect. We are
interested in whether the infectious population can invade into new habitats, and if
yes, whether the infectious population shares the same invasion speed as the suscep-
tible population. To address these two questions, we are going to study the traveling
waves and invasion speed for model system (1.1). In what follows, we consider two
scenarios with different birth and death rates for the population.

3.1. Logistic growth. When B(N) = b and μ(N) = d + N
K , we obtain the

Fisher-KPP equation (1.2). We remark that system (1.2) with logistic growth was
studied in [1] to investigate the Hantavirus transmission in mice. We assume b > d
so that the species successfully invades into new habitats. It is then well known that
(1.2) admits the invasion speed c∗N = 2

√
D(b− d) that coincides with the minimal

wave speed. Recall that ω1, ω2, and cω were defined in (2.3) and (2.4). We now prove
the corollary regarding traveling waves. For any c1 ≥ c∗N , (1.2) of total population
admits a decreasing traveling wave n(x− c1t) connecting N

∗ to 0. Replacing N(t, x)
and S by n(x− c1t) and n(x− c1t)− I in the I-equation of system (1.1), we obtain

(3.1) It = DIxx + I

[
ωn(x− c1t)− d− n(x− c1t)

K
− γ − ωI

]
.

Introducing new variables t̂ = ωt and x̂ =
√

ω
Dx and dropping all the hats, (3.1) can

be rescaled into the following form:

(3.2) It = Ixx + I(a(x) − I),

where

a(x) :=
1

ω

[
ωN

(
x√
ω/D

)
− d−N

(
x√
ω/D

)
/K − γ

]
.

Then a(x) ≤ 0 if ω ≤ ω1, and in such a case, (3.2) admits no positive bounded waves.
If ω > ω1, a(x) is decreasing ∀x ∈ R due to ω1 >

1
K and

a(−∞) =
c2ω
4Dω

> 0, a(+∞) = −d+ γ

ω
< 0.

Define c := c1√
Dω

. Substituting I(t, x) = i(x−ct) into (3.2) we obtain i′′+ci′+i(a−i) =
0, for which we know from Theorem 2.1 that it admits a positive solution if and only

if c < 2
√
a(−∞) = cω√

ωD
. Note that c can be any number that is not less than

c∗N√
Dω

.

Thus, c < cω is equivalent to cω > c∗N , which then is equivalent to ω > ω2.
We now provide a proof for Theorem 2.4 regarding the rightward invasion if

the initial function has compact support. Let N(t, x) be the solution of (1.2) with
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N(0, x) = S0(x) + I0(x). Then we have

lim
t→∞,|x|≤ct

N(t, x) = N∗ ∀c ∈ (0, c∗N ).

Replacing S by N(t, x) − I in the second equation of (1.1), we have the following
initial value problem

It = DIxx + I

[
ωN(t, x)− d− N(t, x)

K
− γ − ωI

]
,

I(0, x) = I0(x),

where I0 has compact support.

(i) If ω ≤ ω1, then ωN(t, x)− d− N(t,x)
K − γ ≤ ωN∗ − d− N∗

K − γ ≤ 0, and hence,
It ≤ DIxx, which implies the conclusion.

(ii) Given c ∈ (0, cω), there exists ε1 > 0 such that c < cω − ε1. For such an ε1,
there exists B > 0 such that the principle eigenvalue λ of{

Dφ′′B + cφ′B + (cω−ε1)
2

4D φB = λφB , x ∈ (−B,B),

φB(±B) = 0,

is positive. Define the continuous function ρ by

ρ(ξ) :=

{
N∗ − ε2, |ξ| ≤ B,

0, |ξ| ≥ B + 1,

where ε2 is small enough so that

cω − ε1 < 2

√
D

[
ω(N∗ − ε2)−

(
γ + d+

N∗ − ε2
K

)]
.

For such ρ and ε2, there exists t0 > 0 such that

N(t, x) ≥ ρ(x− ct), t ≥ t0, x ∈ R.

For such t0 > 0, we have I(t0, x) > 0 ∀x ∈ R thanks to the maximum principle.
Define

U(x) :=

{
δφB(x), |x| ≤ B,

0, |x| > B,

where δ is small enough such that

I(t0, x) ≥ U(x − ct0) ∀x ∈ R and λ > ωδφB(x) ∀|x| ≤ B.

Define u(s, x) = U(x−cs−ct0). Let u(t, x) be the solution of the initial value problem

us = Duxx + u

[(
ω − 1

K

)
N(s+ t0, x)− d− γ − ωu

]
, s > 0,

u(0, x) = I(t0, x).
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TRAVELING WAVES IN A SHIFTING ENVIRONMENT 1641

Next we show that u(s, x) ≤ u(s, x). Indeed, define ξ = x− cs− ct0. When |ξ| > B,
u(s, x) = 0 ≤ u(s, x). When |ξ| < B, we have

−us +Duxx + u

[(
ω − 1

K

)
N(s+ t0, x)− d− γ − ωu

]

≥ cU ′(ξ) +DU ′′(ξ) + U(ξ)

[
ωρ(ξ)− d− ρ(ξ)

K
− γ − ωU(ξ)

]

= δ

{
cφ′B(ξ) +Dφ′′B(ξ) + φB(ξ)

[
ω(N∗ − ε2)− d− N∗ − ε2

K
− γ − ωδφB(ξ)

]}

≥ δ

[
cφ′B(ξ) +Dφ′′B(ξ) +

(cω − ε1)
2

4D
φB(ξ)

]
− ωδ2φ2B(ξ)

= δφB(ξ)[λ − ωδφBφ
′
B(ξ)]

≥ 0.

It then follows that u(s, x) ≤ u(s, x) due to u(0, x) = U(x − ct0) ≤ I(t0, x) = u(0, x).
Note that I(s+ t0, x) = u(s, x) ∀s ≥ 0, x ∈ R. It then follows that I(t, x) ≥ U(x− ct)
∀x ∈ R, t ≥ t0.

Let U(x − cωt) be the traveling wave of

ut = Duxx + u

(
ωN∗ − d− γ − N∗

K
− ωu

)
.

