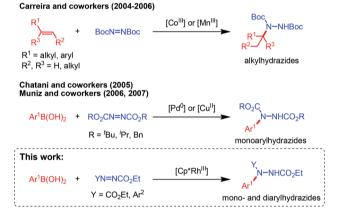
Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2016, 14, 6821

Cp*Rh(III)-catalyzed electrophilic amination of arylboronic acids with azo compounds for synthesis of arylhydrazides[†]


Yan-Fung Lau, Chun-Ming Chan, Zhongyuan Zhou and Wing-Yiu Yu*

Received 6th April 2016, Accepted 14th June 2016 DOI: 10.1039/c6ob00719h A [Cp*Rh(μ)]-catalyzed electrophilic amination of arylboronic acids with diethyl azodicarboxylate (DEAD) was developed, and arylhydrazides were produced in excellent yields and selectivity. The analogous amination with the arylazocarboxylates afforded the corresponding *N*,*N*-diarylhydrazides. The electrophilic amination of arylboronic acids with azocarboxylates proceeds readily under mild conditions with excellent functional group tolerance. Up to 99% yields were obtained. Preliminary mechanistic studies revealed that prior formation of an arylrhodium(μ) intermediate for the azo coupling reaction can be ruled out.

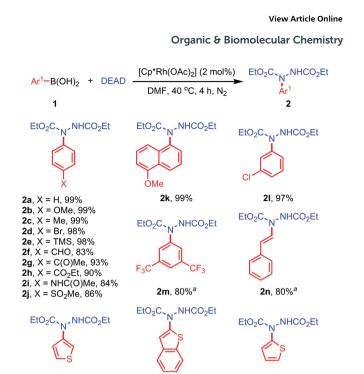
www.rsc.org/obc

Transition metal-catalyzed electrophilic (umpolung) aminations are attractive approaches for arylamine synthesis under mild conditions.¹ Characterized by weak N-X (X = leaving group) σ -bonds, haloamines and hydroxyamine derivatives have been extensively investigated for electrophilic amination with organolithium and -magnesium reagents.² Dialkyl azodicarboxylates are conceptually different classes of electrophilic amination reagents. Unlike the halo/hydroxyamine-type reagents, the azodicarboxylates react with carbanionic nucleophiles via N-N π-bond cleavage. While dialkyl azodicarboxylates are known to react with stoichiometric organometallic reagents for C-N bond coupling reactions,³ examples involving transition metal catalysis are sparse in the literature (Scheme 1). About a decade ago, Carreira and coworkers reported a Co- and Mn-catalyzed alkene hydrohydrazination using di-tert-butyl azodicarboxylate and triphenylsilane as reagents.^{3e-g} Recently, Chatani and coworkers reported a Cucatalyzed hydroarylation of azodicarboxylates.^{3h} Muniz and coworkers reported a Pd-catalyzed coupling of arylboronic acids with diethyl azodicarboxylate (DEAD). A palladadiaziridine complex was structurally characterized and was shown to mediate the C-N bond coupling reaction.3ij

Owing to an interest in developing transition metal catalyzed C–H bond aminations under mild conditions,⁴ we previously accomplished regioselective Pd-/Rh-catalyzed *ortho*selective arene C–H amination with tosyloxycarbamates and *N*-chloroamines.^{4k-o} The catalytic arene C–H amination should

proceed by coupling of reactive arylpalladium(π) and -rhodium(π) complexes with the amination reagents. By virtue of the weak N–N π -bond, we envisioned that dialkyl azodicarboxylates would be effective coupling partners with aryl-metal complexes for C–N bond formation. Here we describe [Cp*Rh(π)]-catalyzed (Cp* = 1,2,3,4,5-pentamethyl-cyclopentadie-nyl) cross coupling of arylboronic acids with azo compounds for the synthesis of arylhydrazides.

