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The Acoustic Black Hole (ABH) effect takes place in thin-walled structures with diminishing thick-

ness as a result of the reduction in the bending wave speed. It was shown to exist as a broadband

phenomenon, based on wave propagation theory in structures of semi-infinite size. The ABH effect

exhibits appealing features for various applications, such as passive vibration control, energy har-

vesting, and sound radiation control. In this paper, we demonstrate the disappearance of the ABH

effect in a finite beam at specific frequency ranges above the cut-on frequency, both experimentally

and theoretically. Analyses show that the phenomenon takes place at frequencies which are close

to the low order local resonant frequencies of the portion of the beam demarcated by the position

of the excitation force. These frequencies can be predicted so that the phenomenon can be avoided

for the targeted frequency ranges in ABH applications. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4955127]

The Acoustic Black Holes (ABH) effect, the acoustic

analogy of astrophysical black holes,1–3 takes place through a

gradual reduction in the phase velocity of the bending wave as

a result of thickness thinning in a structure. In the ideal sce-

nario where the structural thickness is tailored according to the

power law hðxÞ ¼ exm with m � 2, wave speed approaches

zero at the wedge tip, thus warranting quasi zero wave reflec-

tion.4,5 The similar concept is also used in optics to achieve

the optic black hole.6 The resulting high energy concentration

is conducive to various applications, such as passive vibration

control,7–15 energy harvesting,16,17 and sound radiation con-

trol.18,19 In addition, ABHs can be embedded into phononic

thin plates to achieve remarkable dispersion properties.20

An ideal ABH structure cannot be achieved because of

the manufacturing limitations, thus resulting in an unavoid-

able truncation at the wedge tip. The existence of the trunca-

tion would greatly weaken the ABH effect by generating

wave reflection.5,7 This, however, can be compensated for

with the help of thin damping layers to some extent.8,10–14

Existing research indicates that, despite the truncation, the

ABH effect is still highly efficient as a broadband phenom-

enon, although the effect is not obvious below the cut-on

frequency.21 For semi-infinite structures with ABH wedge

features, the geometrical acoustic approach22 was first pro-

posed to analyze the flexural wave propagation properties

and revealed an obvious reduction in the reflection coeffi-

cient with the increase of frequency.5,7 Similar results on the

reflection coefficient were also obtained by an impedance

method9 without the limitation of the hypothesis of geomet-

rical acoustics.23 However, these two types of approaches

only deal with semi-infinite structures, namely, the finite

length in the wedge and the infinite length on the other por-

tion of the structure. In practice, structures are always finite

in size with real structural boundaries. In such cases, multi-

ple reflections would take place between the boundaries and

excitation points as well as the intersection between the

ABH portion and the rest of the structure. Up to now, the

reported theoretical models8,24 and experiments10–15 on finite

structures with ABH profiles all confirmed the effectiveness

of the ABH effect above the cut-on frequency. In this paper,

however, we experimentally demonstrate that the ABH effect

may lose its effect, or fail, in a finite beam in particular fre-

quency bands, which will be called failure frequency bands

hereafter. A previously developed wavelet-decomposed energy

mothed25 is used to confirm and explain this phenomenon

and to predict the failure frequency bands, which should be

avoided in applications.

A beam with a tailored ABH profile wedge was

employed to investigate its flexural vibration response when

subjected to a unit point excitation force. Fig. 1 shows the ex-

perimental setup. According to the coordinate system defined

in Fig. 1, the beam consists of a left ABH part with a sym-

metrical thickness profile hðxÞ ¼ 0:00125x2, 12 cm long, and

a right uniform part with a constant thickness of 0.64 cm,

16 cm long. The whole beam has a uniform width of 1 cm

and is made of steel with a mass density of 7794 kg/m3 and

Young modulus of 200 GPa. The beam was hung by two thin

strings, as illustrated in Fig. 1, to mimic free boundary condi-

tions. An electromagnetic shaker was placed at 8 cm away

FIG. 1. Experimental setup. A beam with a left ABH part and a right uni-

form part was hung by two thin strings and excited by a periodic chirp signal

from an electromagnetic shaker at the point, 8 cm away from the uniform

end; the force was measured by a force transducer and amplified by a charge

amplifier; a Polytec scanning laser vibrometer was used to scan the beam

and measure its vibration response.

a)Author to whom correspondence should be addressed. Electronic mail:

li.cheng@polyu.edu.hk.
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from the uniform end of the beam, with the excitation force

measured by a force transducer (B&K 8200) and amplified

by a charge amplifier (B&K 2635). A periodic chirp signal

with frequency from 0 Hz to 16 kHz was used to feed the

shaker via a power amplifier (B&K 2706). A Polytec scan-

ning laser vibrometer was used to scan the whole beam for

the response measurement.

