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ABSTRACT
A deterministic model proposed in previous literatures to approxi-
mate the well-known Richards model is investigated. However, the
model assumption of small initial value for infection size is released
in the currentmanuscript. Taking the advantageof the closed formof
solutions, we establish the epidemic characteristics of disease trans-
mission: the outbreak size, the peak size and the turning point for the
cumulative infected cases. It is shown that the usual disease outbreak
threshold condition (the basic reproduction number R0 is greater
than unity) fails to fully guarantee the existence of peaking time and
turning pointwhen the initial infection size is not relatively small. The
epidemic characteristics not only depend onR0 but also on another
index, the net reproduction numberR∗

0.
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1. Introduction

The Richards model [14]

dC(t)
dt

= rC(t)
[
1 −

(
C(t)
K0

)a]
,

also known as the theta-logistic model [15], was initially formulated as an extension to the
logistic model in order to investigate the ecological population growth. Since last decade,
it has been widely employed to fit epidemic data. Unlike models with several compart-
ments commonly used to predict the disease spread, the Richardsmodel considers only the
cumulative infective population size with saturation in growth as the outbreak progresses,
caused by decreases in recruitment because of attempts to avoid contacts (e.g. wearing face-
mask) and implementation of control measures. In this single equation,C(t) represents the
cumulative infected cases at moment t, K0 is the carrying capacity or total case number
(maximum case number), r is the per-capita growth rate of the infected population and a
is the exponent of deviation from the standard logistic curve whichmakes themodel much
more flexible: a>1 (or a<1) signifies that the cumulative number of infection grows faster
(or slower) than that predicted by the logistic growth model. The solution to the Richards
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model can be explicitly expressed by

C(t) = K0[1 + ae−ar(t−tT)]−1/a

with tT being the turning point defined as the time when the second derivative of C(t)
equals zero, or equivalently, whenC(t) takes the valueK0(1 + a)−1/a [17]. Formore details
about the Richards model, we refer the reader to the study [4].

Some epidemic pattern suggests a single S-shaped curve for the cumulative cases, which
is consistent with the solution of the Richardsmodel. Therefore, the Richardsmodel is used
to fit the single-phase severe acute respiratory syndrome (SARS) outbreaks in Hong Kong
and Taiwan well [10,19]. Meanwhile, it is also employed to fit the 2005 dengue outbreak
in Singapore to study the impact of intervention measures relating to the turning point
[11], the weekly reported dengue case data in Havana City to assess the contribution of
hurricane to dengue transmission [8] as well as H1N1 [5,9]. The Richards model gives a
single S-shaped curve while some epidemic datasets share a multiphase outbreak pattern,
such as dengue outbreaks in Taiwan [6]. To fit these multiple-wave patterns, Hsieh and his
collaborators proposed a multiphase Richards model [7] and their method was success-
fully used to fit the multi-wave dengue outbreak in Taiwan [6] and 2003 SARS outbreak in
Toronto [7].

This Richards model has made so many successful applications in real-time data fitting
and predictions of infection dynamics, although several parameters (e.g. the exponential
term) share no clear epidemiological explanation, which poses a puzzle to the community
of theoretical epidemiology to find the intrinsic link between the Richardsmodel and well-
established deterministic epidemic models, such as the Kermack–McKendrick model. To
approximate the Richardmodel, recently the authors in [17] proposed the followingmodel

dS
dt

= −βS
I
N
,

dI
dt

= βS
I
N

− δI,

N = S + I,

(1)