When phenylboronic acid (1a; 0.3 mmol) was treated with DEAD (0.2 mmol) and $[Cp*Rh(OAc)_2]$ (5 mol%) in THF at 80 °C under an N₂ atmosphere for 4 h, phenylhydrazide (2a) was obtained in 85% yield (Table 1, entry 1). In this work, we found that employing phenylboronic acid pinacol ester and potassium phenyltrifluoroborate alone did not bring about effective C–N coupling reactions (entries 2 and 3). The boron reagents were fully recovered with substantial decomposition


View Article Online

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. E-mail: wing-yiu.yu@polyu.edu.hk

[†]Electronic supplementary information (ESI) available. CCDC 1455768–1455771. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ob00719h

aryl boron reagent + EtO ₂ CN=NCO ₂ Et (DEAD) catalyst solvent , T, N ₂ EtO ₂ C. N ^H CO ₂ Et Ph 2a					
Entry	Aryl boron reagent	Catalyst	Solvent	Т (°С)	Yield ^b (%)
1	$PhB(OH)_2$ (1a)	[Cp*Rh(OAc) ₂]	THF	80	85
2	PhB(pin)	$\left[Cp*Rh(OAc)_{2} \right]$	THF	80	n.d. ^c
3	KPhBF ₃	[Cp*Rh(OAc) ₂]	THF	80	n.d. ^c
4^d	KPhBF ₃	$[Cp*Rh(OAc)_2]$	THF	80	70
5	1a	$[Cp*RhCl_2]_2$	THF	80	10
6	1a	$[Rh(COD)Cl]_2$	THF	80	11
7	1a	$[Rh(COD)(OH)]_2$	THF	80	n.d. ^c
8	1a	$[Cp*IrCl_2]_2$	THF	80	n.d. ^c
9	1a	[Cp*Rh(OAc) ₂]	^t BuOH	80	64
10	1a	[Cp*Rh(OAc) ₂]	MeCN	80	3
11	1a	[Cp*Rh(OAc) ₂]	Dioxane	80	50
12	1a	[Cp*Rh(OAc) ₂]	DCE	80	31
13^{e}_{c}	1a	[Cp*Rh(OAc) ₂]	DMF	40	99
14^{f}	1a	[Cp*Rh(OAc) ₂]	THF	80	42

^{*a*} Conditions: aryl boron reagent (0.3 mmol), DEAD (0.2 mmol), catalyst (5 mol%), solvent (1 mL), 4 h in an N₂ atmosphere. ^{*b*} Isolated yield. ^{*c*} n.d. = not detected. ^{*d*} B(OH)₃ (0.3 mmol) was added. ^{*e*} [Cp*Rh(OAc)₂] (2 mol%) was used. ^{*f*} Di-*tert*-butyl azodicarboxylate (0.2 mmol) was used instead.

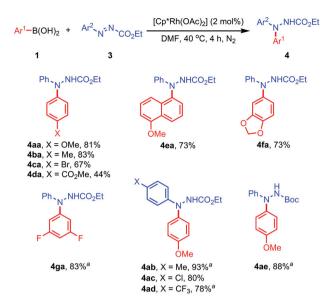
 $\label{eq:scheme 2} \begin{array}{l} \mbox{Scheme 2} & \mbox{Scope of the arylation of DEAD. Yields of isolated products} \\ \mbox{are given. General reaction conditions: 1 (0.3 mmol), DEAD (0.2 mmol),} \\ \mbox{[Cp*Rh(OAc)_2] (2 mol\%), DMF (1 mL), 40 °C for 4 h in an N_2 atmosphere.} \\ \mbox{"The reaction was performed at 80 °C.} \end{array}$

2p, 45%

20.93%

2q. 20%

of the DEAD. Interestingly, when potassium phenyltrifluoroborate was employed together with $B(OH)_3$ as additives and DMF as the solvent, **2a** was formed in 70% yield (entry 4).

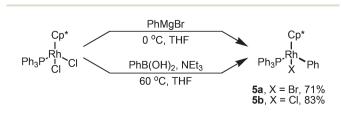

Other rhodium catalysts such as $[Cp*RhCl_2]_2$ are less effective catalysts (entry 5). According to the literature, rhodium(1) diene complexes such as $[Rh(COD)X]_2$ (X = Cl, OH) are known to catalyze arylation of enones with arylboron reagents.⁵ However, these Rh(1)-diene complexes were found to be ineffective catalysts for the reaction of **1a** with DEAD (entries 6 and 7). In this work, the related $[Cp*IrCl_2]_2$ complex exhibited negligible catalytic activities under our reaction conditions (entry 8).