Since U is connecting ωN∗ − d− γ − N∗
K to 0, any translation of U is still a traveling

wave and I0(x) has compact support; we may assume, without loss of generality, that
U ≥ I0. It then follows that I(t, x) ≤ U(x− cωt) ∀x, t.

(iii) U can be constructed in a similar way to the above. Next we construct U .
Since ω > ω2, we know from Corollary 2.3 that (1.1) admits a positive traveling wave
(S(x − c∗N t), I(x − c∗N t)). Without loss of generality, we may assume that N(t, x) ≤
S(x− c∗N t) + I(x− c∗N t). Then U can be chosen to be I(x − c∗N t).

3.2. Population growth with Allee effect. When B(N) ={
θ(−N2 + [K+ +K− + e]N + d), 0 ≤ N ≤ K+ +K−,
nonnegative and nonincreasing, otherwise,

and μ(N) = θ(eN + K+K− + d) with K+ > K− > 0, the dynamics of the total
population density satisfies the following growth model with Allee effect:

(3.3) Nt = DNxx + θ(K+ −N)(N −K−)N.

Note that a similar model to system (2.4) was studied in [24, 25] with the standard
transmission term and disease-induced death.

It is well known that (3.3) admits a unique wave solution N(x − c̄t) connecting
K+ to 0 with c̄ = 2

3 (K+ − 2K−)
√
θD. To ensure the successful invasion of the total

population of the species (i.e., c̄ > 0) we need the necessary and sufficient condition
K+ > 2K−. With this result for the total population, we can now study the invasive
wave of infectious population. For this purpose, we first define two numbers

(3.4) ω3 =
1

K+
[μ(K+) + γ], ω4 = ω3 +

c̄2

4DK+
.
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(a) Infectious population. (b) Susceptible population.

(c) Total population.
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(d) Two-dimensional (2d) view of the
profiles.

Fig. 2. Existence of traveling waves when ω > ω4. Parameters are illustratively set as D = 1,
ω = 0.05, γ = 0, θ = 10−5, b = 2.4, K+ = 200, K− = 50, e = 103, and d = 5 × 104. Then
ω > ω4 = 0.0131. Note that some parameters (θ, b, K+, e, and d) are taken from the previous work
[24].

Theorem 3.1 (traveling wave). Any wave solution (S(x−ct), I(x−ct)) of model
(2.4) with Allee effect has the property that c = c̄ and S+ I is decreasingly connecting
K+ to 0. Moreover, for the I component, the KPP wave exists if and only if either
ω > ω3,K+ ≤ 2K− or ω > ω4,K+ > 2K−; the pulse wave does not exist if K+ > 2K−
or ω �∈ [ω3, ω4]; and there are infinitely many pulses if ω ∈ (ω3, ω4) and K+ < 2K−.

In the model, the number K− quantifies the strength of the Allee effect and the
rate ω quantifies the strength of disease transmission. Note that ω4 defined in (3.4)

is decreasing in K− ∈ [0, K+

2 ]. The above theorem suggests that the Allee effect helps
the disease spreads among the species. It would be interesting to investigate the
impact of the Alee effect on extinction of the species if the disease is fatal, which has
been recently addressed for a nondispersive SI model in [19] and a patchy model in
[20].

Assume that K+ > 2K− and N(0, x) has compact support. Recent studies [16,
47] have shown that there are certain critical sizes for N(0, x) such that the total
population invades successfully. In such a case, for the infectious population, as ω
increases from 0 to +∞ we may see phenomena similar to the logistic case. The
critical transmission rates now are ω3 and ω4 defined in (3.4). The choice of N(0, x)
is independent of ω. Figure 2 shows the propagation of each compartment.
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4. Discussions. We used a simple diffusive SIS model to illustrate the complex-
ity of disease spread patterns when the pathogen host invades a habitat as a traveling
wave. We were able to completely classify, in term of the disease transmission rate, the
speed and patterns of disease spread in an environment that is divided into favorable
and unfavorable regions due to the host invasion.

An important example that we considered here is the global avian influenza spread
facilitated by bird migration [10]; another example of interest is the Lyme disease
spread due to tick range expansion [35]. How fast the tick range expands due to
the environment shifting is itself an interesting issue that our modeling and analysis
approach can be used to address.

We derived a limiting system (1.3) as our staring point to investigate the pathogen
dispersal in the SIS model. This limiting system can arise very naturally in other
contexts. For example, if the north pole is labeled as +∞ while the equator is labeled
as −∞ ideally, and the patch zone of a population is idealized as a one-dimensional
unbounded domain, then the environmentally relevant coefficient a(x− ct) considered
in our study can be regarded as the per capita growth rate of a population in the spatial
domain that is separated into favorable (a(x−ct) > 0) and unfavorable (a(x−ct) < 0)
habitats. In this context, the sign of the parameter c determines the shifting direction
of the favorable habitat, expanding poleward (c > 0) or retracting equatorward (c <
0). Therefore, our results can be used to examine the species invasion pattern in a
moving environment, where the favorable and lethal habitats are moving spatially due
to biotic or abiotic factors, such as climate change.

Many ecological studies observed species migration at average rates of hundreds
of meters per year or more for thousands of years [11, 34], and changes in the dis-
tributions of many plants and animals, leading to severe range contractions and/or
extinction of some species [32]. It is generally agreed that climatic warming plays
an important role in driving the species migration and redistributing these plants
and animals, often through species-specific physiological thresholds of temperature
and precipitation tolerance [26, 27, 43]. By relating the environment shifting speed
to such quantities as the velocity of temperature increase (km yr−1) derived in [32],
our model equation (1.3) can be used to address a key question in species invasion,
can species populations, especially plants and other species that disperse slowly, keep
pace with the climate-change-induced spatial habitat shifts [12]? Species survival
may depend as much on keeping pace with moving climates as the climate’s ultimate
persistence [32, 34]. Those species which are unable to disperse fast enough to keep
pace with changing climates share increased extinction risk [26, 39], and as a result,
the loss of biodiversity. Furthermore, the decision framework with assisted coloniza-
tion [26] may be carried out with careful risk analysis against those of extinction and
ecosystem loss. As the first step, the estimation of the species invasion potential is of
pivotal importanance.

