
J. Math. Phys. 57, 083501 (2016); https://doi.org/10.1063/1.4960472 57, 083501

© 2016 Author(s).

New method for blowup of the Euler-
Poisson system
Cite as: J. Math. Phys. 57, 083501 (2016); https://doi.org/10.1063/1.4960472
Submitted: 29 January 2016 . Accepted: 25 July 2016 . Published Online: 05 August 2016

Man Kam Kwong, and Manwai Yuen 

ARTICLES YOU MAY BE INTERESTED IN

Improved blowup theorems for the Euler-Poisson equations with attractive forces
Journal of Mathematical Physics 57, 071505 (2016); https://
doi.org/10.1063/1.4959773

Singularities of solutions to the compressible Euler equations and Euler-Poisson
equations with damping
Journal of Mathematical Physics 59, 121501 (2018); https://
doi.org/10.1063/1.5080806

Existence and uniqueness of small energy weak solution to multi-dimensional
compressible Navier-Stokes equations with large external potential force
Journal of Mathematical Physics 57, 081513 (2016); https://
doi.org/10.1063/1.4960749

https://images.scitation.org/redirect.spark?MID=176720&plid=1146360&setID=406887&channelID=0&CID=380802&banID=519881905&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=7532fee1ca7c0452d6fbeda1ba83a2afc0f71e9c&location=
https://doi.org/10.1063/1.4960472
https://doi.org/10.1063/1.4960472
https://aip.scitation.org/author/Kwong%2C+Man+Kam
https://aip.scitation.org/author/Yuen%2C+Manwai
http://orcid.org/0000-0002-5035-3555
https://doi.org/10.1063/1.4960472
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4960472
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4960472&domain=aip.scitation.org&date_stamp=2016-08-05
https://aip.scitation.org/doi/10.1063/1.4959773
https://doi.org/10.1063/1.4959773
https://doi.org/10.1063/1.4959773
https://aip.scitation.org/doi/10.1063/1.5080806
https://aip.scitation.org/doi/10.1063/1.5080806
https://doi.org/10.1063/1.5080806
https://doi.org/10.1063/1.5080806
https://aip.scitation.org/doi/10.1063/1.4960749
https://aip.scitation.org/doi/10.1063/1.4960749
https://doi.org/10.1063/1.4960749
https://doi.org/10.1063/1.4960749


JOURNAL OF MATHEMATICAL PHYSICS 57, 083501 (2016)

New method for blowup of the Euler-Poisson system
Man Kam Kwong1,a) and Manwai Yuen2,b)
1Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Kowloon, Hong Kong
2Department of Mathematics and Information Technology, The Education University of Hong
Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong

(Received 29 January 2016; accepted 25 July 2016; published online 5 August 2016)

In this paper, we provide a new method for establishing the blowup of C2 solu-
tions for the pressureless Euler-Poisson system with attractive forces for RN

(N ≥ 2) with ρ(0, x0) > 0 and Ω0i j(x0) = 1
2

�
∂iu j(0, x0) − ∂jui(0, x0)� = 0 at some

point x0 ∈ RN . By applying the generalized Hubble transformation div u(t, x0(t)) =
Nȧ(t)
a(t) to a reduced Riccati differential inequality derived from the system, we

simplify the inequality into the Emden equation ä(t) = − λ
a(t)N−1 , a(0) = 1, ȧ(0) =

div u(0,x0)
N

. Known results on its blowup set allow us to easily obtain the
blowup conditions of the Euler-Poisson system. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960472]

I. INTRODUCTION

The compressible Euler-Poisson system in RN refers to the equations,




ρt + ∇ · (ρu) = 0,
ρ[ut + (u · ∇)u] = δρ∇Φ,

∆Φ(t, x) = ρ,

(1)

where ρ = ρ(t, x) ≥ 0 and u = u(t, x) ∈ RN are the density and the velocity, respectively, of the fluid
under study. If δ = −1, the system has been used to model self-gravitating fluids such as gaseous
stars in cosmology.1–3 In particular, details of the connection between the Euler-Poisson system and
Einstein’s field system are given in Longair.4 If δ = 0, equation set (1) constitutes the compressible
Euler system, which is a classical model in fluid mechanics; see, for example, Ref. 5. If δ = 1, the
system can be viewed as a semiconductor model; see, for example, Ref. 6.