Other solvents such as ^{*t*}BuOH, MeCN, dioxane and DCE gave inferior results compared to THF (entries 9–12). After several trials, we found that DMF gave the best result with **2a** being formed in a nearly quantitative yield.⁶ Upon further refinement of several experimental parameters, an optimized reaction protocol was established: $[Cp*Rh(OAc)_2]$ (2 mol%), **1a** (0.3 mmol), DEAD (0.2 mmol) in DMF at 40 °C (entry 13). It is noteworthy that the azo coupling reaction is sensitive to the ester substituents on the azocarboxylates. For instance, the amination of **1a** with di-*tert*-butyl azodicarboxylate produced the corresponding arylhydrazides in only 42% yield (entry 14). The coupling with azobenzene was unsuccessful, and no C–N coupled products were obtained.⁶

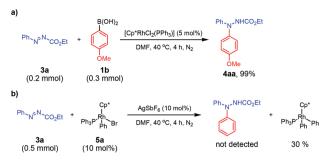
With DEAD as the model substrate, the scope of the arylboronic acids was examined (Scheme 2). The reactions of arylboronic acids containing electron-donating and -withdrawing groups (*e.g.* OMe, Me and Br) afforded the corresponding hydrazides (2a-2d) in excellent yields. Other functionalized arylboronic acids bearing TMS, CHO, C(O)Me, CO₂Et, NHC(O)Me and SO₂Me were converted to 2e-2j in 83–98% yields. Fruitful results were achieved for the analogous amidation of 6-methoxy-1-naphthyl, 3-chloro and 3,5-bis(trifluoromethyl) phenylboronic acids with 2k-2m being formed in excellent yields. Likewise, effective transformations of styrylboronic acid and heteroaromatic boronic acids were also achieved to give the corresponding products (2n-2q) in good to moderate yields.

Diarylamines are prevalent scaffolds found in many natural products, pharmaceuticals and functional materials.⁷ The Pdand Cu-catalyzed arylation of anilines with haloarenes are widely employed for diarylamine synthesis.⁸ Yet, examples of diarylamine synthesis *via* electrophilic amination are sparse.⁹ Lei and coworkers reported the synthesis of diarylamines by Cu-catalyzed arylation of *N*-chloroanilides with arylboronic acids.^{9e} Recently, Chang and coworkers reported a reaction of aryl azides with aryliridium(m) complexes for diarylamine synthesis.^{9f-h} In this work, we developed the catalytic arylation of arylazocarboxylates for the synthesis of *N*,*N*-diarylhydrazides.

The arylazocarboxylate was prepared by reacting arylhydrazine with ethyl chloroformate, followed by NBS oxidation. When phenylazocarboxylate (**3a**) was treated with 4-methoxyphenylboronic acid (**1b**) and $[Cp*Rh(OAc)_2]$ (2 mol%) in DMF at 40 °C under an N₂ atmosphere, *N*,*N*-diarylhydrazides (**4aa**) was isolated as a single regioisomer in 81% yield (Scheme 3). The molecular structure of **4aa** has been established by singlecrystal X-ray crystallography. Arylboronic acids containing elec-


Scheme 3 Scope of the arylation of arylazocarboxylate. Yields of isolated products are given. General reaction conditions: 1 (0.3 mmol), 3 (0.2 mmol), [Cp*Rh(OAc)₂] (2 mol%), DMF (1 mL), 40 °C for 4 h in an N₂ atmosphere. ^aThe reaction was performed at 80 °C.

tron-donating and -withdrawing substituents were well tolerated (see results for **4ba–4da**). Similarly, amidation of 6-methoxy-1-naphthyl, 3,4-(methylenedioxy) and 3,5-ditrifluorophenylboronic acids furnished **4ea–4ga** in excellent yields.


With 4-methoxyphenylboronic acid as the arylating reagent, the reactions of some substituted arylazocarboxylates were examined. Effective C–N coupling was observed in all cases, and the diarylhydrazides (**4ab–4ae**) were formed in 78–93% yields.

Arylrhodium(\mathfrak{m}) complexes are known to mediate catalytic C–N bond coupling reactions.^{4m,10} To examine the involvement of the arylrhodium(\mathfrak{m}) complexes, we prepared the well-defined [Cp*Rh(Ph)(Br)(PPh₃)] complex **5a** (71% yield) by reacting [Cp*RhCl₂(PPh₃)] with PhMgBr.¹¹ The analogous [Cp*Rh (Ph)(Cl) (PPh₃)] complex **5b** (83% yield) was also prepared by employing phenylboronic acid as the aryl source (Scheme 4).¹² The molecular structures of **5a** and **5b** have been confirmed by single-crystal X-ray crystallography.⁶

In this work, when $[Cp*Rh(Ph)(Br)(PPh_3)]$ (5a) (10 mol%) was treated with AgSbF₆ (10 mol%) and phenylazocarboxylate (0.5 mmol) in DMF at 40 °C for 4 h, no *N*,*N*-diphenylhydrazide was formed. Notably, $[Cp*Rh(Ph)_2(PPh_3)]$ was isolated in 30% yield, and 18% of the starting $[Cp*Rh(Ph)(Br)(PPh_3)]$ was recov-

Scheme 4 Synthesis of [Cp*Rh(Ph)(X)(PPh₃)].