Various theoretical frameworks have been developed by explicitly describing the
ecological processes that contribute to changes of species range via biologically mean-
ingful parameters such as dispersal, reproduction, and climate envelope [29]. In most
of these frameworks, the window of favorable habitat suitable for a focal species (the
climate envelope [38]) is moving. The length of the window is normally assumed to
be constant [5, 36, 38, 46] except the work [30] where the persistence and spread were
discussed and [4] which investigated the existence of gaps of the dominance between
two competing species. By using the constant length window, the northern edge of
the range is assumed to be expanding while the southern edge is retracting at the
same rates. However, field studies observed the increase or decrease in the suitable
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habitat size for various species. Ixodes scapularis, the tick vector mainly responsi-
ble for the Lyme disease transmission in North America [28], has expanded its range
northward from the United States to colonize new regions in southern Canada. It
would be biologically meaningful to assume the length of the window is expanding
(c > 0) in this case. On the contrary, climate change may also decrease habitat for
some species, such as those cold, cool, and even some warmwater fish species in North
America reported in [17]. It is therefore also reasonable to allow the length of the
suitable window to be retracting southward (c < 0). Our model (1.3) and analysis
apply exactly to these scenarios.

It should be mentioned that starting from the early attempts of using a reaction-
diffusion system framework to investigate the influence of climate change on inter-
species competition [36], there is a growing body of literature on mechanistic models
in terms of diffusion equations or integrodifference equations to predict the spatial
spread of species under climate change [29]. Most applications have focused on de-
termining criteria for species persistence such as the critical range-shift speed [46] or
critical length of the favorable size [5]. Our study in comparison provides both new
techniques and insights into the wave profiles of species invasion patterns under cli-
mate change that induces a favorable habitat in an unbounded half of an environment
moving at a constant speed, an issue of current interest in the biological community
[23, 29]. To illustrate this point, we start from a generalized version of the classical
Fisher-KPP model [2, 18, 22], which has been widely used and extended to investigate
species invasion [37, 40]:

ut = Duxx + u(A(x − ct)−Bu).

In this system, A(x − ct) represents the moving per capita growth rate while B
represents the density-dependent intraspecific competition. The population grows
logistically with positive or negative per capita growth rate. By using changes of
variables

t̂ = Bt, x̂ =

√
B

D
x, ĉ =

c√
BD

, â(ξ) = A

(√
D

B
ξ

)
/B,

and dropping the hats for notational simplification, this system can be transformed
into the limiting system (1.3). So we can reformulate our results as follows: de-
fine c∗ := 2

√
DA(−∞). Then we conclude that (i) the KPP wave exists if and

only if c < c∗; (ii) if c > −c∗, then no pulse wave exists; (iii) if c < −c∗ and∫ 0

− (A(−∞) − A(
√

D
Bx))dx < +∞, then there are infinitely many different pulse

waves. Consequently, we confirm that the species can keep pace with the habitat
boundary expansion if the diffusion coefficient is greater than a critical value, deter-
mined by the speed of the habitat shifting and the species intrinsic maximum rate
of population growth. To keep pace with the moving environment in a KPP wave
profile, the minimum diffusion coefficient should be greater than c2/4A(−∞) (see
Figure 3). Note that A(−∞) represents the maximum per capita growth rate in the
climate envelope, so the larger this growth rate is the easier it is for a species to keep
pace with the moving environment. Note also that this minimum diffusion coeffi-
cient is independent of the intraspecific competition coefficient B. It is well known
that the smallest speed of KPP waves for the Fisher-KPP equation is 2

√
DA(−∞)

if the whole real line is a favorable habitat (when A(·) ≡ A(−∞)) in the classical
Fisher-KPP equation. Therefore, we conclude that if the moving speed of the climate
envelope is smaller than the spreading speed for the Fisher equation, then the species
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Fig. 3. The KPP wave and its speed. The wavelike environment is set as a(x − ct) =
−2 arctan(x−ct)

π
with c = 1. In this case, c < c∗ = 2

√
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Fig. 4. The pulse wave. The wavelike environment is set as a(x − ct) = −2 arctan(x−ct)
π

with

c = −3. In this case, c < −c∗ = −2
√
α = −2.

can keep pace with the moving environment and species invasions in the form of a
monotone traveling wave. This conclusion applies to the case when the favorable
habitat expands poleward.

It is interesting to note that we have also rigorously shown the existence of trav-
eling wave solutions even when the suitable habitat is retracting southward. These
waves are in the format of pulses, and pulse waves can only be observed when the favor-
able habitat is retracting southward enough faster than the critical speed 2

√
DA(−∞)

(see Figure 3). In this situation, the environment habitat shifts faster than the in-
trinsic movement of the species so that the environment pushes the species to move
southward in order to occupy the favorable habitat, leading to pulse waves rather
than monotone KPP waves.

Pulse wavelike profiles can also be observed when −c∗ < c < 0 or c > c∗ (Figures 4
and 5). However, these profiles are no longer traveling waves as they have different
speeds for the left and right pieces. When −c∗ < c = −1 < 0 (Figure 4), the speed of
the right piece is −1 while that for the left piece is −3 and, therefore, the dominant
domain of the species is expanding. Moreover, the right piece moves with speed −1,
equal to that of the environment, which is driven by the environment shift. At the
same time, the shifting environment also increases the speed of the left piece to a level
greater than its intrinsic speed. A similar result holds when c > c∗ (Figure 5).

The developed results also apply when the host population follows other types of
growth rates. One example is the population subject to the Allee effect where the low
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Fig. 5. A pulse-like profile when −c∗ < c < 0. The wavelike environment is set as a(x − ct) =
−2 arctan(x−ct)

π
with c = −1. In this case, −c∗ = −2

√
α = −2 < c < 0.

density population has a decreased per capita growth rate due to various mechanisms
[3]. Previous studies show that populations with Allee effect and random movements
admit monotone waves [25] and our main results can be extended to this scenario
(see the appendix) with shifting environment. In both cases of logistic and Allee
effect growth rates, the susceptibles (resources) should always move forward faster
than the pathogen (Figures 1 and 2). If no resources are available for the pathogen,
the colonization stage of the pathogen fails [23] in the process of species invasion.
However, we also noticed differences between two different growth rates. Namely, in
the case of logistic growth, there is always a pulse of the susceptibles in the moving
head (Figure 1(d)). In contrast, when the host population growth is depicted by the
Allee effect, the susceptible population may move forward in the format of a KPP
wave (Figure 2(d)).