a modified version of the classical SIR model. The novelty of the model lies on the
consideration of the ‘actually at risk’ total population N(t), which is defined as the even-
tually infected population, that is, N(t) = S(t) + I(t) is the total number of ‘actually’
vulnerable individuals for the disease transmission at time t [12], S(t) is the actually at
risk susceptibles that will be exposed to the pathogen during the entire epidemic under
consideration (at ‘actual’ risk for infection) and I(t) is the number of infected individu-
als. In their model, the frequency-dependent disease transmission term βSI/N is used,
while δ is the removal rate, which refers to all removal forms from the infected individ-
uals due to disease induced death or recovery. In [17], this model is used to illustrate the
epidemiological interpretations for parameters in the Richards model, especially the expo-
nent a. The model (1) is also validated to the datasets for Canada 2009 H1N1 two-stage
epidemic outbreak data, two-stage SARS outbreak data in Toronto, Singapore 2005 dengue
data, and Taiwan 2003 SARS data and the results are compared with those obtained by the
Richardsmodel in terms the turning point andmultiplewaves/phases. Themodel (1) is also
adopted to describe the transmission of avian influenza (H7N9) virus among birds [12] and
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then extended to infer the dynamics of the cumulative number of infected humans due to
infection transmitted by infected birds. Fitting the epidemic data for humans, the authors
estimated the key parameters in the model system quantifying the bird and human com-
ponents of an avian influenza epidemic. More recently, this model is used to fit the Ebola
outbreak in west Africa [18].

All these previous investigations provide important information on epidemic char-
acteristics and suggestions on epidemic control, but most of them propose an implicit
assumption that the disease is initialized by an infinitesimally small proportion of the popu-
lation, that is, the initial value of infected individuals to the deterministicmodel is assumed
to be very small, which is almost negligible compared to the initial number of susceptibles.
However, this underlying assumption for the deterministic model may be unappropriate
in some scenarios as argued in [13]. For example, a discrete formulation for disease spread
is vital at the initial contamination stage of an epidemic outbreak when the number of
infectives is small [16]. In this case, the randomness should be carefully accounted, which
can be described by a stochastic process, such as the model in [16] and references therein.
In other words, the evolution of an epidemic outbreak in an isolated population can be
split into two stages: a stochastic Markov process describing the initial contamination and
a linked deterministic dynamical system with random initial conditions for the continued
development of the outbreak [16]. Motivated by this, we assume the initial distribution of
infectives I(0) to be not negligible compared with the size of susceptibles. Another reason
is related to a late surveillance programme which provides large initial infection value.

In this work, we are going to release the assumption of small initial number of infectious
individuals and assume its size can be random. Under this released assumption, we will
investigate the final size relationship of the epidemic and predict the real-time number
and the peak time of infected individuals. In particular, we are going to figure out the time
when the inflection of the cumulative case curve occurs (the turning point), i.e. themoment
when a rapid increase in case numbers is replaced by a slower increase and this inflection
point indicates the moment when the rate of increases in numbers of cumulative cases
reaches its maximum. It is shown that the usual disease outbreak threshold condition (the
basic reproduction number is greater than unity) fails to guarantee the existence of peaking
time and turning point.

The remaining part of this paper starts from solving themodel system to obtain a closed
form of solutions, based on which the final size, peak time and turning point are discussed.
The conclusion and discussion are given in the last section.

2. Theoretical analysis

We can rewrite the model system (1) into

dS
dt

= −βS
I
N
,

dI
dt

= βS
I
N

− δI,

dN
dt

= −δI,

(2)
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with initial condition S(0) = S0 > 0, I(0) = I0 > 0, and N(0) = N0 = S0 + I0.
To investigate the characteristics of the epidemic pattern, we start from solving the sys-
tem directly to obtain a closed form of solutions in terms of the initial values as well as
model parameters.

2.1. Explicit solutions

The first and last equations of (2) give dS/dN = β/δ · S/N which indicates

S(t) = S0
(
N(t)
N0

)β/δ

. (3)

Now we solve the system for two different cases: β = δ and β �= δ.
When β = δ, the equality (3) implies S(t)/S0 = N(t)/N0. Since N(t) = S(t) + I(t) for

all t ≥ 0, we have
S(t)
S0

= I(t)
I0

= N(t)
N0

. (4)

Therefore I(t) = I0N(t)/N0 and the last equation of (2) reads dN/dt = −δI0N(t)/N0,
from which we obtain

N(t) = N0e−δI0/N0t .