Scheme 5 Investigation of the stoichiometric reaction of arylrhodium(III) complexes with phenylazocarboxylate.

ered (Scheme 5). Notwithstanding, [Cp*RhCl₂(PPh₃)] was found to be an effective catalyst for the arylation reaction. For example, reacting [Cp*RhCl₂(PPh₃)] (5 mol%) with 4-methoxyphenylboronic acid (**1b**) and phenylazocarboxylate (**3a**) in DMF at 40 °C afforded **4aa** in 99% yield. Based on the above findings, direct coupling of arylrhodium(m) with the azo reagent may not be a productive step for the arylation reaction.

Previously, Muniz and coworkers reported the Pd-catalyzed arylation of DEAD by arylboronic acids, and palladadiaziridine complexes have been characterized as the key intermediate. However, the attempt to characterize well-defined rhodalladiaziridine complexes was unsuccessful. The preparation and characterization of some reactive metalladiaziridine complexes are currently in progress, and the results will be reported separately.

Conclusions

In conclusion, we developed a [Cp*Rh(m)]-catalyzed electrophilic amination of arylboronic acids by employing azo reagents. Effective coupling of DEAD and the aryl azocarboxylates with arylboronic acids afforded mono- and diarylhydrazides in good yields under mild conditions.

Acknowledgements

We thank the Hong Kong Research Grants Council (PolyU5032/13P, C5023/14G) for financial support.

Notes and references

- 1 For transition metal-catalyzed electrophilic amination, see: (*a*) A. Ricci, *Amino Group Chemistry: From Synthesis to the Life Sciences*, Wiley-VCH, Weinheim, 2008; (*b*) A. Ricci, *Modern Amination Methods*, Wiley-VCH, Weinheim, 2000.
- 2 For a selected review on electrophilic amination of carbanions, see: (*a*) E. Erdik and M. Ay, *Chem. Rev.*, 1989, **89**, 1947. For selected articles on the stoichiometric addition of organometallic reagents: for the use of organolithium reagents, see: (*b*) P. Beak and B. J. Kokko, *J. Org. Chem.*,

6824 | Org. Biomol. Chem., 2016, 14, 6821-6825

Paper

1982, 47, 2823. For the use of Grignard reagents, see: (c) M. J. Campbell and J. S. Johnson, Org. Lett., 2007, 9, 1521; (d) E. Erdik and S. Ates, Synth. Commun., 2006, 36, 2813; (e) M. Kitamura, T. Suga, S. Chiba and K. Narasaka, Org. Lett., 2004, 6, 4619. For the use of organozinc reagents, see: (f) A. M. Berman and J. S. Johnson, J. Org. Chem., 2006, 71, 219; (g) A. M. Berman and J. S. Johnson, J. Org. Chem., 2005, 70, 364; (h) E. Erdik and T. J. Daskapan, Chem. Soc., Perkin Trans. 1, 1999, 3139. For the use of cuprates, see: (i) P. Bernardi, P. Dembech, G. Fabbri, A. Ricci and G. Seconi, J. Org. Chem., 1999, 64, 641; (j) A. Alberti, F. Cane, P. Dembech, D. Lazzari, A. Ricci and G. Seconi, J. Org. Chem., 1996, 61, 1677; (k) A. Casarini, P. Dembech, D. Lazzari, E. Marini, G. Reginato, A. Ricci and G. Seconi, J. Org. Chem., 1993, 58, 5620. For the use of organostannane reagents, see: (1) Z. Zhang, Y. Yu and L. S. Liebeskind, Org. Lett., 2008, 10, 3005.