Experimental results in Fig. 2(a) reveal that the mean

quadratic velocity of the ABH part, representing its overall

vibration level, is particularly low in two regions around

3595 Hz and 11 290 Hz, respectively. In Fig. 2(b), the ratio

of the mean quadratic velocity of the ABH part to that of the

uniform beam part, defined as C ¼ 10 log
hV2iABH

hV2iUnif
, is used to

quantify the effectiveness of the ABH effect, on the premise

that effective ABH effect results in energy concentration in

the tapered ABH region with a high positive C. On the con-

trary, when C is negative, we consider the ABH effect is lost

or sufficiently weak, in which case we loosely call it failure

of the ABH effect. As clearly seen in the Fig. 2(b), around

these two bottommost frequency regions the energy mainly

concentrates on the uniform part rather than the ABH part as

the conventional ABH effect would have suggested. This

indicates a clear disappearance of effectiveness of the ABH

effect around these frequencies, against the conventionally

established broadband nature of the ABH feature reported in

the literature.8,10–15,24 A band is defined as a failure band

when its C value is negative. In the present case, the two fail-

ure bands are 875 Hz and 1755 Hz, respectively.

To confirm and understand the aforementioned observa-

tion, numerical simulations are performed using our previ-

ously developed wavelet-decomposed and energy-based

model.25 Based on the Euler–Bernoulli beam theory, the

displacement field of the beam is expressed as u;wf g
¼ �z @w

@x ;wðx; tÞ
n o

, where the flexural displacement w is

expanded over the Mexican hat wavelet (MHW) functions

uj;kðxÞ as26

wðx; tÞ ¼
Xm

j¼0

X
k

aj;kðtÞuj;kðxÞ; (1)

with uj;kðxÞ ¼ 2ffiffi
3
p p�

1
42j=2

�
1� ð2jx� kÞ2

�
e�
ð2 jx�kÞ2

2 .

The kinetic energy Ek, the potential energy Ep, and the

work done by the applied force W can be mathematically

expressed as a function w to form the Lagrangian of the sys-

tem L ¼ Ek � Ep þW. Substituting L into the Lagrange’s

equations d
dt

@L
@ _aj;kðtÞ

� �
� @L

@aj;kðtÞ ¼ 0 and simplifying the equa-

tions in the harmonic regime, we can get the vibration

response by solving the following matrix equation:

½K� x2M�A ¼ F; (2)

where K and M are, respectively, the stiffness matrix and

mass matrix, A and F are, respectively, the vectors of the

response and the force.

The simulated results under the same experimental condi-

tion are shown in Fig. 2 to compare with the experimental

ones. Both sets of results agree well, especially below 8000 Hz.

Most importantly, the simulated results confirm the existence

of the two ABH failure bands. Note that the numerically pre-

dicted second frequency band is more obvious than that from

the experiment. The discrepancies between them are likely

due to the neglected shear and torsional effect in the simula-

tion, which certainly exists and comes into play at high fre-

quencies. It was observed that the inevitable deviation of the

excitation point from the enteral axis of the beam also enhan-

ces the problem, by introducing slight torsional deformation of

the beam, which is not considered in the model. Nevertheless,

the existence of the ABH failure bands is unequivocally

demonstrated.

To further demonstrate the phenomenon, Figs. 3(a) and

3(b) depict the experimental and simulated displacement dis-

tribution of the beam at the first and second bottommost fre-

quencies, for two excitation locations (xf¼ 24 cm and 26 cm,

respectively). As a comparison, Fig. 3(c) also depicts the dis-

placement distribution at two frequencies, outside and adja-

cent to the two failure bands, respectively (f¼ 3220 Hz and

5840 Hz). Fig. 3(c) shows typical ABH effect in that the

vibration mainly concentrates on the ABH part with large

vibration level near the wedge tip. However, the highly con-

sistent results in Figs. 3(a) and 3(b) show that the vibration

level of the ABH part at two bottommost frequencies is neg-

ligible compared with that of the uniform part, which indi-

cates a loss of the ABH effect. It is logical to surmise that, in

this situation, applying damping layers or energy harvesting

elements on the ABH part would not lead to efficient damp-

ing or harvesting performance. For both excitation positions,

the figure shows that the low vibration region of the ABH

part roughly starts from the excitation location.