Using the relationship (4), we can express the solution into

S(t) = S0
N
N0

= S0e−δI0/N0t , I(t) = I0
N
N0

= I0e−δI0/N0t . (5)

When β �= δ, denote K = Nβ/(β−δ)
0 S−δ/(β−δ)

0 , which is a constant determined by the
initial value and intrinsic coefficients. Note that K > N0 when β > δ while K < N0 when
β < δ. In this case, Equation (3) can be written as

S(t) = K
(
N(t)
K

)β/δ

. (6)

Substituting Equation (6) into I(t) = N(t) − S(t), we have

I(t) = N(t)

[
1 −

(
N(t)
K

)β/δ−1
]
, (7)

and correspondingly, the N-equation in Equation (2) becomes

dN
dt

= −δI(t) = −δN(t)

[
1 −

(
N(t)
K

)β/δ−1
]
. (8)

Since β �= δ, Equation (8) takes the form of a Bernoulli equation (also in the form
of Richards equation whose solution can be solved) and its solution can be explicitly
obtained as

N(t) = K{
1 +

[(
K
N0

)(β−δ)/δ − 1
]
e(β−δ)t

}δ/(β−δ)
.
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Since K = Nβ/(β−δ)
0 S−δ/(β−δ)

0 , we have(
K
N0

)(β−δ)/δ

= N0

S0
and

(
K
N0

)(β−δ)/δ

− 1 = N0

S0
− 1 = I0

S0
.

Hence, the solution for component N(t) can be expressed as

N(t) = K[
1 + I0

S0 e
(β−δ)t

]δ/(β−δ)
. (9)

Taking differentiation of the above expression with respect to t, we get

dN
dt

= −δ
K I0

S0 e
(β−δ)t[

1 + I0
S0 e

(β−δ)t
]β/(β−δ)

.

However, on the other side N′(t) = −δI(t), therefore

I(t) =
K I0

S0 e
(β−δ)t[

1 + I0
S0 e

(β−δ)t
]β/(β−δ)

, (10)

and the susceptible population size as follows:

S(t) = N(t) − I(t) = K[
1 + I0

S0 e
(β−δ)t

]β/(β−δ)
. (11)

This solution for S(t) can also be obtained directly from Equation (3).
It would also be interesting to apply the closed form for the number of infected individ-

uals (10) into various scenarios to predict the starting time and the duration of disease
outbreak. For example, in order to predict the starting time, we just need to solve the
equation for time t

1 =
K I0

S0 e
(β−δ)t[

1 + I0
S0 e

(β−δ)t
]β/(β−δ)

thatis K
I0
S0
e(β−δ)t =

[
1 + I0

S0
e(β−δ)t

]β/(β−δ)

to get a negative root, which is the starting timewhen only one individual got infected. Sim-
ilarly, to predict the duration of the disease outbreak, which can be defined as the duration
in which the number of daily infected cases βSI/N is greater than some threshold value ε,
one may evaluate two roots of the equation

K I0
S0 e

(β−δ)t[
1 + I0

S0 e
(β−δ)t

]1+β/(β−δ)
= ε

for time t and take the difference for two roots to infer the time duration of disease
outbreak.