Finally, we would also like to raise readers’ attention to the recent investigation
performed by Li et al. [30, 31], where the same model ut = uxx + u(r(x − ct) − u)
was proposed and analyzed. However, the biological motivations and mathematical
focuses are different. In [30, 31], the model was proposed with the consideration
of climate change and the authors focused on the spreading speed when favorable
environment is shrinking in the sense that c > 0 and r is nondecreasingly connecting
a negative number to a positive number. In the current work, we propose the model
to investigate the issue of whether the pathogen can spread as fast as its host. More
precisely, we derive the model from the classical SIS transmission model. Here we first
study the forced traveling waves ∀c ∈ R from which we then obtain some spreading
properties for the case where c < 0 and r is nondecreasingly connecting a negative
number to a positive number. The choice of negative c values makes it possible to
describe the scenario where the total host population is expanding on the spatial
habitat.

5. Appendix: Proofs of main results.

5.1. A priori estimates. We begin with the description of possible shapes of
wave profiles that are solutions of (2.1).

Lemma 5.1. Let u �≡ 0 be a bounded nonnegative solution of (2.1). Then 0 < u <
α, u(+∞) = 0, and u(−∞) exists. Moreover, either

u(−∞) = α and u′ < 0

or
u(−∞) = 0 and {x : u′ = 0} is a singleton.
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Proof. We first rewrite (2.1) as a 2d asymptotic autonomous ODE, and then
apply [41, Theorem 1.5] to obtain u(+∞) = 0, u(−∞) ∈ {0, α}. By the elliptic
strong maximum principle and assumption (1.4), we obtain 0 < u < α. Next we
study the possible shape of function u. Since a(+∞) = β < 0 and u > 0, we have
(u′ecx)′ = −u(a − u)ecx > 0 ∀x � 1, which, together with u(+∞) = 0, implies that
u′(x) < 0 ∀x � 1. We proceed to distinguish between u(−∞) = 0 and u(−∞) = α.
When u(−∞) = α, we use the assumption a′ ≤ 0 and the strong maximum principle
again to obtain u′ < 0 if u′ ≤ 0. To show u′ ≤ 0, we assume for the sake of
contradiction that u′ > 0 somewhere. It then follows that there exist x1 < x2 such
that u attains a local minimum at x1 and a local maximum at x2 with u(x1) < u(x2).
Hence, a(x1) ≤ u(x1) < u(x2) ≤ a(x2), which contradicts a′ ≤ 0. When u(−∞) = 0,
we can similarly prove that u′(x) > 0 ∀x  −1. Next, we show that u does not
oscillate. Otherwise, there exist y1 < y2 < y3 such that u attains local maximums at
y1, y3 and a local minimum at y2 with u(y1) > u(y2) and u(y3) > u(y2). This leads to a
contradiction with a′ ≤ 0. Finally, we show that the set {x : u′(x) = 0} is a singleton.
Otherwise, there is an interval [z1, z2] such that u(x) = a(x) = γ2, x ∈ [z1, z2], where
γ2 is the global maximum of u. Since a′ ≤ 0, w2 := u − γ2 satisfies w2 ≤ 0 and
w′′

2 + cw′
2 + (a − 2γ2 − w)w2 = γ2(γ2 − a) ∀x ≥ z1. Then w2(z1) = 0 = w′

2(z1)
contradicts the Hopf lemma. This completes the proof.

We now describe the behaviors of the pulse wave profile at −∞.

Lemma 5.2. Let u be a pulse wave. Then c ≤ −c∗. Moreover, U(λ) :=∫
R
u(x)e−λxdx is finite for λ ∈ (0, λ∗) and diverges for λ > λ∗, where λ∗ = λ∗(c) =

−c−√
c2−4α
2 .

Proof. We first show that c < 0 and there exists λ0 ∈ (0,+∞] such that U(λ)
is analytic for λ ∈ (0, λ0). Indeed, since u(−∞) = 0 and a(−∞) = α, there exists
ε1 ∈ (0, α) and x1 < 0 such that u(a − u) ≥ (α − ε1)u ∀x ≤ x1. According to the
proof of [45, Proposition 2.1], we have u′(−∞) = 0. Hence, we may integrate both
sides of (2.1) from −∞ to x with x ≤ x1 to obtain

(5.1) u′(x) + cu(x) ≤ −(α− ε)

∫ x

−∞
u(y)dy.

Define the increasing function w(x) :=
∫ x

−∞ u(y)dy. Integrating both sides of (5.1)

yields (α− ε)
∫ x

−∞ w(y)dy ≤ −[u(x)+ cw(x)] < −cw(x), from which we conclude that

c < 0. Choose r1 such that r2 := −c
r1(α−ε) < 1. Then we obtain

(5.2)

w(x − r1) ≤ 1

r1

∫ x

x−r1

w(y)dy

≤ 1

r1

∫ x

−∞
w(y)dy

≤ r2w(x) ∀x ≤ x1.

Define γ1 := 1
r1

ln 1
r2
> 0 and f(x) := w(x)e−γ1x. Then we have

f(x− r1) = w(x− r1)e
−γ1(x−r1)

≤ r2w(x)e
−γ1(x−r1) = f(x) ∀x ≤ x1,

which implies that f(x) is bounded for x ≤ 0. Hence, w(x) ≤ peγ1x ∀x ≤ 0 for some
p > 0. Define the iteration scheme u(1) = w, u(m)(x) =

∫ x

−∞ u(m−1)(y)dy, m > 1. It
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1648 JIAN FANG, YIJUN LOU, AND JIANHONG WU

then follows that u(m)(x) ≤ p

γm−1
1

eγ1x ∀m ≥ 1, x ≤ 0, and, hence,

∫ x

−∞
eλ(x−y)u(y)dy =

∞∑
m=0

λm
∫ x

−∞

(x − y)m

m!
u(y)dy

=

∞∑
m=0

λmu(m+1)(x)

≤ peγ1x
∞∑

m=0

λm

γm1
< +∞ ∀λ ∈ (0, γ1).