- 3 For stoichiometric addition of organometallic reagents reacting with azo compounds: for the use of Grignard reagents, see: (a) I. Sapountzis and P. Knochel, Angew. Chem., Int. Ed., 2004, 43, 897. For the use of organozinc reagents, see: (b) P. Sinha, C. C. Kofink and P. Knochel, Org. Lett., 2006, 8, 3741; (c) H. Mitchell and Y. Leblanc, J. Org. Chem., 1994, 59, 682. For the use of organotitanium reagents, see: (d) D. K. An, K. Hirakawa, S. Okamoto and F. Sato, Tetrahedron Lett., 1999, 40, 3737. For transition metal catalyzed C-N bond formation employing azo compounds: for Co- and Mn-catalyzed alkene hydrohydrazination, see: (e) J. Waser, B. Gaspar, H. Nambu and E. M. Carreira, J. Am. Chem. Soc., 2006, 128, 11693; (f) J. Waser, J. C. Gonzalez-Gomez, H. Nambu, P. Huber and E. M. Carreira, Org. Lett., 2005, 7, 4249; (g) J. Waser and E. M. Carreira, J. Am. Chem. Soc., 2004, 126, 5676. For Cu-mediated C-N bond coupling of arylboronic acid with azo compounds, see: (h) T. Uemura and N. Chatani, J. Org. Chem., 2005, 70, 8631. For Pd-catalyzed C-N bond coupling of arylboronic acid with azo compounds, see: (i) K. Muniz and A. Iglesias, Angew. Chem., Int. Ed., 2007, 46, 6350; (j) K. Muniz and M. Nieger, Angew. Chem., Int. Ed., 2006, 45, 2305.
- 4 Here our recent studies on catalytic C-H bond cross coupling reactions are depicted. For transition metal-catalyzed ortho-selective arene C-H bond carbenoid insertion, see: (a) H.-W. Lam, K.-Y. Man, W.-W. Chan, Z. Zhou and Org. Biomol. Chem., 2014, 12, 4112; W.-Y. Yu. (b) W.-W. Chan, S.-F. Lo, Z. Zhou and W.-Y. Yu, J. Am. Chem. Soc., 2012, 134, 13565; (c) W.-W. Chan, T.-L. Kwong and W.-Y. Yu, Org. Biomol. Chem., 2012, 10, 3749; (d) W.-W. Chan, S.-H. Yeung, Z. Zhou, A. S. C. Chan and W.-Y. Yu, Org. Lett., 2010, 12, 604. For transition metal-catalyzed C2-/ortho-selective arene C-H bond coupling with carboradical, see: (e) C.-W. Chan, P.-Y. Lee and W.-Y. Yu, Tetrahedron Lett., 2015, 56, 2559; (f) W.-W. Chan, Z. Zhou and W.-Y. Yu, Chem. Commun., 2013, 49, 8214; (g) C.-W. Chan, Z. Zhou and W.-Y. Yu, Adv. Synth. Catal., 2011, 353, 2999; (h) C.-W. Chan, Z. Zhou, A. S. C. Chan and

W.-Y. Yu, Org. Lett., 2010, 12, 3926; (\hat{i}) W.-Y. Yu, W. N. Sit, Z. Zhou and A. S. C. Chan, Org. Lett., 2009, 11, 3174; (\hat{j}) W.-Y. Yu, W. N. Sit, K.-M. Lai, Z. Zhou and A. S. C. Chan, J. Am. Chem. Soc., 2008, 130, 3304. For Pd-catalyzed orthoselective arene C-H bond amination with tosyloxycarbamates, see: (k) K.-H. Ng, F.-N. Ng and W.-Y. Yu, Chem. Commun., 2012, 48, 11680; (l) K.-H. Ng, A. S. C. Chan and W.-Y. Yu, J. Am. Chem. Soc., 2010, 132, 12862. For Rh-catalyzed ortho-selective arene C-H amination with N-chloramines, see: (m) F.-N. Ng, Z. Zhou and W.-Y. Yu, Chem. – Eur. J., 2014, 20, 4474; (n) K.-H. Ng, Z. Zhou and W.-Y. Yu, Chem. Commun., 2013, 49, 7031; (o) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org. Lett., 2012, 14, 272.