Note that the same closed form of solutions is obtained in [12,18] for the case when
β �= δ. In the following sections, we are going to use these explicit solutions to investigate
various indices quantifying the epidemic characteristics.
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2.2. Reproduction numbers

Before investigating the epidemic characteristics, we first introduce two indices, the basic
reproduction number R0 and the running reproduction number R∗

t at time t [1,12].
The basic reproduction number of model (2), R0 = β/δ represents the number of sec-
ondary infections generated by an introduction of a primary infection into the total
population previously unexposed to the disease. However, since at the starting point,
the model is seeded with initial size of infection I0, therefore, the running reproduction
numberR∗

t at time t [1,12] is given by

R∗
t = β

δ

S(t)
S(t) + I(t)

which measures the number of secondary infections caused by a single infected individual
in the population at time t. Naturally, the current magnitude of the running reproduction
number (i.e. whether or not it exceeds one) determines the increases or decreases in infec-
tion. It is easy to see thatR0 is a static constant, solely dependent on themodel parameters,
whileR∗

t is time-dependent, ‘running’ with disease spread. Moreover, the basic reproduc-
tion numberR0 is always greater than the running reproduction numberR∗

t . It would also
be interesting to write down the net reproduction number [2] as the running reproduction
number at initial time when t=0:

R∗
0 = β

δ

S0
S0 + I0

= S0
N0

R0, (12)

which will play an important role in the whole paper. Note that the net reproduction num-
ber is not equal to the basic reproduction number R0 as I0 is not negligible. The net
reproduction number gives the average number of secondary infectious cases resulting
from each case in a given population (with a proportion of infectious individuals).

From Equation (12) we haveN0/S0 = R0/R∗
0, then the parameterK defined in Section

2.1 can be rewritten as

K = N0

(R0

R∗
0

)1/R0−1
. (13)

On the other hand, from Equation (12), we can also get

I0
S0

= R0 − R∗
0

R∗
0

. (14)

Equalities (13) and (14) will be used in subsequent sections.

2.3. Outbreak size

During an epidemic outbreak, majority of people are keen to know ‘How big is an out-
break likely to be?’. One can infer the information related to this question from the
outbreak size, which illustrates the cumulative number of infected population during the
disease transmission, and mathematically, it is determined by the quantity C∞ = N0 −
limt→∞ S(t).
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For the case when β = δ (the basic reproduction number R0 = 1), we have
limt→∞ S(t) = 0 and limt→∞ I(t) = 0 by (5) and therefore, the outbreak size isC∞ = N0.

For the case when β < δ (R0 < 1), we have limt→∞ I(t) = 0 and limt→∞ S(t) = K
from Equations (10) and (11) and the outbreak size is

C∞ = N0 − K = N0

[
1 −

(R0

R∗
0

)1/R0−1
]
,

where Equation (13) is used.
Similarly, when β > δ (R0 > 1), we have limt→∞ I(t) = 0 and limt→∞ S(t) = 0 which

gives the outbreak size C∞ = N0.
Summarizing the above argument, we have the following result about the outbreak size:

Proposition 2.1: The outbreak size is either N0 (when the basic reproduction number
R0 ≥ 1, which implies that every individual involved will get infected) or N0[1 −
(R0/R∗

0)
1/R0−1] (when R0 < 1, which means some ‘actually’ vulnerable individuals can

escape from infection due to the low transmissibility of the pathogen).

2.4. Epidemic peak

Once outbreaks have begun, knowing their potential severity helps public health author-
ities to respond immediately and effectively. The epidemic peak [3] indicates the largest
number of diseased individuals in the population, that is, the maximum value of I(t). It
is particularly important to find out the time (peaking time tP ) such that the number of
infected cases reaches maximum. In this subsection, we are going to find the peaking time
tP and the peak size at this moment.

Since I′(t) = βS/NI − δI < βI − δI ≤ 0whenβ ≤ δ (R0 ≤ 1), the number of infected
cases always decreases and there is no peak for the infected individuals.