In particular,
∫ 0

−∞ u(x)e−λxdx < +∞ ∀λ ∈ (0, γ1). This implies

U(λ) :=

∫
R

u(x)e−λxdx =

∫ 0

−∞
u(x)e−λxdx+

∫ +∞

0

u(x)e−λxdx < +∞ ∀λ ∈ (0, γ1).

Since u > 0, by [44, Theorem 5b] we know that the expected λ0 exists.
Next we show that u(x), u′(x), u′′(x) = o(eλx) ∀λ ∈ (0, λ0). Choose γ3 large

enough so that μ2 + cμ − γ3 = 0 admits two solutions μ1 < 0 < μ2. Then we can
rewrite (2.1) as the following integral equation

(5.3) u(x) =

∫
R

k(y)[γ3 + a(x− y)− u(x− y)]u(x− y)dy

with

(5.4) k(y) =

{
1

μ2−μ1
eμ2y, y ≤ 0,

1
μ2−μ1

eμ1y, y > 0.

Multiplying e−λx on both sides of (5.3) we obtain the following estimate when λ ∈
(0,min{λ0, μ2}):

e−λxu(x) ≤ e−λx

∫
R

k(y)(γ3 + α)u(x− y)dy

=

∫
R

k(y)e−λy(γ3 + α)u(x − y)e−λ(x−y)dy

≤ (γ3 + α)U(λ) < +∞.

Note that μ2 is increasing to infinity in γ3. It then follows that u(x) = o(eλx) ∀λ ∈
(0, λ0), so do u′ and u′′ using (5.1) and (2.1).

Finally we show that c ≤ −c∗ and λ0 = λ∗, i.e., λ0 is the smallest positive solution
of λ2 + cλ+ α = 0. It then suffices to prove the following statements: (i) λ0 < +∞,
(ii) λ2 + cλ + α > 0 ∀λ ∈ (0, λ0), (iii) λ

2
0 + cλ0 + α = 0. Indeed, as u(x), u′(x),

u′′(x) = o(eλx) ∀λ ∈ (0, λ0), we can integrate both sides of (2.1) (after multiplying
by the factor e−λx) to obtain∫

R

[λ2 + cλ+ a(x) − u(x)]u(x)e−λxdx = 0 ∀λ ∈ (0, λ0).

This implies that for any possible λ and c the function λ2 + cλ + a(x) − u(x) must
change sign in x ∈ R. Thus, the first two statements hold. To prove the third one, we
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TRAVELING WAVES IN A SHIFTING ENVIRONMENT 1649

argue by contradiction, assuming that infλ∈(0,λ0)(λ
2 + cλ + α) �= 0. Then by (ii) we

immediately have infλ∈(0,λ0)(λ
2 + cλ+α) > 0. Without loss of generality, we assume

λ0 < μ2. Note that

(γ3 + α)

∫
R

k(y)e−λydy = − γ3 + α

λ2 + cλ− γ3
> 1 ∀λ ∈ (0, λ0).

Then there exist M > 0 and ε > 0 such that

δ := inf
λ∈(0,λ0)

(γ3 + α− ε)

∫
|y|≤M

k(y)e−λydy > 1.

Define lλ(ξ) =
∫ ξ

−∞ u(x)e−λxdx. Then by (5.3), we have

lλ(ξ) =

∫ ξ

−∞
e−λx

∫
R

k(y)[γ3 + a(x− y)− u(x− y)]u(x− y)dydx

≥
∫ ξ

−∞

∫
|y|≤M

k(y)e−λy[γ3 + a(x− y)− u(x− y)]u(x− y)e−λ(x−y)dydx.

Since a(−∞) = α and u(−∞) = 0, for the above M and ε there exists N > M such
that for any ξ < −N and λ ∈ (0, λ0),

lλ(ξ) ≥ (γ3 + α− ε)

∫ ξ

−∞

∫
|y|≤M

k(y)e−λyu(x− y)e−λ(x−y)dydx

≥ (γ3 + α− ε)

∫
|y|≤M

k(y)e−λydy

∫ ξ−M

−∞
u(x)e−λxdx

≥ δlλ(ξ −M).

Next we repeat the arguments below (5.2) to obtain
∫
R
u(x)e−(λ+

γ4
2 )xdx < +∞ with

γ4 = 1
M ln δ > 0 for any λ ∈ (0, λ0). It contradicts the definition of λ0 since γ4 is

independent of λ.

5.2. KPP waves. We now consider various piecewise constant environments
in order to construct appropriate upper and lower solutions to establish or rule out
KPP waves. We first consider (1.3) in a piecewise constant shifting environment. Let
x0 ∈ R and b be a step function defined by

b(x) =

{
θ1, x ≤ x0,

θ2, x > x0

with
θ1 > 0 > θ2.

Consider the following wave profile equation

(5.5) u′′ + cu′ + u(b− u) = 0, x ∈ R \ {x0},

for which we have the following threshold-type results.

Proposition 5.3. Equation (5.5) admits a positive solution u ∈ C1(R) with
u(−∞) = θ1 and u(+∞) = 0 if and only if c < 2

√
θ1.
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1650 JIAN FANG, YIJUN LOU, AND JIANHONG WU

Proof. Since b is a step function, it suffices to find the sufficient and necessary
condition under which the unstable manifold Wu of equilibrium (θ1, 0) of system

(5.6)

{
u′1 = v1,

v′1 = −cv1 − u1(θ1 − u1)

intersects with the stable manifold Ws of equilibrium (0, 0) of system

(5.7)

{
u′2 = v2,

v′2 = −cv2 − u2(θ2 − u2).

From the proof of Lemma 5.1, we can see that u′ < 0 and u > 0. So for both manifolds
we may only focus on the branches in the fourth quadrant.

By analyzing the linearization around these two equilibria, we see that both man-
ifolds of interest have dimension one. Moreover, the unstable manifold Wu will even-

tually connect (0, 0) tangentally to the vector (1, −c+
√
c2−4θ1
2 ) when c ≥ 2

√
θ1 and will

eventually cross the v-axis when c < 2
√
θ1. The stable manifold Ws lies in the fourth

quadrant, originates from infinity, and is tangent to the vector (1, −c−√
c2−4θ2
2 ) at the

origin. Clearly,Wu andWs have an intersection away from the origin when c < 2
√
θ1.