A plausible reason to explain the observed phenomenon

is proposed as follows. Due to the presence of the excitation,

a structural discontinuity in the local impedance is created,

FIG. 2. (a) The mean quadratic velocity

of the ABH part and (b) the ratio of

mean quadratic velocity of the ABH part

to that of the uniform beam part from

experimental and numerical simulations.
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demarcating the beam into two subsystems, i.e., the right

uniform part and the left part with ABH profile. Within the

failure frequency band, multiple wave reflections take place

between the structure boundary and the excitation point.

This allows the formation of standing waves and local

resonances, thus triggering the energy localization effect.

Indeed, analyses show that the ABH failure frequencies cor-

respond to the local resonance frequencies of that uniform

beam portion with pinned boundary conditions at the force

excitation point and the real structural boundary at the other

end. In the present case, the observed two bottommost ABH

failure frequencies correspond to the first two local reso-

nance frequencies of the beam portion with the pinned-free

boundary, which can be predicted.27 When the excitation fre-

quency approaches the local resonance frequencies of the

uniform portion delimited by the excitation point and the

structural boundary, energy will be localized within that

region due to the local resonance phenomenon, neutralizing

the ABH effect in the ABH beam portion. To further confirm

this phenomenon and explanation, we changed the excitation

point to xf¼ 26 cm (6 cm away from the end of the uniform

beam portion). In this case, the first and second local resonant

frequencies of the uniform beam portion are re-calculated,

giving 6380 Hz and 20 673 Hz, respectively. These values are

reasonably close to the two bottommost frequencies corre-

sponding to the minimum energy ratio C (6422 Hz and

19 844 Hz). The predicted and experimentally measured dis-

placement distributions are also in excellent agreement, as

shown in Fig. 3.

More cases were simulated to confirm the general char-

acter of the phenomenon and the validity of the proposed

prediction of the failure frequencies. When changing the

boundary conditions and excitation locations, similar ABH

failure phenomenon was noticed in each case (not shown

here). The first and second bottommost ABH failure frequen-

cies are compared with the corresponding predicted local

resonant frequencies of the uniform subsystem delimited by

the excitation points at xf¼ 23 cm and xf¼ 27 cm, respec-

tively, as displayed in Table I. Treating the excitation point

as a pinned constraint, the predicted local resonant frequen-

cies are indeed very close to bottommost ABH failure fre-

quencies for all three different boundary conditions. The

failure frequency bands are also highly obvious, ranging

from 542 Hz to as large as 2594 Hz. Therefore, the reported

ABH failure phenomenon applies to all cases and the phe-

nomenon can be accurately reproduced by the established

wavelet-decomposed model.

In summary, we observed, both experimentally and

numerically, the loss of the ABH effect in a beam of finite

size, which up to now has been reported as a broadband phe-

nomenon above the cut-on frequency in semi-infinite ABH

structures. The loss of the ABH effect, also referred to as

ABH failure in this paper, features a significantly impaired

energy focalization capability in the tapered ABH region.

The width of the failure band can be quite substantial. When

this happens, the vibration energy mainly concentrates within

the uniform part of the beam delimited by the excitation

force, thus neutralizing the expected ABH effect. Physically,

the presence of the shaker, or mechanical excitation, introdu-

ces a discontinuity in the local structural impedance to the

waves. At certain frequencies (within the failure frequency

bands), multiple wave reflections take place between the

structure boundary and the excitation point, forming standing

waves and local resonances, thus triggering the localization

effect. The previously developed wavelet-decomposed and

energy-based model confirmed the general character of the

phenomenon. The failure frequencies can be predicted by

calculating the local resonance frequencies of the beam

FIG. 3. The experimentally measured

and numerically predicted displace-

ment distribution along the beam at (a)

the first bottommost frequency and (b)

the second bottommost frequency of

the energy ratio C where the ABH

effect fails, and (c) the frequencies out-

side and adjacent to the first failure

bands (f¼ 3220 Hz and 5840 Hz), with

the force applied at xf¼ 24 cm and

xf¼ 26 cm, respectively. Left to the

gray dashed line is the ABH part and

the right is the uniform part.
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portion delimited and pinned by the excitation point, which

allows the avoidance of the phenomenon in the targeted

application ranges.
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Boundary

conditions
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boundary conditions

Excitation

locations (cm)

Predicted local resonant

frequencies (Hz)

Bottommost ABH

failure frequencies (Hz) Difference (%)

Failure frequency

bands (Hz)

Free-free Pinned-free xf¼ 23 2835 2821 0.50 717

9188 9188 0 1202

xf¼ 27 9186 9122 0.70 1296

29 769 29 774 �0.00017 2594

Free-pinned Pinned-pinned xf¼ 23 1815 1821 �0.33 542
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Free-clamped Pinned-clamped xf¼ 23 2835 2858 �0.81 721
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