When β > δ (R0 > 1), we can write the I-equation of Equation (2) into

I′ = βI
(
S
N

− δ

β

)
= βI

[(
1 − δ

β

)
− I

N

]
= βI

[
1

1 + I0
S0 e

(β−δ)t
− δ

β

]
=: βIφ(t),

where the equality I(t)/N(t) = (I0/S0e(β−δ)t)/(1 + I0/S0e(β−δ)t) from Equations (9)
and (10) is used. Here, the function φ(t) = [1/(1 + I0/S0e(β−δ)t) − δ/β] satisfies φ(0) =
1/(1 + I0/S0) − δ/β = S0/N0 − δ/β and φ′(t) < 0 for all t>0. Hence if S0/N0 ≤ δ/β

(the net reproduction number R∗
0 ≤ 1), then φ(t) < 0 for all t>0 and I′(t) < 0. There

is no peak for I(t) for this case. However, if S0/N0 > δ/β (that is R∗
0 > 1), there exists a

unique tP such that φ(tP) = 0 since limt→∞ φ(t) = −δ/β < 0. In this case, tP is the peak
time when the infected population size attains its maximum value. The peak time can be
obtained by solving φ(t) = 0, which is

tP = 1
β − δ

ln
[
S0
I0

(
β

δ
− 1

)]
.

The population sizes are SP = S(tP) = K(δ/β)β/(β−δ), IP = I(tP) = K(δ/β)δ/(β−δ)

(1 − δ/β) and NP = N(tP) = K(δ/β)δ/(β−δ) from equalities (11), (10) and (9).
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Applying Equations (13) and (14), one obtains

tP = 1
δ(R0 − 1)

ln
(R0 − 1)R∗

0
R0 − R∗

0
, SP = N0

R0
R∗

0
−1/(R0−1),

IP = N0R∗
0
−1/(R0−1)

(
1 − 1

R0

)
, NP = N0R∗

0
−1/(R0−1).

(15)

From the above argument, we can claim that

Proposition 2.2: The infected population size always decreases when R0 ≤ 1; however,
when R0 > 1, the pattern of I(t) evolution is dependent on the net reproduction number
R∗

0 : If the net reproduction number R∗
0 ≤ 1, then I′ ≤ 0 for all t>0 while when R∗

0 > 1,
there exists a peak time for the infected cases tP such that I′(t) > 0 if 0 < t < tP and I′(t) < 0
if t > tP, where the peak time and the size of each compartment at the time are given by
Equation (15).

2.5. Turning point for the cumulative number of the infected cases

During an epidemic outbreak, the surveillance programme reports the daily/weekly newly
infected cases, while the trend of the newly reported cases indicates whether the epidemic
becomes worsening or improving. This trend can be traced by observing the rate of change
of the cumulative cases. In particular, the time (the turning point tT) is of interest when the
inflection of the cumulative case curve occurs, i.e. the moment when a rapid increase in
case numbers is replaced by a slower increase and thismomentmarks the key turning point
when the spread of the disease starts to decline. Theoretically, this turning point tT, defined
as times at which the rate of accumulation changes from increasing to decreasing or vice
versa, can be easily located by finding the inflection point of the epidemic curve.

Let C(t) be the cumulative number of reported cases at time t, then the growth rate
of cumulative cases (i.e. the number of newly infected individuals at time t) is given
by dC/dt = βSI/N and the rate of change of the newly infected cases is d2C/dt2 =
d/dt(βSI/N).

If β = δ (R0 = 1), then from Equation (4), we have

dC
dt

= βSI
N

= β
I0
N0

S(t) and
d2C
dt2

= β
I0
N0

dS(t)
dt

< 0,

which shows the number of newly infected cases always decreases and there is no turning
point.

If β �= δ (R0 �= 1), from Equations (6) and (7), we have dC/dt = βSI/N =
βK(N/K)β/δ[1 − (N/K)β/δ−1] and thus

d2C
dt2

= β

(
N
K

)β/δ−1
[

β

δ
−

(
2β
δ

− 1
) (

N
K

)β/δ−1
]
dN
dt

= −βδI
(
N
K

)β/δ−1
[

β

δ
−

(
2β
δ

− 1
) (

N
K

)β/δ−1
]
.
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Based on Equation (9), we can observe

β

δ
−

(
2β
δ

− 1
) (

N
K

)β/δ−1
=

1 − β
δ

+ β
δ
I0
S0 e

(β−δ)t[
1 + I0

S0 e
(β−δ)t

] .