Next we proveWu andWs have no intersection except the origin if c ≥ 2
√
θ1. Indeed,

near the origin there is no intersection and Wu is above Ws due to

−c+√
c2 − 4θ1
2

>
−c−√

c2 − 4θ2
2

.

Suppose the contrary: P is an intersection away from but closest to the origin. Then
at P , we must have u1 = u2, v1 = v2, v

′
1 ≥ v′2 and, hence, θ1 < θ2, a contradiction.

Now we are ready to establish the critical value of the speed for the KPP wave.

Proof of Theorem 2.1(i). For any c < c∗ := 2
√
α, since a(−∞) = α, we may find

ε > 0 and xε such that c < 2
√
α− ε and

a(x) ≥ b−(x) :=

{
α− ε, x ≤ xε,

2β, x > xε.

We consider (5.5) with b = b−, that is,

u′′ + cu′ + u(b− − u) = 0, x ∈ R \ {xε}.
According to Proposition 5.3, this equation admits a positive solution u− ∈ C1 con-
necting α− ε to 0 since c < 2

√
α− ε. Thus, u− is a satisfactory lower solution.

For the nonexistence proof, we argue by contradiction. Suppose the contrary:
(2.1) admits a solution φ connecting α to 0 for some c ≥ c∗. By Lemma 5.1 we know
0 < φ < α. Choose x2 ∈ R such that

a(x) ≤ b+(x) :=

{
α, x ≤ x2,

β/2, x > x2.

We claim that equation

(5.8) u′′ + cu′ + u(b+ − u) = 0, x ∈ R \ {x2},
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TRAVELING WAVES IN A SHIFTING ENVIRONMENT 1651

admits a C1 solution connecting α to 0. Indeed, choose γ large enough such that
H(x, u) := u[γ + b+(x) − u] is increasing in u ∈ [0, α]. Let μ2 > 0 > μ1 be the two
solutions of the equation μ2 + cμ− γ = 0. Define the monotone map F on the space
BC(R) consisting of all bounded continuous functions by

F [u](x) =

∫
R

k(y)H(x− y, u(x− y))dy,

where k is defined as in (5.4). Then we have

F [α](x) =

∫
R

k(y)[γ + b+(x − y)− α]αdy ≤
∫
R

k(y)γαdy = α

and

F [φ](x) ≥
∫
R

k(y)[γ + a(x− y)− φ(x − y)]φ(x − y)dy = φ(x).

This implies that α ≥ F [α] ≥ F [φ] ≥ φ. Thus, Fn[α](x) is nonincreasing in n ≥ 1.
Hence, ψ(x) := limn→+∞ Fn[α](x) ≥ φ(x) exists and satisfies ψ = F [ψ]. Since
b+ ∈ C(R \ {x2}), we may check that ψ ∈ C1(R) ∩ C2(R \ {x2}) and it is a solution
to (5.8). This contradicts Proposition 5.3. The proof is complete.

5.3. Pulse wave. In Lemma 5.2, the nonexistence of pulse waves when c > −c∗
has been proved and a rude tail behavior at −∞ of a possible pulse wave has been
obtained. In this part, we construct upper and lower solutions to prove the existence
when c < −c∗. The critical case c = −c∗ remains unclear.

Let c < −c∗ be fixed. Recall that λ∗ = λ∗(c) defined in Lemma 5.2 is the smallest
solution of the equation λ2 + cλ+α = 0. An upper solution that vanishes at −∞ can
be easily constructed. Define

φ+(x) = min{γ+eλ∗x, α},

where γ+ is an adjustable positive number.

Lemma 5.4. For any γ+ > 0, φ+ is an upper solution of (2.1).

To prove this, let x1 be the point at which φ+ is not differentiable. Then one can
quickly check that

φ′′+ + cφ′+ + aφ+ − φ2+ ≤ φ′′+ + cφ′+ + αφ+ = 0 ∀x ∈ R \ {x1}

and φ′+(x
−
1 ) ≥ φ′+(x

+
1 ).

To construct an appropriate lower solution, it is natural to extend the idea used
in the previous section on the KPP wave, that is, the wave in a lower and piecewise
constant environment serves as a lower solution. But it does not work since the pulse
wave in a lower environment has a bigger tail than that in environment a at −∞.

Proposition 5.5. For any c ≤ −2
√
θ1 and ρ ∈ (0, θ1), (5.5) admits a positive

solution u ∈ C1 with u(±∞) = 0 and maxx∈R u(x) = ρ. Moreover, u is increasing
first and then decreasing and

u(x) = o(eλx) as x→ −∞ ∀λ < −c−√
c2 − 4θ1
2

.
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1652 JIAN FANG, YIJUN LOU, AND JIANHONG WU

To prove this proposition, we continue to use the phase plane arguments as in
Proposition 5.3. It is easy to see that for any ρ ∈ (0, θ1), ODE system (5.6) admits
an entire solution Φ1 := (u1, v1) with Φ(0) = (ρ, 0). Any translation of Φ is still a
solution of (5.6) and it connects the origin at −∞ and eventually crosses the v-axis.
Thus, the phase portrait of the solution Φ has an intersection with the stable manifold
Ws of equilibrium (0, 0) of ODE system (5.7).

As shown in Lemma 5.2, any possible pulse wave of (1.3) decays to zero faster
than e(λ

∗−ε)x for any ε > 0 when x→ −∞. This fact, together with Proposition 5.5,
implies that the pulse solution of (5.5) with θ1 < α is not an appropriate lower
solution, but it is another appropriate lower solution of (2.1) for KPP waves.

To construct a lower solution appropriately, we have to think in another way, by
taking the information of exponential decay for possible wave profiles at −∞ into
account. For this purpose, we need to assume that the environment converges to α
at −∞ quickly enough.

Lemma 5.6. Assume that α−a ∈ L1(−∞, 0). Then for any γ− > 0 and x−  −1,
there exists an increasing function p ∈ C2 with p(−∞) = 0 and p(x−) = 1 such that

φ−(x) :=

{
γ−eλ

∗x(1 − p(x)), x < x−,
0, x ≥ x−

is a lower solution.

