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Damage is a prevailing physical phenomenon in in-service structures; accumulation of damage can

cause catastrophic structural failure. For damage identification in plates, the concept of scale mode

shape with fractal singularity is formulated based on 2D Gabor wavelet transform incorporating

fractal dimension analysis of measured mode shapes. With this concept, a scale fractal complexity

spectrum is created to reveal mode shape singularities by eliminating noise and interference. The

singularity manifests the abnormality of the mode shape, clearly indicating damage. This study

develops a philosophy of fusing wavelets and fractals to detect singularities of physical fields in

noisy conditions. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4916678]

Damage is a prevailing physical phenomenon in

in-service structures;1,2 the accumulation of damage can

result in catastrophic structural failure.3,4 Damage in a struc-

ture can cause various changes in structural responses such

as frequency shifts, mode shape variations, changes in mode

shape curvature, changes in modal flexibility, variations in

strain mode shape, and modal strain energy fluctuations.5,6

Damage detection has been widely investigated in various

engineering fields. Damage can be interpreted as a local

physical abnormality of structural material or of geometric

properties.7–9 Detection of damage evokes the subject of

structural damage identification. In most cases, structural

damage detection relies on singularity analysis of structural

dynamic responses. In this regard, the philosophy is that the

physical abnormality caused by damage destroys the local

signal structure of dynamic responses, leading to a singular-

ity of dynamic response. Various methods relying on theo-

ries such as the Fourier transform,10 Hilbert-Huang

transform,11 or singular value decomposition12,13 have been

developed for revealing singularities of mode shapes of

beams. However, few methods have been formulated to

address the singularity of mode shapes of plates, due to the

much greater complexity induced by increases in the dimen-

sions of mode shapes.

Fractals14,15 have advanced the development of com-

plexity analysis of the space of 2D physical fields, leading to

attractive methods such as the surface area method,16 the

projective covering method,17 and the cubic covering

method.18 In general, these methods calculate the fractal

dimension19 of a signal to produce a statistical index that

characterizes the complexity of the signal. Unfortunately,

this statistical index is inadequate to reflect the singularity of

a mode shape, the reasons for which are twofold: (i) the sta-

tistical index comes largely from noise and trends rather than

from the local singular component of the mode shape and (ii)

as a global quantity, the statistical index is incapable of

portraying the local complexity of a mode shape. Damage

alters local complexity, in turn inducing singularity of a

mode shape; however, this singularity is unlikely to be

detected by existing fractal-based methods.

To explore the use of the fractals in singularity analysis,

this study proposes a scale fractal singular feature of the

space of 2D physical fields. This feature is formulated using

the 2D Gabor wavelet transform to enhance the capability of

the fractal dimension in singularity analysis.20,21 Use of this

feature to identify singularities of mode shapes provides a

method for detecting damage in plates.

A mode shape acquired from a plate containing damage

can be represented by W : ðxi; yj;wi;jÞ, with wi;j being the

deflection amplitude at the grid point ðxi; yjÞ. Damage locally

alters the stiffness of the plate, evoking singularity of

W : ðxi; yj;wi;jÞ. By virtue of this effect, damage identifica-

tion in a plate can be converted into singularity analysis of

its mode shape. Unfortunately, the singularity of W :
ðxi; yj;wi;jÞ is commonly obscured by measurement noise and

trend interference. Disclosure of the singularity is difficult

for methods based on conventional theories such as Fourier

transform,10 Hilbert-Huang transform,11 and singular value

decomposition.12,13

Wavelets22 have advanced the development of scale anal-

ysis of the space of 2D physical fields. To explore the singu-

larity, W : ðxi; yj;wi;jÞ is transformed by 2D Gabor wavelets23
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where s is the scale parameter of usðx; yÞ and x0 ¼
x cos hþ y sin h and y0 ¼ �x sin hþ y cos h. The transform is

represented by a convolution regime

Ws ¼ W � usðxi; yjÞ; (2)

where � denotes the convolution and Ws : ðxi; yj;w
s
i;jÞ is a

scale mode shape conveying the s-scale component ofa)Electronic addresses: rbbai_msc@yahoo.com and mmcao@imp.gda.pl.
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W : ðxi; yj;wi;jÞ. In essence, usðx; yÞ is the scaled derivative

of a 2D Gaussian function adjusted by a rotational angle h
and a dilation coefficients c and g. fmax is the maximum fre-

quency of the modulating sinusoidal plane wave. The set of

parameter [h, c, g, and fmax] endows usðx; yÞ with greater

flexibility to characterize complex damage than other wave-

lets lacking these parameters.

Using Eq. (2), an array of scale mode shapes Ws :
ðxi; yj;w

s
i;jÞ of consecutively varied s can be derived from the

mode shape W : ðxi; yj;wi;jÞ of a plate, as illustrated in Fig. 1.

In the figure, the scales dominated by measurement noise are

s¼ 3 and s¼ 5, and the scales dominated by trend interfer-

ence are s¼ 9 and s¼ 11. Consequently, the scale mode

shape carrying the damage component can be differentiated

from the array of scale mode shapes as s¼ 7. Generally, a

Shannon entropy24 metric can provide a quantitative method

to direct selection of the scale mode shape that carries the

major damage component.

To reveal the singularity of W7 : ðxi; yj;w
7
i;jÞ, a concept

of fractal complexity is created based on the capacity dimen-

sion proposed by Kolmogorov:25 assuming that a set H is

covered by identically geometrical hypercubes with the side

length r, the minimum number of hypercubes needed to

cover set H is N(r); if N(r) is inversely proportional to 1/r as

r tends towards zero, the expression

Dc Hð Þ ¼ lim
r!0

log N rð Þð Þ
log 1=rð Þ (3)

defines the capacity dimension. DcðHÞ provides a statistical

index of the fractal complexity of set H.