Therefore, if β < δ, or if β > δ and 1 − β/δ + β/δI0/S0 ≥ 0, C′′(t) < 0, which implies
that there is no turning point. However, when β > δ and 1 − β/δ + β/δI0/S0 < 0, then
there exists a unique positive tT such that C′′(tT) = 0. Actually tT can be solved from

1 − β

δ
+ β

δ

I0
S0
e(β−δ)t = 0,

which turns out to be

tT = 1
β − δ

ln
[
S0
I0

(
1 − δ

β

)]
.

We can obtain the corresponding size for each compartment at the turning point from
Equations (6) and (7):

ST = S(tT) = K
(

β

2β − δ

)β/(β−δ)

, IT = I(tT) = K
(

β

2β − δ

)β/(β−δ) (
1 − δ

β

)

and

NT = N(tT) = K
(

β

2β − δ

)δ/(β−δ)

.

Furthermore, the newly infected cases on the turning point is

C′(tT) = βSTIT
NT

= K(β − δ)

(
β

2β − δ

)(2β−δ)/(β−δ)

.

According to Equation (14), when β > δ (R0 > 1), the condition 1 − β/δ +
β/δI0/S0 ≥ 0 (< 0) is equivalent to R∗

0 ≤ R2
0/2R0 − 1 (R∗

0 > R2
0/2R0 − 1, respec-

tively). Further, applying Equation (13), we have

tT = 1
δ(R0 − 1)

ln
(R0 − 1)R∗

0
(R0 − R∗

0)R0
, ST = N0R0

2R0 − 1

[ R2
0

R∗
0(2R0 − 1)

]1/(R0−1)

,

IT = N0(R0 − 1)
2R0 − 1

[ R2
0

R∗
0(2R0 − 1)

]1/(R0−1)

, NT = N0

[ R2
0

R∗
0(2R0 − 1)

]1/(R0−1)

,

C′(tT) = δN0(R0 − 1)
( R0

2R0 − 1

)2R0/(R0−1) (
2R0 − 1

R∗
0

)1/(R0−1)
.

(16)

Summarizing the above argument, we have the following results about the turning point:

Proposition 2.3: WhenR0 ≤ 1 or whenR0 > 1 andR∗
0 ≤ R2

0/2R0 − 1, there is no turn-
ing point, which implies that the growth rate of the cumulative cases decreases for all t ≥ 0;
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WhenR∗
0 > R2

0/2R0 − 1, there is a unique turning point at t = tT. In this case, the growth
rate of cumulative cases is increasing as t < tT and decreasing as t > tT. The turning point,
the size of each compartment at the time, and the maximum rate of increase of cumulative
cases are given by Equation (16).

3. Conclusion and discussion

In the study of epidemic outbreaks by means of mathematical models, most previous work
has implicitly assumed that the disease is initialized by an infinitesimally small proportion
of the population. In the current paper, we modify this assumption in order to account
for an arbitrarily large initial proportion of infected individuals. By assuming the non-
negligible amount of infection in the population that fed into the deterministic model, we
revisit the model system proposed in [17] (see also in [12]). The model admits a closed
form of solutions with explicit expressions, based on which we get the whole picture of
the epidemic characteristics with respect to the model parameters and initial values for the
system. In particular, we investigate the final and outbreak sizes of the epidemic, the peak
time and turning point for an epidemic outbreak.