Proof. Define

f(x) = min{α− ainf + γeλ
∗x, 2} and δ = −(2λ∗ + c).

Since c < −c∗, δ = √
c2 − 4α > 0. Since a is nondecreasing, we can find x0 such that

f(x) =

{
α− ainf + γ−eλ

∗x, x < x0,

2, x ≥ x0.

Let k(y) be defined as in (5.4) with μ1 = 0 and μ2 = δ. Since α − a ∈ L1(−∞, 0),
we can define p1(x) =

∫
R
k(y)f(x − y)dy, which clearly is increasingly connecting 0

to +∞. Assume p(x1) = 1. Choose ξ > 0 so that x− := x1 − ξ < x0. Define
p(x) = p1(x+ξ). Then p(x) =

∫
R
k(y)f(x+ξ−y)dy and p′′−δp′+f(x+ξ) = 0. Next

we verify such a φ− is a lower solution. Indeed, for any x < x−, we have 0 ≤ p(x) ≤ 1
and α− a(x) + γ−eλ

∗x ≤ f(x) ≤ f(x+ ξ) and, hence,

−γ−1
− e−λ∗x(φ′′− + cφ′− + aφ− − φ2−)

= p′′ − δp+ (α− a)(1 − p) + γ−eλ
∗x(1− p)2

≤ p′′ − δp+ f(x+ ξ)

= 0.

Moreover, by direct computations we have φ′−(x
−
−) ≤ φ′−(x

+
−). The proof is

complete.

Proof of Theorems 2.1(ii) and 2.1(iii). The nonexistence when c > −c∗ has been
shown in Lemma 5.2. The existence when c < −c∗ follows from the construction of
upper and lower solutions. Indeed, we employ an iteration argument for which we
refer to [33, 45] for more details. By the variation of constant formulas for second
order ODEs (see (5.3)), we know that a uniformly bounded function u is a solution
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TRAVELING WAVES IN A SHIFTING ENVIRONMENT 1653

of (2.1) if and only if it is a fixed point of the map Λ : BC(R,R) → BC(R,R) defined
by

(5.9) Λ[φ](x) =

∫
R

k(y)[γ3 + a(x− y)− φ(x − y)]φ(x− y)dy,

where we recall that k is defined in (5.4) and γ3 > α could be as large as we want.
We proceed as in [33, Lemmas 2.5 and 2.6] (see also [45]). Set Ω = R \ {x − x1, 0}
and use ∂Ω to denote the boundary. By Lemma 5.4 we obtain

Λ[φ+](x)=

∫
Ω

k(y)[γ3φ+(x− y)− φ′′+(x− y)− cφ′(x− y)]dy

≤
∫
Ω

k(y)[γ3φ+(x− y)− φ′′+(x− y)− cφ′(x− y)]dy.(5.10)

Direction calculations give rise to

∫
Ω

k(y)φ′′+(x− y)dy

= −[φ′+(x − y)k(y) + φ+(x− y)k′(y)]|y∈∂Ω +

∫
Ω

k′′(y)φ+(x − y)dy(5.11)

and

(5.12)

∫
Ω

k(y)φ′+(x− y)dy = −φ+(x− y)k(y)|y∈∂Ω +

∫
Ω

k′(y)φ+(x− y)dy.

Note that k′′(y) + ck′(y)− γ3k(y) = 0, y �= 0. Combining (5.10)–(5.12), we arrive at

Λ[φ+](x) ≤ [φ′+(x− y)k(y) + φ+(x− y)k′(y) + cφ+(x− y)k(y)]|y∈∂Ω

= k(x− x1)[φ
′
+(x

+
1 )− φ+(x

−
1 )] + φ+(x)[k

′(0−)− k′(0+)].(5.13)

Since k′(0−) − k′(0+) = 1 and φ′+(x
+
1 ) − φ+(x

−
1 ) ≤ 0, we conclude Λ[φ+] ≤ φ+.

Similarly, Λ[φ−] ≥ φ− thanks to φ′−(x
+
−) ≥ φ′−(x

−
−). Since γ3 > α, we see that

Λ : C(R, [0, α]) → C(R, [0, α]) is nondecreasing. Choose γ sufficiently large such that
φ+ > φ−. Then we arrive at

φ− ≤ Λ[φ−] ≤ Λ[φ+] ≤ φ+.

Therefore, the nonincreasing sequence of continuous functions {Λn[φ+]}n≥1 converges
pointwisely to a function φ with φ− ≤ φ ≤ φ+. Passing n to infinity in the equality
Λn[φ+] = Λ[Λn−1[φ+]] yields that φ = Λ[φ] thanks to Lebesgue’s dominated conver-
gence theorem and, hence, φ ∈ C2(R,R) is a classical solution of (2.1). Moreover, the
fact that φ− ≤ φ ≤ φ+ and Lemma 5.1 imply that φ(±∞) = 0.

Next we show that multiple pulse waves exist for each c < −c∗. Now that we have
a pair of upper and lower solutions φ± as well as a pulse wave in-between, to obtain
a different pulse wave, we can translate φ+ to the right by decreasing γ+ so that it is
not bigger than φ− and then decrease γ− so that the new φ− is less than the new φ+.
Then another pair of upper and lower solutions is constructed and, hence, a different
pulse wave exists.
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5.4. Proof of Theorem 2.2. To figure out the explicit expressions of λ1,c,a
and λ′1,c,a, we recall some results from recent publications by Berestycki and his
collaborators, especially for the case where domain Ω = R.

Theorem 5.7.
(i) λ1,c,a = λ1,0,a +

c2

4 .
(ii) λ′1,c,a ≤ λ1,c,a.
(iii) −‖a‖∞ ≤ λ′1,c,a ≤ ‖a‖∞.

The first conclusion is from [5, Proposition 2], the second is from [8, Theorem
4.5], and the third is from [8, Remark 5.3].

Applying [8, Theorem 2.1] to (2.1), we obtain the following.