For further analysis of the Euler-Poisson system, interested readers are referred to Refs. 7–20.
In addition, explicit blowup or global (periodical) solutions to the Euler-Poisson system can be
found in Refs. 21–25.

In 2008, Chae and Tadmor17 established the finite-time blowup for the pressureless Euler-
Poisson system (1) with attractive forces (δ = −1) under the initial condition,

S B { x0 ∈ RN
�
ρ0(x0) > 0, Ω0(x0) = 0, div u(0, x0) < 0} , φ, (2)

where u = (u1,u2, . . . ,uN) andΩ0(x0) is the vorticity matrix defined by

Ω0i j(x0) = 1
2
�
∂iu j(0, x0) − ∂jui(0, x0)� . (3)

Applying spectral dynamics analysis, they derived the Riccati differential inequality,

D div u(t, x0(t))
Dt

≤ − 1
N
[ div u(t, x0(t))]2 (4)
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along the characteristic line dx0(t)
dt
= u(t, x0(t)). The corresponding solution of inequality (4) blows

up at or before T = −N/div u(0, x0(0)) with an initial condition requiring that div u(0, x0(0)) takes a
non-vacuum form. An improved blowup condition for the Euler-Poisson system (1) was obtained by
Cheng and Tadmor18 in 2009.

In this paper, relative to the methods in Refs. 13, 17, and 18, we provide a new and shorter
proof for the blowup of C2 solutions for the pressureless Euler-Poisson system (1) for attractive
forces (δ = −1) in RN and repulsive forces (δ = 1) in R.

Theorem 1. For the pressureless Euler-Poisson system (1) with ρ(0, x0) > 0 and Ω0i j(x0) = 0
(see (6)) at some point x0,

(I) with attractive forces (δ = −1), and one of the two following conditions satisfied, i.e.,
(Ia) N = 1 or 2, or
(Ib) N ≥ 3, satisfying

div u(0, x0) <


2N ρ(0, x0)
(N − 2) , (5)

or
(II) with repulsive forces (δ = 1), and N = 1 and satisfying

div u(0, x0) ≤ −


2ρ(0, x0), (6)

the C2 solutions blow up in finite time T.

II. BLOWUP FOR THE EMDEN EQUATION WITH N ≥ 2

We now apply the generalized Hubble transformation for N ≥ 2,

div u(t, x0(t)) = Nȧ(t)
a(t) , (7)

to shorten the proofs in Refs. 13, 17, and 18. We remark that when N = 1, transformation (7) is the
classical Hubble transformation in Astrophysics. We have applied this transformation previously in
studying the exact solutions to the compressible Euler system (δ = 0) in Ref. 26.

Proof. Because the mass equation (1)1

Dρ

Dt
+ ρ∇ · u = 0 (8)

with convective derivative
D
Dt
=

∂

∂t
+ (u · ∇) (9)

can be integrated to give

ρ(t, x0(t)) = ρ(0, x0)e−
 t

0 div u(s,x0(s))ds ≥ 0 (10)

for ρ0(0, x0) ≥ 0, the density function ρ(t, x0(t)) retains its non-negative nature in the classical
solution.

For the momentum equations (1)2 with δ = −1 and the solutions with a non-vacuum form (that
is, ρ(t, x0) > 0 at some point x0), we have

ut + u∇ · u = −∇Φ. (11)

We use the divergence of this equation to obtain

∇ · (ut + u∇ · u) = −∆Φ. (12)

If the initial condition

Ω0i j(x0) = 1
2
�
∂iu j(0, x0) − ∂jui(0, x0)� = 0 (13)
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is fulfilled, the spectral dynamics technique in Refs. 17 and 18 (more specifically, refer to Equation
(2.6) in Ref. 17, or (4.1) in Ref. 18) yields

D
Dt

div u(t, x0(t)) + 1
N
[ div u(t, x0(t))]2 ≤ −ρ(t, x0(t)). (14)

Alternatively, we can obtain inequality (14) as follows. Take the divergence of equations (1)2 and
write the time derivative of div u as a function of

D
Dt

(div u) + σ2 −Ω2 = −ρ, (15)

where σ is the symmetric shear rate tensor and Ω the antisymmetric vorticity tensor. Since the
initial condition stipulates that Ω(x0) is 0 at t = 0, it remains 0 in the fluid evolution, by one of
the Helmholtz theorems (see Section 1.2 in Chorin and Marsden’s book27). Finally, we apply the
inequality