Many results of the current paper are investigated in terms of two indices: the basic
reproduction numberR0 = β/δ and the net reproduction numberR∗

0 = β/δS0/(S0 + I0)
(the running reproduction numberR∗

t at initial time t=0). The net reproduction number
R∗

0 is smaller than the basic reproduction numberR0, and they are almost equal when the
initial infection size I0 is very small compared to S0. The R0 − R∗

0 coordinate plane can
be divided into five different regions (see Figure 1) with one region (R0 ≤ R∗

0) being not
biologically feasible. Then the whole picture of the epidemic characteristics can be drawn
for each region, as summarized in Table 1, which shows that the existence of the turning
point implies the existence of the peak time, but the converse claim does not hold. More-
over, the usual condition that the basic reproduction number R0 > 1 can not guarantee
the existence of peak time, neither the turning point when the initial infection size I0 is not
negligible.

Peak time represents themomentwhen the infected incidence reaches itsmaximal value
while the turning point quantifies the moment when the growth rate of cumulative cases
attains its maximum. Therefore, it is reasonable to expect a time lag from turning point to
peak time. Actually, whenR∗

0 > 1, from the expressions of tp and tT it follows that

tP − tT = 1
δ(R0 − 1)

lnR0 > 0.

Hence, the peak time always happens later than the turning point, and the time interval
between turning point and peak time is independent of the initial susceptible and infected
population sizes S0 and I0 (as well as the net reproduction number R∗

0). Due to the time
lag between turning point and peak time, in some surveillance programmes for epidemic
outbreaks, one cannot observe the turning point, or both the peak time and turning point.

On the other hand, direct calculation yields the ratio of the infected population sizes at
these special moments

IP
IT

= R−(R0+1)/(R0−1)
0 (2R0 − 1)R0/R0−1,
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Figure 1. The regions in theR0 − R∗
0 plane with different epidemic characteristics.

Table 1. Epidemic characteristics of Equation (2) with respect to the reproduction numbersR0 andR∗
0 .

Note thatR∗
0 is always less thanR0 based on (12), also shown in Figure 1.

Basic reproduction Net reproduction Outbreak size Epidemic peak Turning point

R0 < 1 anyR∗
0 < R0 N0

[
1 −

(
R0
R∗

0

)1/(R0−1)
]

Not exist Not exist

R0 ≥ 1 R∗
0 ≤ 1 N0

R∗
0 > 1 R∗

0 ≤ R2
0

2R0−1 Exists

R∗
0 >

R2
0

2R0−1 Exists

implying that the ratio of the peak value of infected cases and the size at the turning
point is independent of the net reproduction number (as well as the initial condition).
The following lemma shows that IP/IT > 1 forR0 > 1.

Lemma 3.1:

x−(x+1)/(x−1)(2x − 1)x/(x−1) > 1 forall x > 1.

Proof: Denote g(x) = x/(x − 1) ln(2x − 1) − (x + 1)/(x − 1) ln x, then x−(x+1)/(x−1)

(2x − 1)x/(x−1) = eg(x) and it suffices to prove that g(x) > 0 for x>1. Direct calcu-
lation gives g′(x) = g1(x)/(x − 1)2, with g1(x) = ln x2/(2x − 1) − (x − 1)2/x(2x − 1).
Since g′

1(x) = (x − 1)2(4x − 1)/(2x − 1)2x2 > 0 for x>1, it follows from g1(1) = 0 that
g1(x) > 0 for x>1, that is, g′(x) > 0 for x>1. Further, limx→1+ g(x) = 0 implies that
g(x) > 0 for x>1. The proof is complete. �

Finally, it is interesting to highlight the novel conditions for the existence of peak time
and turning point in the current paper. If the initial infection size is infinitesimally small
relative to the size of susceptibles, the existence of peak time implies the existence of turning
point for the number of cumulative cases, and vice versa. Moreover, they exist if and only if
the basic reproduction numberR0 is greater than unity [12,17]. However, when the initial
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infection size is not negligible as assumed in the current paper, the existence of peak time
(as well as the turning point) is not only dependent on the basic reproduction numberR0,
but also on the net reproduction numberR∗

0. Furthermore, the existence of turning point
implies that of the peak time, but not vice versa.
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