A scale mode shape Ws ¼ W � usðxi; yjÞ, 1 � i � P;
1 � j � Q, can be viewed as a cluster of sets Hi;j centered at

ðxi; yjÞ. When capacity dimension analysis is consecutively

performed on each set labeled by the central point ðxi; yjÞ, a

set DcðHi;jÞ, 1 � i � P; 1 � j � Q, termed the fractal com-

plexity spectrum, can be produced to quantitatively represent

the point-wise complexity of the scale mode shape. Damage

alters the complexity of one or several Hi;j of

Ws : ðxi; yj;w
s
i;jÞ, evoking singular values of the fractal com-

plexity spectrum. Therefore, detection of singular values of

the fractal complexity spectrum provides a method for iden-

tifying damage in plates.

Calculation of the capacity dimension is illustrated on

an arbitrarily selected set Hm;n (Fig. 2(a)) centered at ðxm; ynÞ
of Ws : ðxi; yj;w

s
i;jÞ: a cuboid consisting of a number of

hypercubes (hereinafter hypercubes refer to cubes), stem-

ming from the x-y plane, intersects Ws : ðxi; yj;w
s
i;jÞ at the

intersectional region Hm;n, such that Hm;n is covered by N(r)

hypercubes. To alternatively actualize the covering, the

reduced r is correlated with the increased N(r), as depicted in

Fig. 2(b). When r gradually changes to zero, a sequence of

fri;NðriÞg arises. From fri;NðriÞg, DcðHm;nÞ is calculated by

Eq. (3) to quantify the fractal complexity of Hm;n at point

ðxm; ynÞ. Iteration of this operation along each point of Ws :
ðxi; yj;w

s
i;jÞ produces its fractal complexity spectrum.

Damage induces singular values of the fractal complexity

spectrum, in turn signifying damage.

Damage identification by detecting singular values of a

fractal complexity spectrum is examined on a glass fiber re-

inforced polymer (CFRP) plate. A CFRP plate of length

FIG. 1. Array of scale mode shapes

Ws : ðxi; yj;w
s
i;jÞ (a) and the scale mode

shape W7 : ðxi; yj;w
7
i;jÞ bearing the

major damage component (b).

FIG. 2. Illustration of calculating the

capacity dimension. (a) A set Hm;n of

Ws : ðxi; yj;w
s
i;jÞ and (b) covering Hm;n

with hypercubes of varying side

length, i.e., r.
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400 mm, width 400 mm, and thickness 3 mm in the x, y, and

z directions (Fig. 3(a)) consists of four-ply unidirectional

carbon fiber mats oriented in the x direction. A small damage

zone is created by removing one layer of the carbon fiber in

a local square region 20 mm� 20 mm. The plate is excited in

the z direction under a natural frequency of 1139.06 Hz by a

circular piezoelectric lead-zirconate-titanate actuator with

diameter of 10 mm, located at the geometrical center of the

plate. While the plate is vibrating, isochronous z-directional

velocities of 374� 374 measurement points evenly distrib-

uted on the intact surface are captured using a scanning

laser vibrometer (Polytec PSV-400) to form the mode shape

(Fig. 3(b)).

Representative scale mode shapes of W are illustrated

by W4, W8, and W12 (Fig. 4(a)), respectively. Distinctly, W4

is dominated by noise and W12 is governed by trend, each

delivering little damage information. The intermediate

transitional layer from W4 to W12, W8, presents characteris-

tics that are dissimilar from noise and trend, mostly convey-

ing damage information, and it is therefore selected for use

in damage detection. The fractal complexity spectrum

DcðHi;jÞ, 1 � i � P; 1 � j � Q of W8 (Fig. 4(b)) reveals a

singular peak clearly standing out from its surroundings.

This singular peak and its projection (Fig. 4(c)) on the x-y
plane clearly indicate not only the location but also the shape

of the damage region as depicted in Fig. 3(a).

To examine the function of the scale factor in portraying

damage, the fractal complexity spectrum stemming from the

original mode shape signal W in Fig. 3(b) is presented in

Fig. 5(a), showing a cluster of ridge lines delineating the fluc-

tuation of the primary peaks of the mode shape, but in which

no singular feature responsible for damage can be identified.

To further verify the advantage of the proposed method, an

attempt was made to identify the damage in the plate using a

damage identification technique developed by the classical

curvature mode shape method.26,27 Unfortunately, as demon-

strated in Fig. 5(b), the features obtained from the curvature

mode shape of W in Fig. 3(b) are too insignificant, incapable

of characterizing such slight damage.

The fractal complexity spectrum calculated by point-

wise fractal dimension estimations along the scale signal can

be used to identify singularities by virtue of sudden changes

FIG. 3. Zoomed-in damaged zone of

CFRP plate (unit: m) (a) and mode

shape measured from its intact surface.
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in its spatial variation. Compared with prevailing methods,

the proposed approach demonstrates considerably improved

precision of singularity identification, with much enhanced

immunity to noise, as evidenced by our experiment detecting

small damage contained in a composite plate using its mode

shape.

As the results suggest, this investigation provides a phi-

losophy of fusing advanced mathematical theories, wavelet,

and fractal, to detect singularity in physical fields. It should

be emphasized that besides damage identification, the

proposed approach holds promise for other applications

where the physical phenomena of singularity or abnormality

need to be revealed in noisy conditions.
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