Theorem 5.8.
(i) If either λ′1,c,a < 0 or λ1,c,a < 0, then (2.1) admits at least one positive

bounded solution.
(ii) If λ′1,c,a > 0, then (2.1) admits no nonnegative bounded solution other than

the trivial state u ≡ 0.

With the aid of the above two theorems as well as our Theorem 2.1, we can
calculate the two eigenvalues.

Explicit form of λ1,c,a. Combining Theorems 2.1 and 5.8(i), we immediately
obtain λ1,c∗,a ≥ 0, which then implies that λ1,0,a ≥ −α according to Theorem 5.7(i).
Now it remains to show that λ1,0,a ≤ −α. Indeed, let |c| < c∗ = 2

√
α be fixed and

choose x0 < 0, ε > 0, and R > 0 such that

a(x) > α− ε ∀x ∈ [x0 − 2R, x0] and α > 2ε+
c2

4
+
( π

2R

)2
.

We use Lc,a,R to denote the operator Lc,a on the domain [x0, x0 + 2R] with the
Dirichlet boundary condition. Let λ1,c,a,R be the eigenvalue of Lc,a,R and λ′1,c,a,R be
defined as in (2.2) with Ω = [x0, x0 + 2R]. It then follows that λ1,c,a,R = λ′1,c,a,R.
Note that there exists a positive function φR such that

Lc,α−ε,RφR =

(
α− ε − c2

4
−
( π

2R

)2)
φR > εφR.

Consequently, (Lc,a,R−ε)φR ≥ (Lc,α−ε,R−ε)φR ≥ 0, which implies that λ′1,c,a,R ≤ −ε.
Since λ1,c,a ≤ λ1,c,a,R, we have

λ1,c,a ≤ λ1,c,a,R = λ′1,c,a,R ≤ −ε < 0.

Thus, λ1,0,a < − c2

4 ∀|c| < c∗ and, hence, λ1,0,a ≤ −α.
Recall that a(−∞) = α > 0 and a(+∞) = β < 0 as assumed. Then we have the

following observation.

Lemma 5.9. −α ≤ λ′1,c,a ≤ −β.
Proof. Taking φ ≡ 1 as a test function in the definition (2.2) of λ′1,c,a, we see

that λ′1,c,a ≤ −β. For the other inequality, we argue by contradiction, assuming that
λ′1,c,a = −α− 2ε for some c and ε > 0. Then there exists φ ∈ C2(R) ∩W 2,∞(R) with
φ > 0 such that Lc,−εφ ≥ Lc,a−α−εφ ≥ 0, which is impossible due to the boundedness
of φ.

The next result shows the monotonicity and continuity of λ′1,c0,a in c.
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Lemma 5.10. λ′1,c,a is continuously nondecreasing in c ∈ R.

Proof. Let c0 ∈ R be fixed. We claim that if λ′1,c0,a < −β, then λ′1,c0−δ,a ≤ λ′1,c0,a
for any δ > 0. Indeed, choose ε > 0 sufficiently small such that λ′1,c0,a + ε < −β.
Then we see from Theorem 5.8(i) that

(5.14) (Lc0,a + λ′1,c0,a + ε)u = u2

admits at least one solution. Further, by Theorem 2.1 we see that (5.14) admits a
decreasing solution φ connecting α+λ′1,c0,a+ε to 0 as long as λ′1,c0,a+ε < −β. Hence,

0 ≤ (Lc0,a + λ′1,c0,a + ε)φ

= (Lc0−δ,a + λ′1,c0,a + ε)φ+ δφ′

≤ (Lc0−δ,a + λ′1,c0,a + ε)φ.

Therefore, λ′1,c0−δ,a ≤ λ′1,c0,a since ε is arbitrarily small. The monotonicity of λ′1,c,a
in c then follows directly from the fact λ′1,c,a ≤ −β ∀c ∈ R that was obtained in
Lemma 5.9.

For the continuity proof, we argue by contradiction, assuming that λ′1,c,a has a
jump at c = c1 ≤ c0. As such, the left and right limits λ1,c±1 ,a exist and

λ′
1,c−1 ,a

< λ′
1,c+1 ,a

≤ −β.

Let μ ∈ (λ′
1,c−1 ,a

, λ1,c+1 ,a) be arbitrary. Then by the monotonicity shown above, we

have
λ′1,c,a+μ < 0 ∀c < c1 and λ′1,c,a+μ > 0 ∀c > c1.

Combining Theorems 2.1 and 5.8 we see that c1 = 2
√
α+ μ, which leads to a contra-

diction since μ is arbitrary and c1 is fixed. The proof is complete.

With the above preliminary results, we are now ready to calculate λ′1,c,a.
Explicit form of λ′1,c,a. By Theorem 5.7 and Lemma 5.10 as well as the explicit

form of λ1,c,a, we immediately obtain λ′1,c,a ≤ −α ∀c ≤ 0, which, together with
the lower bound obtained in Lemma 5.9, implies that λ′1,c,a = −α ∀c ≤ 0. For

c ∈ (0, c̄) with c̄ = 2
√
α− β > c∗, we already know from Theorem 5.7 that λ′1,c,a ≤

λ1,c,a = −α + c2

4 < −β. It then suffices to exclude the possibility λ′1,c,a < λ1,c,a
at some c ∈ (0, c̄). Indeed, if this possibility happens at c = c2, then we choose
μ ∈ (λ′1,c2,a, λ1,c2,a) and, consequently,

λ′1,c,a+μ < 0 ∀c < c2 and λ′1,c,a+μ > 0 ∀c > c2.

Combining Theorems 2.1 and 5.8 we see that c2 = 2
√
α+ μ. However, it contradicts

2
√
α+ μ < 2

√
α+ λ1,c2,a = c2.

Finally, for c ≥ c̄ we know from Lemma 5.9 that λ′1,c,a ≤ −β. It then suffices to
exclude the possibility that λ′1,c,a < −β at some c ≥ c̄. Otherwise if such a possibility
happens at c = c3, then we have the following inequality

lim
c↑c̄

λ′1,c,a = lim
c↑c̄

−α+
c2

4
= −β > λ′1,c3,a.

It contradicts the monotonicity of λ′1,c,a in c that was obtained in Lemma 5.10. Thus,
the explicit form is obtained.
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