- ⁵ For selective examples of rhodium(I) diene complexes catalyzed arylation of enones, see: (a) S. Gosiewska, J. A. Raskatov, R. Shintani, T. Hayashi and J. M. Brown, *Chem. Eur. J.*, 2012, 18, 80; (b) H. J. Edwards, J. D. Hargrave, S. D. Penrose and C. G. Frost, *Chem. Soc. Rev.*, 2010, 39, 2093; (c) R. Shintani and T. Hayashi, *Aldrichimica Acta*, 2009, 42, 31; (d) T. Hayashi, K. Ueyama, N. Tokunaga and K. Yoshida, *J. Am. Chem. Soc.*, 2003, 125, 11508.
- 6 Refer to the ESI[†] for detailed experimental data.
- 7 (a) A. Kleeman, J. Engel, B. Kutscher and D. Reichert, *Pharmaceutical Substances: Syntheses, Patents, Applications* of the most relevant APIs, Thieme, Stuttgart, 5th edn, 2009;
 (b) S. M. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. M. Llovet and M. Lynch, Mol. Cancer Ther., 2008, 7, 3129;
 (c) R. Sordella, D. W. Bell, D. A. Haber and J. Settleman, Science, 2004, 305, 1163; (d) M. W. N. Deininger and B. J. Druker, Pharmacol. Rev., 2003, 55, 401.
- 8 For Pd-catalyzed nucleophilic amination for diarylamine synthesis, see: (a) F. Paul, J. Patt and J. F. Hartwig, Organometallics, 1995, 14, 3030; (b) A. S. Guram, R. A. Rennels and S. L. Buchwald, Angew. Chem., 1995, 107, 1456, (Angew. Chem. Int. Ed. Engl., 1995, 34, 1348); (c) J. Louie and J. F. Hartwig, Tetrahedron Lett., 1995, 36, 3609; (d) F. Paul, J. Patt and J. F. Hartwig, J. Am. Chem. Soc., 1994, 116, 5969. For Cu-catalyzed nucleophilic amination for diarylamine synthesis, see: (e) D. M. T. Chan, K. L. Monaco, R.-P. Wang and M. P. Winters, Tetrahedron Lett., 1998, 39, 2933; (f) D. A. Evans, J. L. Katz and T. R. West, Tetrahedron Lett., 1998, 39, 2937; (g) P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett., 1998, 39, 2941.
- 9 For transition metal-catalyzed electrophilic amination for diarylamine synthesis: for stoichiometric addition of organoaluminum reagents reacting with *O*-protected hydroxamic acid, see: (a) S. Zhou, Z. Yang, X. Chen, Y. Li, L. Zhang, H. Fang, W. Wang, X. Zhu and S. Wang, J. Org. Chem., 2015, 80, 6323; (b) H. Yoon and Y. Lee, J. Org. Chem., 2015, 80, 10244. For Cu-catalyzed electrophilic amination for diarylamine synthesis, see: (c) R. Sakae, K. Hirano and M. Miura, J. Am. Chem. Soc., 2015, 137, 6460; (d) T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2010, 132, 6900; (e) C. He, C. Chen, J. Cheng, C. Liu, W. Liu, Q. Li and A. Lei, Angew. Chem., Int. Ed., 2008, 47, 6414. For Rh-

Paper

catalyzed electrophilic amination for diarylamine synthesis, see: (f) S. H. Park, J. Kwak, K. Shin, J. Ryu, Y. Park and S. Chang, J. Am. Chem. Soc., 2014, **136**, 2492; (g) K. Shin, Y. Baek and S. Chang, Angew. Chem., Int. Ed., 2013, **52**, 1; (h) J. Ryu, K. Shin, S. H. Park, J. Y. Kim and S. Chang, Angew. Chem., Int. Ed., 2012, **51**, 9904.

10 For arylrhodium(m)-mediated catalytic C-N bond coupling reactions, see: (a) G. Song, F. Wang and X. Li, *Chem. Soc. Rev.*, 2012, 41, 3651; (b) K. Shin, Y. Baek and S. Chang, *Angew. Chem., Int. Ed.*, 2013, 52, 1; (c) C. Grohmann, H. Wang and F. Glorius, *Org. Lett.*, 2012, 14, 656;

(*d*) J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim and S. Chang, *J. Am. Chem. Soc.*, 2012, **134**, 9110; (*e*) C. Grohmann, H. Wang and F. Glorius, *Org. Lett.*, 2013, **15**, 3014. For arylrhodium(m)-mediated catalytic carbenoid C-C bond coupling reactions, see: (*f*) Y.-S. Lu and W.-Y. Yu, *Org. Lett.*, 2016, **18**, 1350; (*g*) F.-N. Ng, Y.-F. Lau, Z. Zhou and W.-Y. Yu, *Org. Lett.*, 2015, **17**, 1676.

- 11 J. W. Kang, K. Moseley and P. M. Maitlis, *J. Am. Chem. Soc.*, 1969, **91**, 5970.
- 12 E. J. Farrington, C. F. J. Barnard, E. Rowsell and J. M. Brown, *Adv. Synth. Catal.*, 2005, 347, 185.