Tr(σ)2 ≥ 1
N
(Tr(σ))2 = ( div u)2

N
(16)

to obtain inequality (14).
We notice that the advancement of this short paper starts here. We know from Equation (10)

that

D div u(t, x0(t))
Dt

+
1
N
[ div u(t, x0(t))]2 ≤ −ρ(0, x0)e−

 t
0 div u(s,x0(s))ds. (17)

By applying the generalized Hubble transformation,

div u(t, x0(t)) = Nȧ(t)
a(t) , (18)

it becomes

D
Dt

Nȧ(t)
a(t) +

1
N


Nȧ(t)
a(t)

2

≤ −ρ(0, x0)e−
 t

0
Nȧ(s)
a(s) ds

, (19)

−Nȧ(t)2
a(t)2 +

Nä(t)
a(t) +

Nȧ(t)2
a(t)2 ≤ −ρ(0, x0)e−N ln a(t)+N ln a(0), (20)

Nä(t)
a(t) ≤ −ρ(0, x0)a(0)Ne

ln 1
a(t )N , (21)

ä(t) ≤ − ρ(0, x0)a(0)N
Na(t)N−1 , for a(t) > 0. (22)

At the same time, it is known that the solution of the Emden equation,

ä(t) = − λ

a(t)N−1 ,a(0) = a1 > 0, ȧ(0) = a2, (23)

blows up if λ > 0 and one of the following conditions is satisfied:
(1) N = 2 (see Yuen24), or
(2) N > 2 (see Deng, Xiang, and Yang23) and

a2 <


2λ

(N − 2)aN−2
1

. (24)

By comparing the two ordinary differential equations (22) and (23) for N ≥ 3, we can set

λ B
ρ(0, x0)a(0)N

N
, (25)

with the initial conditions

a(0) = 1 and ȧ(0) = div u(0, x0)
N

. (26)
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Using the blowup condition (24) for the Emden equation, we see that the solution of the Emden
inequality (22) blows up for N ≥ 3 if

div u(0, x0) <


2N ρ(0, x0)
(N − 2) . (27)

For N = 1 and for λ > 0, there exists a finite time T such that a(T) = 0. Thus, function (18) blows
up in finite time T .

For attractive force (δ = 1) and N = 1, we have the corresponding result,

D
Dt

div u(t, x0(t)) + [ div u(t, x0(t))]2 = ρ(t, x0(t)). (28)

Then, we obtain

ä(t) − ρ(0, x0) = 0, a(0) = 1, and ȧ(0) = div u(0, x0). (29)

The exact solution is

a(t) = 1
2
ρ(0, x0)t2 + div u(0, x0)t + 1. (30)

By the quadratic formula, there exists a finite time

T1 =
− div u(0, x0) −

[ div u(0, x0)]2 − 2ρ(0, x0)
ρ(0, x0) > 0 (31)

with

div u(0, x0) ≤ −


2ρ(0, x0) and ρ(0, x0) > 0 (32)

such that a(T1) = 0. Thus, the function div u(t, x0(t)) blows up in finite time T .
This completes the proof. ■

III. DISCUSSION AND CONCLUSION

In this paper, by comparison with the arguments in Refs. 13, 17, and 18, we provide a novel and
briefer method for proving the blowup of C2 solutions to the pressureless Euler-Poisson system (1)
with attractive forces (δ = −1) for RN (N ≥ 2) with ρ(0, x0) > 0 and

Ω0i j(x0) = 1
2
�
∂iu j(0, x0) − ∂jui(0, x0)� = 0 (33)

at some point x0. By applying the generalized Hubble transformation,

div u(t, x0(t)) = Nȧ(t)
a(t) , (34)

to the reduced Riccati differential inequality (14) derived for the system, we can simplify it to the
Emden equation

ä(t) = − λ

a(t)N−1 , a(0) = 1, ȧ(0) = div u(0, x0)
N

. (35)

By using known results on the blowup set of the Emden equation, we readily obtain the blowup
conditions of the Euler-Poisson system for attractive forces. Of particular note is that the Emden
equation appears in the self-similar solutions for the Euler28,26 and Euler-Poisson21–24 systems.

Further research is highly recommended to investigate whether blowup phenomena exist for

Ω0i j(x0) , 0 (36)

with attractive forces (δ = −1) for RN and repulsive forces (δ = 1) for RN(N ≥ 2).
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